
MATHEMATICS OF COMPUTATION
Volume 69, Number 230, Pages 767-773
S 0025-5718(99)01141-2
Article electronically published on March 4, 1999

A MODIFICATION OF SHANKS'
BABY-STEP GIANT-STEP ALGORITHM

DAVID C. TERR

ABSTRACT. I describe a modification to Shanks' baby-step giant-step algo-
rithm for computing the order n of an element g of a group G, assuming n
is finite. My method has the advantage of being able to compute n quickly,
which Shanks' method fails to do when the order of G is infinite, unknown,
or much larger than n. I describe the algorithm in detail. I also present the
results of implementations of my algorithm, as well as those of a similar algo-
rithm developed by Buchmann, Jacobson, and Teske, for calculating the order
of various ideal classes of imaginary quadratic orders.

1. INTRODUCTION

Shanks' baby-step giant-step algorithm [1, 2] is a well-known procedure for find-
ing the order n of an element g of a finite group G. Running it involves 2 K + 0(1)
group multiplications (GM), and K + 0(1) table lookups (TL), where K is an
upper bound on n (for instance, one often uses K = IGI). Often, however, K is
unknown or much larger than n. In this case, a faster algorithm is desired. Here is
my main result, to be proven later:

Theorem 1.1. Let G be a group for which it is possible to compute the product of
any two elements, to determine whether two elements are equal, and to determine
whether a given element is equal to 1, the identity of G, and let g be an element
of G of finite order n > 2. Then there exists a deterministic algorithm which
determines the order n of g, using GM = 2 (Fr - 1)j - 2 group multiplications
and TL = [V/2(- 1)-1 table lookups. (Here, [xj denotes the nearest integer to
x.)

2. THE ORDER ALGORITHM

My algorithm is similar to Shanks' in that one still compares powers gtj of g
(giant steps) to an updated hash table of pre-computed consecutive powers gi for
1 <i < v (baby steps). However, with my algorithm, one does not need an
upper bound on n. Instead, the giant steps are not constant, but grow linearly.
Specifically, the sequence (tj)^' o is defined recursively as follows:

to = 2v;
(1)

t3+1 = t?j?+j+v?+ (j >O).

Received by the editor September 4, 1996 and, in revised form, May 30, 1998.
1991 Mathematics Subject Classification. Primary 68P10, 20C40.

?)2000 American Mathematical Society

767

768 DAVID C. TERR

It is straightforward to show that the solution of this recurrence is

(2) tj = (j + 2)v + 2j(j + 1).

The hash table serves two purposes. First, after each step, one must use the last
entry gj+V in the table to compute gti from gti-I, since tj = tji- + j + v. Second,
the table of baby steps serves the same purpose as in Shanks' algorithm, i.e. every
positive integer n can be expressed as the difference tj - i, where tj is the least
number in the sequence (tj) not exceeding n and 0 < i < j + v. The algorithm
proceeds as follows. (My notation is the same as in [1].)

Algorithm 2.1. Input: g E G, v E Z, v > 2
Output: n= 1(g)1

(1) if (g == 1) then /* trivial case

(2) return (1)

(3) else

(4) n =0; i = 1; R = {(1,0), (g,1)}; a =g
/* initialization t/

(5) while (n == O and i < v) do

(6) a =g*a; i =i+1 /* baby steps

(7) if (a == 1) then

(8) n = i /* found order among baby steps *7

(9) return (n)

(10) else

(11) R = R U {(a, i)} /* update hash table t/

(12) fi

(13) od

(14) j =0; b=a*a; t =2*v /* initialize giant steps (t tj) t/

(15) while (n == 0) do

(16) if (there exists a number i such that (b, i) E R) then
/* table lookup */

A MODIFICATION OF SHANKS' BABY-STEP GIANT-STEP ALGORITHM 769

(17) n= t-i 7*order ofg *7

(18) return (n)

(19) break while

(20) else

(21) a = g * a; j = j + 1; R =R U (a,j + v)}
/*baby step t/

(22) b=a*b; t=t+j+v /* giant step*/

(23) fi

(24) od

(25) fi

(26) fi

Theorem 2.2. For the above algorithm, we have

GM = 2 r /2fn+ v(v-3)j-v

and
TL = rV/2fn+ v(v-3)j-v + 1

if n > v. If n < v, we have GM= n - 1 and TL = 0. The algorithm also requires
storing a total of

IRI = r/2fn+v(v- 3)+1
group elements in the hash table in the case n > v.

Proof. In the case where 1 < n < v, the order n of g will be found after computing
the first n baby steps, which requires n - 1 group multiplications, no table lookups,
and no storage. (If n = 1, no work is required, other than noting that g = 1.)
If n > v, the order n of g will be found after j + v + 1 entries of the table are
computed, as well as gtj, where j is the least integer such that n < tj. We have

tj =(j + 1)v + ? j(j-1) < n < tj = (j + 2)v + ? j(j + 1).

Using straightforward algebra, we find that

j3= [s/2(n-1) + (2 -)2-2- V -= F 2fn+ v(v-3) -v.

To compute the last j + v - 1 entries of the table as well as gti for 0 < i < j, a
total of

GM = 2j + v = 2rt22n+ v(v-3)j-v
group multiplications and

TL = j + [= rV2fn+ v(v-3)j -v +1

table lookups are required. (The first two elements of the table are not computed,
just initialized.) It is also necessary to store the IRI = j+v+1 = [r /2n + v(v - 3)j +
1 group elements gi (O < i < j + v) in the table. QED

770 DAVID C. TERR

Setting v -2, we find that

GM = 2 r/2(n-1)j-2
and

TL = r2 (-1)j-1,
if n > 2, proving Theorem 1.1. QED

The speed of my algorithm can be improved slightly, since gi need not be com-
puted twice if i belongs to the sequence (tj) of giant steps. This will reduce GM
by O(vJJ) = O((n + v2) 4), without affecting TL. However, it also requires that
one store an additional j group elements, so that as n gets large, the storage re-
quirements are nearly doubled, whereas the computing time is only reduced by a
fraction which tends to zero. Thus, this improvement is impractical for large n.

3. COMPARISON WITH ALGORITHM

OF BUCHMANN, JACOBSON, AND TESKE [1]

Here I present results of the implementation of my algorithm to the calculation
of the orders of four ideal classes of each of three imaginary quadratic number
fields with discriminiants A = -4(108 + 1), -4(101o + 1), and -4(1012 + 1). I
wrote the program myself in Java, using Metrowerks CodeWarrior. I also wrote
a version which implements the algorithm of Buchmann, Jacobson, and Teske [1],
which I will refer to henceforth as the BJT algorithm. Both programs appear as
Java applets on my webpage; the interested reader can run both algorithms and
look at the source code [3]. For each of the twelve ideal classes I considered, I ran
each algorithm with five different values of v, the initial giant step size, namely
v = 2, /A/8, /AL'/4, |A\L/2, and JAI'.

In each of the following tables, Ip denotes the prime ideal lying above the rational
prime p of the imaginary quadratic number field K with discriminant A, and (Ip)
is the ideal class of the class group G=Cl(K) containing 4p. The numbers in bold
indicate which algorithm involves the lesser of the quantity shown. In the case of a
tie, each value is printed in italics. The numbers in brackets indicate which of the

TABLE 1. Order algorithm, v = 2

My algorithm BJT
A p IP ((IL GM TL IRI GM TL IRI

-4(108 + 1) 5 228 40 20 [22] 41 21 [16]
3 456 58 29 [31] 66 29 [32]
7 1368 102 51 [53] 122 52 [64]

11 4104 180 90 [921 230 95 [128]
-4(1010 + 1) 5 4033 178 89 [91] 164 94 [64]

3 16132 358 179 [181] 324 189 [128]
13 24198 438 219 [221] 485 221 256
7 48396 620 310 [312] 580 316 256

-4(1012 + 1) 11 13040 320 160 [162] 299 164 [128]
59 23472 432 216 [218] 482 218 256
5 29340 482 241 [243] 505 241 256
3 117360 966 483 [485] 1005 484 512

A MODIFICATION OF SHANKS' BABY-STEP GIANT-STEP ALGORITHM 771

TABLE 2. Order algorithm, v = 1 4/8

My algorithm BJT
A p ((Ip)) I GM TL |RI GM TL IRI

-4(108 + 1) 5 228 [36] 10 28 [35] 12 18
3 456 [50] 17 35 63 21 36
7 1368 92 38 56 124 45 72

11 4104 166 75 93 162 83 72
-4(101o + 1) 5 4033 [154] 50 106 184 64 112

3 16132 320 133 189 389 156 224
13 24198 398 172 228 425 192 [224]
7 48396 576 261 317 533 300 [224]

-4(1012 + 1) 11 13040 [299] 62 239 [259] 74 176
59 23472 [381] 103 280 [318] 133 [176]
5 29340 [421] 123 300 [351] 166 [176]
3 117360 853 339 516 783 421 [352]

TABLE 3. Order algorithm, v =IA 14 /4

My algorithm BJT
A p ((Ip)) GM TL IRI GM TL IRI

-4(108 1) 5 228 45 6 41 48 6 36
3 456 55 11 46 [54] 12 36
7 1368 [89] 28 63 115 36 72

11 4104 159 63 98 153 74 72
-4(101o + 1) 5 4033 172 31 143 [156] 36 112

3 16132 [310] 100 212 361 128 224
13 24198 [380] 135 247 397 164 [224]
7 48396 548 219 331 505 272 [224]

-4(1012 + 1) 11 13040 422 35 389 401 36 354
59 23472 474 61 415 431 66 354
5 29340 502 75 429 447 82 354
3 117360 [844] 246 600 [696] 331 354

five giant-step sizes used was optimal for the given ideal class and algorithm. Note
that in the case of A\ = -4(101o + 1), and v = 2, JAI 1/2, and JI\ (middle four
rows of Tables 1, 4, and 5) my results for the BJT algorithm agree with those in
[1].

As can be seen from the above tables, the speed and storage of my algorithm are
very close to that of Buchmann et al. In most cases, GM and TL are within 10%
of each other. My method seems to have the advantage of requiring fewer table
lookups; in each case, TL for my algorithm is no greater than for BJT. GM appears
to comparable for the two algorithms, although mine seems to involve fewer group
multiplications for small v than theirs. For larger v, their algorithm appears to work
better. In the case of calculating orders of ideals of imaginary quadratic fields, my
algorithm appears to be optimal for v near I\A14/4, whereas the BJT algorithm

772 DAVID C. TERR

TABLE 4. Order algorithm, v = | i 4/2

My algorithm BJT
P ((Ip)) GM TL IRI GM TL IRI

-4(108 + 1) 5 228 75 3 74 81 3 70
3 456 81 6 77 84 6 70
7 1368 103 17 88 [97] 19 70

11 4104 [157] 44 115 [136] 58 [70]
-4(101o + 1) 5 4033 256 17 241 251 18 224

3 16132 348 63 287 [305] 72 224
13 24198 402 90 314 [341] 108 [224]
7 48396 [540] 159 383 [449] 216 [224]

-4(1012 + 1) 11 13040 741 18 725 738 18 708
59 23472 769 32 739 753 33 708
5 29340 785 40 747 761 41 708
3 117360 1005 150 857 885 165 708

TABLE 5. Order algorithm, v Ai|4

My algorithm BJT
i___ _ P p ((Ip)) I GM TL [RI GM TL IRI

-4(108 + 1) 5 228 141 /1] 142 153 /1] 142
3 456 145 /3] 144 155 /3] 142
7 1368 157 /9] 150 161 /9] 142

11 4104 191 [26] 167 180 [28] 142
-4(101o + 1) 5 4033 461 [8] 455 467 [9] 448

3 16132 513 [34] 481 494 [36] 448
13 24198 547 [51] 498 512 [54] 448
7 48396 639 [97] 544 566 [108] 448

-4(1012 + 1) 11 13040 1430 /9] 1423 1437 /9] 1414
59 23472 1444 /1 6] 1430 1444 /1 6] 1414
5 29340 1452 /20] 1434 1448 /20] 1414
3 117360 1572 [80] 1494 1510 [82] 1414

appears to work better for v near JI\ 1/2. Upon differentiating the equation for
GM in Theorem 2.2 with respect to v (neglecting the integer rounding), we find that

the optimal value of v should be asymptotic to An for my algorithm. When one
has no good lower bound on n, one should use v = 2, in which case my algorithm
appears to be faster than the BJT algorithm.

4. A BOUND FOR SIMILAR METHODS

It would be of interest to find a lower bound on GM for all similar methods. For
the purpose of this calculation, we will neglect table lookups; thus we will assume
that every power of g calculated is tabulated as soon as it is compared with all
previous table entries, assuming no match is found. Although this may make TL

A MODIFICATION OF SHANKS' BABY-STEP GIANT-STEP ALGORITHM 773

unnecessarily high, it will ensure that GM is as small as possible. Let (ai) 0 be the
chronological sequence of powers of g calculated in determining n, where ao = 0
and a1 = 1. (The sequence (ai) must be infinite to allow for the determination
of arbitrarily large n.) Since every power of g is obtained by multiplying two
previously calculated powers of g, the sequence (ai) must be an addition sequence,
i.e. for every integer k > 2, we must have ak = ai + aj for some positive integers
i , j < k, possibly with i = j. Also, every positive integer n must be expressible as
the difference between two elements of the sequence, i.e. we must have n = ai2 -ai

for some i1 and i2. Aside from these two restrictions, we make no further restrictions
on the sequence (ai). Let i(n) = min{max(ii,i2): n = ai2 - ai,}. Then if the
order of g is n, we require i(n) - 1 group multiplications to determine n.

Theorem 4.1. There exist infinitely many positive integers m such that i(m) >
/2m.

Proof. Given a fixed positive integer n, let m be a positive integer not exceeding n
such that i(m) is maximal, i.e. we have i(m) = max{i(k): 1 < k < n}. Then every
positive integer not exceeding n is the difference of two numbers in the sequence
whose indices do not exceed i(m). This implies

m < n < (i(m) i(m)(i(m) -1)< i(m)2 m<n< \2J 2 - 2

the binomial coefficient being an upper bound on the number of distinct differences
among the first i(m) terms of the sequence. Since the right side grows at least as
fast as n, infinitely many values of m are needed as n grows. Solving the above
inequality for i(m), we find that i(m) > 2m for each of these m. QED

Theorem 4.1 may be restated as follows: The number of group multiplications
required to calculate arbitrary n is bounded below by CVji, where

C:= limsup >) > .
m-oo m

In the case v = 2, my method yields a constant C = 2VX, twice the theoretical
lower bound. Thus, any similar method would involve no less than half as many
group multiplications as mine.

ACKNOWLEDGMENT

I would like to thank my advisor, H. W. Lenstra Jr., for inspiring me to write
this paper and for providing me with some key ideas.

REFERENCES

[1] J. Buchmann, M.J. Jacobson, Jr., and E. Teske, "On Some Computational Problems in Finite
Abelian Groups", Math. Comp. 66 (1997), pp. 1663-1687. MR 98a:11185

[2] D. E. Knuth, "The Art of Computer Programming", vol. 3 (1973), pp. 575-6 (prob. 17). MR
56:4281

[3] "Dave's Cool Java Home Page", http://www.geocities.com/CapeCanaveral /Launch-
Pad/5318 (1998).

2614 WARRING ST. #7, BERKELEY, CA 94704
E-mail address: davidcterraol .com

	Cit r296_c299:

