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LATTICE COMPUTATIONS FOR RANDOM NUMBERS 

RAYMOND COUTURE AND PIERRE L'ECUYER 

ABSTRACT. We improve on a lattice algorithm of Tezuka for the computation 
of the k-distribution of a class of random number generators based on finite 
fields. We show how this is applied to the problem of constructing, for such 
generators, an output mapping yielding optimal k-distribution. 

1. INTRODUCTION 

Extensive classes of random number generators have the following structure. The 
state space is a finite field F of characteristic 2. We denote by d its degree over F2, 
and sometimes refer to it as the order of the generator. Any state y E F evolves 
into a state xy, where the distinguished element, x E F, completely determines the 
evolution of the generator. Finally, the generator in state y outputs a w-bit vector 
@(y) = ((yy),. .., (ywy)) E F2w, where q : F -) F2 is any non-zero linear form 
over F2, and where Y, ... , yl are suitably chosen non-zero elements of F. 

The study of the k-distribution of the output sequence involves the computation, 
for all 1 < w and k < d, of the rank of the mapping F -) F2lk defined by 

Cb(y1y) q(yixy) ... 0(yq x kIy) 
(1) q5(Y2Y) Y5(Y2XY) (Y. (y2xk-Iy) 

0(yjy) q(Yjxy) ... O(y1xkly) 

One might naturally use gaussian elimination, as is done in [2, 4] for instance, but 
there are other methods which are more efficient in terms of both time and space. 
The efficiency issue becomes critical if the order d of the generator is chosen large. 
One such method is proposed by Tezuka [7]. He computes the rank of (1), for a 
given value of 1 and all k, by means of an 1-dimensional lattice Al in the space 
F2[X]' of 1-tuples of polynomials with F2 coefficients. We improve on this method 
by using instead a "dual" lattice A' C F2[X]l which has the advantage that it has 
basis vector coordinates which are generally much smaller than those of Al, and 
that a simple relationship between A' and A'+ allows for recursive computation. 
We will show how these features are well suited to the problem of constructing, for 
given F and x E F, an output mapping @ with optimal k-distribution. 
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2. LATTICES 

We will assume that our distinguished element x generates F as a ring so that, 
as a vector space over F2, F admits the basis 1,x, . . ,xd. For 0 < k < d, let 
Fk C F denote the F2-subspace generated by the first k elements in this basis. 

Consider the mapping F2 [X] -) Fl given by 

(2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(Pi (X), * ,Pi (X)) i >+ (Pi (x),-.., (). 

The inverse image by this mapping of any F-linear subspace V of Fl is a sublattice 
Av of F2[X]'. If V = 0, then Av is the kernel of (2) and we will denote it by Kl. 
Clearly, Kl = Kl, and K1 is an ideal of F2[X]. This ideal is generated by a degree 
d polynomial, Pch(X). We define the absolute value of P(X) E F2[X] to be 26 if 6 
is the degree of P(X), and the length (resp. degree) of (P1(X), . . . , Pi(X)) E F2[XI 
to be the maximum absolute value (resp. degree) of the components. 

If A is any sublattice of F2[X]', its fundamental volume JAI is the absolute value 
of the determinant of any one of its bases, and we have 

(3) JAI = Jcri(A), 
i=1 

where vi(A) is the length of the ith vector of a Minkowski-reduced basis of A. The 
fundamental volume JAI is also equal to the group theoretical index [F2[X]': A] 
which, in case A = Av, is simply [Fl: V]. For instance Tezuka's lattice Al is equal 
to AV(,) with V) = F (Yi,.. ., y,) (see Def. 3 of [7]), and its fundamental volume 
is thus equal to 2d(1-1)* 

We propose to use instead of Al, the lattice A', given by AW(I), where we take 
W(l) to be the ortho-complement of V(l) with respect to the standard F-bilinear 
scalar product defined for v = (x1,... ,xi) and v' = (x ,...., x) E Fl by 

(4) (Vv, ' = Exixi. 
i=1 

The fundamental volume of A' is equal to 2d, and is thus much smaller than that of 
A' unless 1 is small. Because of (3), a lattice with a smaller fundamental volume will 
have, in the mean, smaller successive minima. We will show how to take advantage 
of this in Section 4. Note that the lattices Al and A' depend only on the first 1 
values of the sequence Y, .. ., Yw. We will occasionally indicate this dependence by 
writing A1 (yl, ... , Yi) and Al(yl, . . . , yl), respectively. 

We will denote by Ck the set of all (P1(X),. .. , F, (X)) E F2[X]' of length smaller 
than 2k. The following lemma establishes further connections between a subspace 
V C Fl and the lattice Av. 

Lemma 1. (i) The restriction of (2) to Cd is one to one, and its image is Fl. 
(ii) For 0 < k < d, (2) maps Ck onto Fk. 

(iii) For any F-linear subspace V of Fl, (2) maps Av n Cd onto V. 

FRom this and Theorem 2 of [1] we obtain for any F-linear subspace V of Fl 

(5) dimF2(V n Fk1) = (k-lgcri(AV))+, O<k<d. 
i=1 
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3. THE KERNEL OF THE ADJOINT 

The rank of (1) is equal to kl - dimF2 Rl,k, where Rl,k denotes the vector space 
over F2 of all systems (ai,j)i,j E F2lk, 1 < i < 1, 0 < j < k such that 

(6) E cij,0(yix jy) = 0, y E F. 
i,j 

Since the rank of (1) does not depend on the choice of q, we will take it to be that 
F2-linear form over F which has its kernel equal to Fd_l. The image of Rl,k by 
the correspondence F2lk -+ Fl given by 

(7) (aij) i,jF- j * xi)i 

can then be described as follows. We define, in addition to the standard scalar 
product (4), an F2-bilinear scalar product by 

(8) (v,v')2 = $((v, v')), v, v' E Fl. 

Note that the ortho-complement of an F-subspace of Fl is the same for both scalar 
products (4) and (8). Thus, W(1) is also the ortho-complement of V(l) with respect 
to (8). 

Lemma 2. For k < di the restriction of (7) to Rl,k is one to one and onto W(0' n 
Flk. 

Proof. First, the image of F2lk by (7) is Fl. From (6) a system (a-i,j)i,j E F2lk 

belongs to Rk1) if and only if (Zj ai,jxj)i is orthogonal to V(l) with respect to (8); 
that is, if and only if (Zj ai,jxj)i belongs to W(0. The lemma follows. 

The main result shows how the computation of the rank of (1) is reduced to the 
computation of the quantities vi (Al). 

Theorem 1. The rank of (1) is equal to 

(9) lk-j(k-lgaj(A'))+7 O< k <d. 
i=l1 

Proof. This follows from (5) and Lemma 2. 

The quantities ai(A') can be computed by applying the Lenstra reduction al- 
gorithm [5] to a suitably chosen basis of A;. We digress briefly to establish a 
remarkable connection between the quantities ui(A1) and u-(A'). This is closely 
connected to a result of Mahler (see ?10 of [6]). We first establish the following 
relation. 

Proposition 1. 

(10) dimF2 (V() n F-k) -dimF2 (W(l) n Fk) d - lk, 1 < k < d. 

Proof. We have 

dimF2 (V() + Fd-k) + dimF2 (V(') 0 F-k) dimF2 V(') ? dimF2 Fdk 

= d+(d-k)l. 
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Since Fl (resp. W(l)) is the ortho-complement of Fl-k (resp. V(l)) with respect to 
(8), we also have 

dimF2 (w(l) n Fl) + dimF2 (V( + Fl-k)= dl. 
The proposition follows by combining these two equations. D 

Corollary 1. We have, for 1 < i < 1, 

lgac(A) + lgalj+(Al) =d, 1 <i < 1. 

Proof. We abreviate lgci (Al) to si, and lgci (A') to s'. Using (5), we can then 
write (10) as 

1 1 

Z(d-k-si)+-Z(k-s)+ = d -k. 
i=l i=l 

Combining this with 

Z(k-s')+-(s'-k)+ =Z(k-s') = lk-d, 
i=l ~~i=l i=l 

we obtain 
1 l 

E((d -si) -k)+ - E(s - k)+ = . 
i=1 i=1 

Since 0 < si, s' < d, this implies that, for 0 < k < d, the sets {i Is' k} and 
{i I d-si = k} have the same cardinality. The statement of the corollary follows. C] 

4. RECURSIVITY 

From Theorem 1 and its corollary, the rank of (1) can be obtained, simultaneously 
for all k, by computation of the quantities ci (Al) or ci (A/). This is achieved by 
use of Lenstra's reduction algorithm [5] applied to a suitable basis of Al or A' and, 
as we shall now show, it is advantageous for this to use the latter lattice rather 
than the former. Assume 1 < 1 < w. The F-linear mappings t: Fl-1 Fl and 
p: Fl -+ Fl-1, defined by addition of an Ith coordinate taken equal to zero, and 
deletion of the lth coordinate respectively, are mutually adjoint; that is, 

(11) (t(w),v) =(w,p(v)), w Fl-1,v E Fl. 

Lemma 3. For 1 < 1 < w, we have 

(i) p(V(0)) = 0(l- )I 
(ii) W(l) = t(W(1-1)) e F(yl, O, . .. , 0, Yi). 

Proof. Statement (i) is immediate from the definition of V(). To prove (ii), notice 
that (11) implies that t(W(1-1)) is an F-linear subspace of W(l). In fact, it is of 
codimension 1 in W('), since it has dimension I-I while W(1) has dimension 1. The 
statement now follows since (yl, ,... ., 0, Yi) belongs to W(l)\t(W(l-1)). O 

We deduce from Lemma 3 the recursivity properties of the lattices Al and A;. 
Denote again by t and p the similarly defined F2[X]-linear mappings t: F2[X]'1 -+ 

F2[X]l, and p: F2[X]' -* F2[X]'-1. Take, Qj(X) E F2[X] of degree less than d, 
and such that y1Qi(x) = yi, 2 < i < 1. 

Proposition 2. For 1 < I < w, we have 
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(i). p(Al) = Al-,; 
(ii) A/ = (A1) F2 [X] (Ql (X), 0, . . ,O,1). 

Proof. Note that t and p commute with (2). Therefore, statement (i) of Lemma 3 
implies our first statement. Also, since the vector (Ql (X) O, . . , 0, 1) is mapped by 
(2) to the vector (yi/yi, O, ... ., ,1), statement (ii) of Lemma 3 implies that 

A/ = t(A/_1) + F2 [X](Ql (X), O, ... , O,1) + Kl. 
But K1 = t(Ki-1) + F2[X](O, ... IO, Pch (X)) so that our second statement follows 
from the previous equation. O 

The starting point for the Lenstra reduction algorithm is a lattice basis B for 
an i-dimensional sublattice A of F2[X]l. The algorithm transforms this basis into 
another basis of A, which is Lenstra-reduced and, in particular, Minkowski-reduced. 
We associate with the basis B the quantities ds(B) and dm(B), which are defined 
as the sum and the maximum of the basis vector degrees, respectively. The storage 
requirement for the algorithm is then measured by lds(B), and an upper bound for 
the execution time (the required number of bit operations) is given by 

(12) Cl3dm(B)(ds(B) - lg JAI + 1), 

for some absolute constant C (see Prop. 1.14 in [5]). 
In case of Al, one uses the basis Bl composed of the vector (1, Q2(X), ... . Q (X)), 

and Pch(X)6'l) 2 < j < 1, where c(l) E F2[X]l has all its components equal to 0, 
except for the jth which is equal to 1. In case of A' we may, by (ii) of Proposition 2, 
take a basis B' composed of the images by t of the vectors belonging to a Lenstra- 
reduced basis of A/1 and of the vector (Ql (X), O,.. ., 0, 1). The required space to 
reduce the basis B' is significantly less than for Bl, as we see from Lemma 4. 

Lemma 4. We have 

(i) (I-l )d < ds(Bl) < ld -1; 
(ii) d < d,(Bl) < 2d -1. 

Proof. Statement (i) of Lemma 4 follows from the fact that Pch(X) has degree 

equal to d, while all Qj(X) have it less than d. Using (3) we obtain that the sum of 

the degrees of the first l - 1 vectors of B' is equal to d, and this proves statement 

(ii). E 

We say that an i-dimensional lattice A C F2 [X]' is regular if 

cri(A)/ac (A) < 2. 

Clearly the rank of (1) is bounded by min (d, lk). 

Proposition 3. For a given 1, the rank of (1) is equal to min (d, lk) for all k if 
and only if A' is regular. 

Proof. By Theorem 1, when lk < d (resp. lk > d), the rank of (1) is equal to lk 
(resp. d) if and only if, for all i, lgai(A') > k (resp. lgai(A') < k). Thus, the rank 

of (1) is equal to min (d, lk) for all k if and only if 

[d/l] < lgai(A') < [d/l] + 1, 1 < i < 1. 

But, this is equivalent to lg a, (A') - lg a,(A') < 1 since we have, from (3), that 

Ig ai (A') = d. 
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Note, by Corollary 1, the equivalence of the regularity of the lattices Al and A'. 

Theorem 2. If the lattice A1_1 is regular, then the Lenstra basis reduction algo- 
rithm applied to the basis B' has running time not exceeding 

Cl l(d + l-1)2, 1 > 2, 

where Cl = (1/(l - 1))2C 1/1, and C is the constant appearing in (12). 

Proof. Since A _1 is assumed regular, the first 1 - 1 vectors of B' have their degree 
bounded by d/(l - 1) + 1. In a first phase, the algorithm will reduce (in length) the 
lth vector by the repeated operation of adding to it one of the first 1 - 1 vectors, 
premultiplied by a suitable power of X. Each such operation requires at most 
d/(l - 1) + 2 bit operations. We thus need at most d + 21 - 2 bit operations to 
diminish by 1 the degree of the lth vector, and at most 

(13) (1 
2 

d(d + 21 -2) 

to diminish its degree to a value bounded by d/(l - 1). After termination of this 
first phase, the algorithm terminates, according to (12), using at most 

d 
2 

(14) C13 ( d 1 I) 

further bit operations. The sum of (13) and (14) is bounded by Cll(d +1- 1)2, and 
the theorem follows. D 

For given F, x E F, and a subset E C FW, it is a problem of interest to determine 
(Yi,... , Yw) E E, such that the rank of (1) is equal to min (d, lk) for all l < w, and all 
k < d; that is, such that the lattices Al(yi,... , yi) (or, equivalently, A'(yi,. , Y)) 
are regular for all l < w. This type of question arises when one wants to construct 
an optimally equidistributed output mapping D(y) = (0(YlY),..., ?'(ywy)) for a 
generator based on the field F. Consider the rooted tree T = T(E) whose vertices 
of depth l (or 1-vertices for short) are those l-tuples (yi, . . . , y) E F' for which there 
exists Yl+i, .. ,Yw such that (Yi, . . .,Y.) E E, and whose edges link an (l - 1)- 
vertex to an l-vertex if and only if these have the same first l - 1 components. We 
associate with an l-vertex the lattices Al = Al (yl, . .. , yl) and A; = A(yl, ... ., Yl) 
We will say that an l-vertex (Yl,... , yl) of T is regular if its associated lattice Al 
(or, equivalently, A;) is regular. A regular path in T is a path visiting only regular 
vertices. One may then reformulate our problem as the determination of a regular 
path in T joining the root to a w-vertex. 

For any l-vertex (Yl,... , Yl) of T we may, as above, construct lattice bases Bl 
and B' for the associated lattices Al and A'. We denote them by B1 (yi, .. ., YI) and 
B (Yi, ... , yl ), respectively. The regularity of an l-vertex (Yl, .. ., Yl) can be deter- 
mined by application of Lenstra's basis reduction algorithm, either to B (Yi, . .. , Yi) 
or B'(yi,... , yi). If we use B1(yl,... , Yl), then, according to (12), the execution 
time does not exceed Cl3d2. It does not exceed Cll (d + I-1)2 (, Cld2 for l and d/l 
large), according to Theorem 2, if we use B'(yl, ... , yl) instead, and if the (l - 1)- 
vertex (Yi,... , yi -) is regular. Obviously, in the latter case, one needs a Lenstra- 
reduced basis of the lattice Al_1 associated with the (l - 1)-vertex (Yi,... , yl-i), 
but such a basis is already available when constructing a regular path, visiting a 
regular (l - 1)-vertex before any adjacent l-vertex. Memorizing a reduced basis of 

A'-, for a regular (l - 1)-vertex also permits one to verify the regularity of several 
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I-vertices adjacent to it, without recomputing the reduced basis. We finally note 
that, given a regular path of length I - 1 and an adjacent i-vertex (Y..... , Yi), the 
regularity of the latter can be obtained by successively constructing and reducing 
(by Lenstra's algorithm) the bases B (y1, Y2),... , Bl(yi, ... , yl ), in a time which, 
by Theorem 2, does not exceed Cl/'(12/2)(d + I - 1)2 (,- C(l2/2)d2, for I and d/l 
large). Here the constants Cil are given by 

Cl' =(+ + 
6l 
)_ 

4 
C + 2(1 -1) 

5. COMPUTATION OF A RANDOM REGULAR PATH 

The advantage of using the lattices A' instead of Al is confirmed by extensive 
computer experiments. We give a typical illustration. We take F to be the field of 
degree 19937 over F2, and x E F to be a root of 

Pch(X) = X19937 + X9842 + 1. 

This trinomial is primitive (see the table in [3]). Let w = 32 and E = (F\{0})w. 
We seek to determine a regular path in T(E) recursively. Having found a regular 
(1 - 1)-vertex (Yi,... , Yi-I), a regular i-vertex (Yi,... , Yl) is determined by ran- 
domly choosing y E F\{0}, each outcome being equally likely, and taking for yl the 
first value of y for which the vertex (Yi, . . . , Yi-1, y) is regular. The regularity is de- 
termined by using either of the lattices Al (y,.... I Yi-I, y) and Al(yi,... , Yi-1, y). In 
the first case, Lenstra's reduction algorithm is applied to the basis B1 (y, ..., Iy- 1 y), 
while in the second case it is applied to the basis B(yi,.... , Yi-1, y) constructed with 
the help of the previously reduced basis for the lattice A'(yi,.. , yl- 1). 

For each value of 1, from 2 to 32, the CPU time (in seconds) for the reduction 
required at the i-vertex and the total cumulative CPU time to determine the first 
I vertices, are recorded in Table 1. In most cases, the first y that was tried already 
gave a regular vertex. When more than one value of y was needed, their number 
is indicated in parentheses, and the reduction time given is the mean reduction 
time for all these values of y. Since in both computations the same values of y 
are used, the same regular path is determined. It appears from Table 1 that the 
reduction itself takes almost all of the CPU time, and that it is always much quicker 
to determine the regularity of a vertex using the lattice A' rather than Al. In this 
instance, there is as much as a 10-fold time reduction for dimension I = 18, and 
this increases with I up to a 16-fold time reduction for I = 32. 

Here, we have taken E = (F\{0})w. When dealing with the problem of con- 
structing an output mapping 

(y) - (q(Y1Y), , f(YwY)) 

for some generator based on the field F, one must choose E such that each of its 
members (Y,... ., yw) defines an efficient mapping D, when viewed as depending on 
a computer memory image of the state of the generator (i.e., an output mapping for 
which a fast computer implementation is available). A description of a specific case, 
with a new class of random number generators, will be the subject of a forthcoming 
paper. 
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TABLE 1. Efficiency comparison for a random regular path. The 
first column under Al (resp. A') gives the (mean) reduction time, 
and the second one, the total cumulative execution time. 

Al| A/ 
2 .76 .84 .77 .83 

(2)3 3.04 7.04 1.66 4.27 
(2)4 6.77 20.70 2.57 9.53 
(4)5 11.80 68.16 3.51 23.81 

6 18.04 86.26 4.50 28.37 
(2)7 25.68 137.74 5.54 39.58 

8 34.68 172.49 6.98 46.62 
9 44.61 217.16 7.75 54.43 

10 55.62 272.84 8.99 63.49 
11 68.37 341.27 10.29 73.84 
12 82.09 423.42 11.41 85.31 
13 97.00 520.49 12.70 98.08 

(3)14 115.38 866.82 14.11 140.62 
15 137.35 1004.23 15.81 156.50 

(2)16 159.01 1322.37 17.40 191.44 
17 183.66 1506.09 18.74 210.25 
18 209.16 1715.32 20.27 230.59 
19 237.23 1952.62 22.06 252.73 
20 266.26 2218.95 23.48 276.29 
21 298.51 2517.53 26.06 302.42 

(2)22 331.43 3180.54 26.94 356.46 
(2)23 366.08 3912.84 28.93 414.48 

24 401.14 4314.05 30.84 445.41 
25 438.63 4752.76 31.91 477.41 
26 478.44 5231.28 33.83 511.32 
27 520.87 5752.23 35.91 547.32 
28 560.36 6312.67 39.02 586.44 
29 602.05 6914.81 40.60 627.14 
30 649.19 7564.08 42.10 669.33 
31 696.55 8260.72 43.93 713.36 
32 742.96 9003.76 46.75 760.21 
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