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SOME POLYNOMIALS OVER Q(t) 
AND THEIR GALOIS GROUPS 

GENE WARD SMITH 

ABSTRACT. Examples of polynomials with Galois group over Q(t) correspond- 
ing to every transitive group through degree eight are calculated, constructively 
demonstrating the existence of an infinity of extensions with each Galois group 
over Q through degree eight. The methods used, which for the most part have 
not appeared in print, are briefly discussed. 

1. INTRODUCTION 

For each transitive group G of degree < 8 we give a polynomial over Q(t) with 
Galois group G. Taken in conjunction with [9], to which this may be regarded 
as a companion piece, we have both a method for computing the Galois group of 
function fields over Q(t) and examples of such function fields through degree eight. 

I used the Maple routines described in [9], which were written by Mattman as 
an extension of previous code by Sommeling, in determining Galois groups over 
Q(t) and Q. This is due to appear as a part of the next Maple release, and should 
be available to those who have the most recent version of Maple by the time this 
sees print. I also used a C program by Helmut Geyer, which implemented the 
Staduhauer floating-point approach to determining Galois groups over Q. In addi- 
tion, I used the Pari package for various purposes, and a Maple program written 
by David Ford to compute the discriminant or p-discriminant of number fields. 

The computations were done on a variety of Sparc stations, principally a Sparc- 
Server 10 with four sporty Ross HyperSparc processors and 128MB of RAM. 

We will use the notation Ti to denote the ith transitive group of degree n (with 
n understood from context) in the tables of [1], but also what will probably become 
the new standard: a naming scheme for permutation groups given in [2]. This 
should be consulted for information about the meaning of these names. 

A polynomial over Q(t) can define a splitting field extension which is Q(t) to- 
gether with an algebraic extension of Q even when it has coefficients which are in 
Q?(t) but not in Q. For example, x2 - 2tx + t2 - 2, which has roots t + X/2 and 
t - . However, if a polynomial over Q(t) is not reducible in this way, it will 
define an infinity of Galois extensions of Q with the Galois group of the polynomial 
over Q(t) by Hilbert's irreducibility theorem. The following definition is variously 
named. but is standard when discussing this situation: 
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Definition 1. A finite Galois extension of the field F(t,.... , tn)) where the ti are 
indeterminates, is geometric for F if it contains no nontrivial algebraic subextension 
K/F. We will call it geomet'ric without qualification if it is geometric for Q. 

The polynomials we construct will, with one exception, have splitting fields which 
define geometric extensions. Since these polynomials are geometric over Q, they 
will in each case, by Hilbert irreducibility, give for any number field an infinity of 
extensions with Galois group G. 

In statements such as the one above, the usual convention is to take "Galois 
group" to refer to the group of automorphisms of a Galois extension over a base field. 
In what I write below, "Galois group" will refer to the permutation representation of 
the abstract Galois group on the roots of a polynomial giving a Galois extension with 
that group, up to relabeling of the roots-that is, up to conjugacy in Sn . Thus, while 
there are, in the sense of representation theory, two permutation representations of 
degree seven with group L(3, 2), we will count this as one Galois group, since while 
there are two up to conjugacy in L(3, 2), there is only one up to conjugacy in S7. 
This also means that two polynomials of the same degree giving the same Galois 
extension may have in this sense different "Galois groups". In constructing "Galois 
groups", I will then construct an example of both types. 

2. DIRECT AND WREATH PRODUCTS 

It is often possible to construct a polynomial with a given Galois group by descent 
from a larger group. By substituting a suitable rational function of t in place of 
t into a polynomial over Q(t), we may specialize to another polynomial over Q(t) 
with the Galois group contained in the previous group. 

To get a starting "top" polynomial for this process, we can do a number of things. 
When the group we wish to construct is imprimative, it is often the case that a 
wreath product gives us a suitable starting point. Because the direct product is 
analogous and simpler, and gives us certain groups which we will wish to construct, 
we will begin by considering it. 

Definition 2. If G is a permutation group acting on a set S, and H is a permu- 
tation group acting on a set T, then the direct product of G and H, G x H, is a 
permutation group acting on the cartesian product of S and T. The action is given 
by 

[g, h](s, t) = (gs, ht), 

where g c G, h c H, s C S, and t c T. 

Theorem 1. Let P and Q be polynomials of degree n and m, respectively, with 
coefficients in F(t) and defining Galois extensions geometric for F with permutation 
groups G and H. If these two Galois extensions are disjoint over F(t), then we 
can construct a polynomial of degree nm over F(t), geometric for F, and defining 
a Galois extension with permutation group G x H. 

Proof. This result is trivial, since the sum of a root from the first polynomial and 
a root from the second polynomial will have a minimal polynomial which gives the 
desired construction. C 

The computation presents no difficulty as we can, for example, use the resultant 
to find the sum or product of the roots of two polynomials. 
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Definition 3. If G is a permutation group acting on a set S, and H is a permu- 
tation group acting on a set T, then the wreath product of G and H, G C H, is a 
permutation group acting on the cartesian product of S and T. 

The elements of GlH as an abstract group correspond with pairs [f, h], where f is 
a function from T to G, and h E H. This has a faithful permutation representation 
on the cartesian product of S and T, where the action of [f, h] on a pair (s, t), with 
s C S and t E T is given by 

[f, h] (s, t) = (f(t)s, ht). 

Theorem 2. Let P and Q be polynomials of degree n and m, respectively, with 
coefficients in F(t) and defining Galois extensions geometric for Hilbertian ([6]) 
F with permutation groups G and H. We can construct from these a polynomial 
of degree nm over F(t), geometric for F, and defining a Galois extension with 
permutation group GC H. 

Proof. Suppose we have a polynomial h of degree m with Galois group H over F, 
and another polynomial g of degree n with Galois group G over F(r), where r is a 
root of the polynomial h. Suppose also that the coefficients of g generate F(r) over 
F. By taking the product of g together with its conjugate polynomials over F, we 
obtain a polynomial of degree nm with Galois group G C H over F. 

Now substitute for t in the polynomial P in the statement of the theorem the 
value 

ao + alr + + am-Irm-1 
where r is a root of the polynomial Q in the statement of the theorem, and the ai 
are indeterminates. Then starting from a base field F(t, ao,... , am-,), we have the 
situation of the previous paragraph, and hence we obtain by that construction a 
polynomial with Galois group G C H over F(t, ao,... , am-,). Since F is Hilbertian, 
so is any finitely generated extension, and so for most specializations of the ai to 
values in F(t), we will now obtain a polynomial over F(t) with Galois group G C H, 
and hence we have the theorem. C 

It should be noted that we may use resultants as a handy way to compute 
polynomials which exploit Theorem 2. If we have a polynomial in z over F(t), and 
another in x over F(z), then eliminating z gives us a polynomial in x over F(t), 
which is the corresponding specialization from the theorem. For instance, suppose 
we eliminate z between x3+ zx+ 1 and Z2 +tz + 1; we get T13 = F36(6): 2-=S(3) l 2 
as the Galois group for the polynomial x6 - tx4 + 2x2 - tx + 1. Taking it in reverse 
order (that is, eliminating z between x2 + zx + 1 and z3 + tz + 1) gives us 

(X2 _x + 1)(x4 + x3+ 3?x2 + x + 1) + tx2(X2 + 1), 

with Galois group T,I = 2S4(6) = 2?S(3). These are typical examples of the wreath 
product construction. 

This construction is not the only way to obtain wreath products. However, it is 
the most general construction, and will give us all we need. 

The above construction depends on the fact that we may specialize to values 
which give us the wreath product. However, with the correct choice of values for 
specialization, we may at times obtain values which are subgroups of this product. 

For instance, if we eliminate z between z2 - az - t and x3- x - z we obtain 

-6 - 2x4 - ax3 + 2 + ax -t 
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with Galois group S(3) Z 2 over Q(a, t). However, the special value a = 0 leads to a 
Galois group D(6) over Q(t) instead. 

3. SEMIDIRECT PRODUCTS 

Some of the groups for which we wish to construct associated polynomials are 
split extensions with an abelian kernel. There is a nice way of treating these which 
essentially is the construction in [12] in a more general form. 

In [12] I discussed how to construct polynomials whose Galois group was a split 
abelian by abelian extension; which is to say Hol(Zn) or a subgroup. We may 
obtain nonabelian analogues of this process by considering instead the holomorphs 
of noncyclic abelian groups. 

When considering polynomials through degree eight, the most important exam- 
ple is the holomorph of the 2-elementary abelian group of order 8, E(8): L7. The 
roots of this we may take to be sums over the characters of the 2-elementary group 
of a function f on the group which is 0 at the identity, and equal to an indeterminate 
fi at any nonidentity element i, so that a root is 

rX = Ex(i)fil 
where X is a character on the 2-elementary group E(8) of order 8, and the sum is 
over elements i of this group. 

Expanding this out, we get a polynomial of degree eight, with 0 as the trace term. 
The coefficient of degree five has the form of the resolvent for L(3, 2), which consists 
of the seven products of three roots, corresponding to the lines of the projective 
plane of order 2. If we label the nonzero elements of the 2-elementary group by 
integers from 1 to 7, then in one of the labelings we obtain 

-16(fif2f4 + f2f3f5 + f3f4f6 + f4f5f7 + f5fi6f + f6f7f2 + f7flf3). 

We now form a seven by seven matrix by putting 1 in the (i, j)th place when we 
have a term containing fi in the jth "line" of the resolvent, and 0 otherwise. This 
is the matrix 

1 1 0 1 0 0 0 
0 1 1 0 1 0 0 
O 0 1 1 0 1 0 
0 0 0 1 1 0 1. 
1 0 0 0 1 1 0 
0 1 0 0 0 1 1 

-1 0 1 0 0 0 1i 

It is the incidence matrix for the projective plane of degree two. 
We invert this matrix, multiply by 2, and reduce mod 2, and obtain the matrix 

0 1 1 1 0 1 0 
O 0 1 1 1 0 1 
1 0 0 1 1 1 0 
0 1 0 0 1 1 1. 
1 0 1 0 0 1 1 
1 1 0 1 0 0 1 
1 1 1 0 1 0 0 
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We now set fi equal to the product of seven new indeterminates cj, where we have 

cj in the product for fi whenever we have a 1 in our new matrix. Thus, for example, 
we substitute c2c3c4c6 for fl. 

The product of these two matrices is 

0 2 2 2 2 2 2 
2 0 2 2 2 2 2 
2 2 0 2 2 2 2 
2 2 2 0 2 2 2. 
2 2 2 2 0 2 2 
2 2 2 2 2 0 2 
2 2 2 2 2 2 0 

Hence, inserting the corresponding product of cj 's into the degree eight polynomial 
over the seven indeterminates fi, we get a new polynomial over the seven indeter- 
minates cj such that each cj appears only to square powers. Now by substituting 
bj = cj in this polynomial, we get another polynomial in seven indeterminates bj, 
where the bj all appear to integral powers. 

If we now substitute for bj the roots of a polynomial contained in L(3, 2), with the 
roots ordered according to the order determined by considering the degree six term 
of this new polynomial, we get a polynomial of degree eight which has roots that 
are sums of square roots of products of the roots bj of our degree seven polynomial, 
and which gives the split extension of the degree seven group by the 2-elementary 
group of degree eight. (This polynomial is long and complicated, and so we do not 
give it here; however, it is not too difficult to compute using a computer algebra 
package.) 

In particular, we can substitute roots which are roots of a polynomial of degree 
seven over Q(t) with Galois groups L(3,2), 7: 3, or C(7). The last two can be 
constructed via a similar method, which in fact gives a generic construction of all 
such Galois extensions, but with the added complication of seventh roots of unity 
(see [12], [13]). We then get E(8): L7, E(8): F21, and E(8): 7, respectively. 

Representative polynomials for all of these groups were computed. The method 
was to use floating point computations for enough successive values of t that it was 
possible to obtain a polynomial over Q(t) by interpolation. This allows a provably 
correct result, since we can bound the degree of the result as a polynomial in t. For 
T25 = E(8): 7 and T36 E(8): F21 we obtained polynomials of degree 48 in t, each 
of which had over 200 terms. These are given in ?12, below the table for degree 
eight polynomials. It would be interesting to see less complicated examples. 

It is worth remarking that in many circumstances, such as this one, a floating 
point computation can accomplish what would be very difficult or impossible for a 
purely algebraic approach. In [5], it is estimated that using the methods of [13] to 
construct a geometric cyclic extension of Q(t) with Galois group C(17) would take 
about a year on a SUN Sparcstation 2, using the purely algebraic approach of that 
paper. On the same computer, I easily computed an example in a few hours by 
floating point methods, and it is clear that this result could be pushed up to higher 
degrees. 

We may also use nontransitive subgroups of L(3, 2). If we substitute the roots of 
an S4 extension of degree four for one of the seven complements of a line, and put 
1 for all three values of the line of which it is a complement, we get a polynomial 
of degree eight with T41 = E(8): S4 as a Galois group. 
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This example was relatively easy because the group was 2-elementary; additional 
complications occur otherwise. 

4. EXAMPLES OVER Q 
Sometimes one can guess what a polynomial with a given group looks like by 

consideration of an example over Q. For instance, over Q the table of [9] gives 
x8 24X6 + 144x4 - 288X2 + 144 

as an example of a polynomial with T5 = Q8(8) (the quaternion group) as a Galois 
group. 

We might guess that this is a specialization of 

x8 - 2tX6 + t2x4 _2t2X2 + t2 

for the value t = 12, and use this as a starting point. This polynomial has a Galois 
group T29 = E(8): D8 over Q(t), and is not a very good starting point since the 
order of E(8): D8 is 64 and the order of Q8(8) is 8. This extension also is not 
geometric, and finally it is obtained by substituting z = x2 into 

z4 -2tz3 + t2z2 -2t2Z + t2 

which has D(4) as a Galois group instead of E(4). So let us look instead for 
polynomials of degree four with E(4) as a Galois group and which specialize in the 
desired way. 

Solving the example polynomial gives us roots which are the conjugates of 

26+24+3X+4= 2(2+X)(3+4). 
If we look instead at 

we obtain 

x8 - 4abx6 + 2ab(3ab-a-b- 1)x4 

-4a2b2(a- 1)(b- )x2 + a2 b2(a- 1)2(b-1)2, 

which is a much better starting point, since this polynomial has a geometric Galois 
group T22 = E(8): D4 over Q (a, b). 

This now becomes a means to solve not just the problem we began with, but 
others as well. In various ways we can specialize it to produce a geometric polyno- 
mial for Q?(t), for instance by setting a = t- 1, b = t + 1, which gives the polynomial 
for E(8): D4 in the table. As for several other groups, it seems to be a good deal 
easier to find a polynomial over Q(t) with this Galois group than to find one which 
is geometric, so we may regard this as a lucky break. 

This discriminant of this polynomial is 232a14b14(a - 1)6(b -1)6(a - b)4. The 
a - b term in this and the form of the example polynomial suggests setting a =t, 
b = t + 1 in this polynomial, and obtaining 

x - 4t(t + 1)x6 + 2t(t + 1)2(3t - 2)x4 - 4t3(t 1)(t2- 1)X2 + t4(t2 - 1)2 

with geometric Galois group T11= Q8: 2 over Q(t). This specializes to our original 
polynomial over Q with group Q8(8) when t = 2, and by trying values, it is not 
hard to guess that by setting t = t2 + 1 we obtain a polynomial with Galois group 
Q8(8) over Q?(t). 
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For another example, [9] gives us x8 + 4x6 + 8x4 + 8x2 + 2 as an example poly- 
nomial with Galois group T28 = 1[2 4]dD(4). Factoring this over Q(vX2) gives 
(x4 + 2x + 2 + v's) (x4 - 2x2 + 2 - v'). This suggests among other possibilities 
that we consider the polynomial 

(x4 +tx2 +t+ Vi)(x4 +tx2 +tt-) = (x4 +tX2 +t)2-t, 

with Galois group T35 = [24]D(4) = 2 t 2 t 2 (which is what we would generically 
expect for this wreath product type of construction). It is now now too hard 
once again to discover that substituting t2 + 1 for t gives a Galois group which is 
T28 = 1 [24]dD(4). 

5. USING RESULTANTS AND DISCRIMINANTS 

Often, interesting polynomials over Q(t) can be constructed by first constructing 
polynomials over Q(t, c), where c are some further indeterminates. We write a form 
which has a desirable factorization at t = 0 and t = oo, corresponding to the group 
we are seeking. We then take the discriminant of this polynomial. We want to 
choose values of c which will collapse this discriminant into something simpler. We 
can do this by taking the further discriminants of the factors (first with respect 
to t), or by collapsing two factors together, by taking a resultant (especially with 
respect to t). 

For instance, suppose we start with (X2- a)(x2 - b)3 + t. This has Galois group 
2?S(4) over Q(t, a, b); since it is a wreath product, this is an easy group to construct. 
The discriminant of this is 

28t4(t + ab3)(256t - 27a4 + 108ab3 - 162a2b22 + 108a3b - 27b4)2. 

We can collapse the terms t + ab3 and 

256t - 27a4 + 108ab3 - 162a2b2 + 108a3b - 27b4 

by eliminating t (via resultant or substitution), and so get 

(3a + b)(3a2 -14ab + 27b2)2. 

Setting b =-3a in the original polynomial gives (X - a) (X2+ 3a)3 + t, with Galois 
group T40 = 2[24]S(4) over Q?(t, a). 

For another example, consider the polynomial 

(X2 _ a)4 + t(x - 1)2, 

This has Galois group S(4) Z 2 over Q(a, t)-once again a wreath product. The 
discriminant of this has a factor equal to 

65536a6_131072a5 + 65536a4-13824a3t + 96768a2t-147456at + 65536t + 729t2, 

and taking the discriminant of this with respect to t gives us 

220(9a - 8)2(4 - 3a)3. 

This suggests specializing a to either 9/8 or 4/3. When we do this, we find that we 
obtain 

(x -4/3)4 + t(x- 1)2 

with Galois group T45 = [2S(4)2]2, and 

(X29 8/9)4 + t(x _ 1)2 
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with Galois group T41 = E(8): S(4). We may now transform these slightly and 
obtain the two polynomials listed in the table for these groups. 

For a final example, let us go to an example where the group is not solvable. 
We start with the polynomial 

X(X2 -a)3 - t(x - 1)3(x- c). 

This has Galois group S7 over Q(a, c, t), but it has a factorization at t = 0 and 
t = oo which is consistent with L(3,2). If we take the discriminant of this with 
respect to x and factor it, we obtain a factor which has degree four in t, which is 
largest in the sense that it contains the greatest number of terms. 

Taking the discriminant of this factor with respect to t and factoring, we obtain a 
factor which is of degree eight in a and degree ten in c, and which is largest. Taking 
the discriminant of this with respect to either a or c and factoring, we obtain a -49 
and c - 9, respectively, as factors. Substituting either of these into the polynomial 
we started with gives us a polynomial with Galois group S7. Back-substituting 
a = 49 (resp. c = 9) into our expression in a and c, or simply repeating the process 
with our new and more simple polynomial, we obtain c -9 (resp. a - 49) as a factor. 
We have now obtained 

X(X2 - 49)3 -t(x - 1)3(x - 9), 

which has L(3,2) as Galois group over Q(t). 

6. MODULAR FUNCTIONS 

The theory of modular functions, and in particular the genus 0 functions of 
"moonshine theory", allows us to construct polynomials with Galois group Pgl2(p) 
over Q(t), and in most cases to construct polynomials with Galois group Ps12(p) as 
well. 

For instance, if we take the modular functions 

f21+3 = ll-/q - q q2 + q3 + 2q4- 

and 

f3 1 = l/q + 42 + 783q + 8672q2 + 65367q3 + 371520q4 + 

(see [3] for this notation), then the polynomial 

X6(X2- x- + 7) - t(x - 1) 

has the property that substituting x= f21+3(q) and t = f3 (q7) into it yields 0. 
It is a polynomial of degree eight with Galois group T43 = Pgl2(7) = L(8): 2, and 
moreover it is suited to the descent process described below for finding a polynomial 
of degree eight with Galois group Ps12(7) L(8) from it. 

The approach via moonshine functions gives a very nice (and, to my mind, an 
easier) approach to the results of [8] and [11]. 

7. RIGIDITY 

Another approach to constructing polynomials with a variety of Galois groups 
is the rigidity method, as explained in [10]. I constructed no polynomials via the 
rigidity method; however, the polynomial 

(x4 + 4x - 3)2 + tx4(4x-3) 
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was constructed by Gunter Malle by the rigidity method, and has Galois group 
T47= S(4) t 2. As a wreath product this is easy to construct; I mention it because 
I used it to construct a polynomial which appears in the table. 

It is instructive to note that this could have been obtained by the method of 
using discriminants, if the right starting point had been tried. 

Starting from 

(x4 + ax + b)2 + tx4(x-1), 

we take the discriminant with respect to x, factor, and find the largest factor. 
Taking the discriminant of this with respect to t, we find that we have two factors. 
In either factor, taking the discriminant with respect to either a or b and factoring 
finally leads us to consideration of a 256/27, b =-256/27. Putting this into the 
above polynomial and transforming leads to 

(x4? 4x - 3)2 +tx4(4x- 3) 

with Galois group S(4) Z 2. 
Putting t2 in the place of t leads to a polynomial with T46 = [S(4)2]2 as its 

Galois group, whereas putting t2 - 4 in the place of t leads to T45 = [-S(4)2]2 as 
its Galois group. The T46 polynomial appears in the table. 

8. QUOTIENT GROUPS 

By evaluating a resolvent (a rational function of the roots of a polynomial) over 
a suitably chosen set of cosets, we may create a polynomial whose Galois group 
may be abstractly the same but with a different permutation group, or may be a 
quotient group (in some permutation representation). 

The easiest way to compute such maps is via the resolvent functions built into 
the Soicher/Mattman Maple program. There are several groups which are fairly 
easy, or even very easy, to construct via this method, but I did not end up using 
any of the polynomials I got this way. 

9. SUBGROUPS 

Once we have obtained a polynomial (by this or other methods) we may use it 
to try to descend. Starting with a polynomial over Q(t) with Galois group G we 
can often find a rational function in t such that specializing (i.e., substituting) t 
into this rational function gives us a Galois group different from G. The trick is 
then to find such functions. 

If the discriminant of the polynomial in question is not a square, one way we can 
accomplish this is to find a rational function for which it is a square. For instance, 
consider the polynomial xT + t(x - n + 1). As a trinomial, the discriminant of this 
is easily evaluated, and turns out to be 

((n- 1)t)n-I (t + nfn) 

where the sign is positive if n is congruent to 0 or 1 mod 4, and negative if it is 
congruent to 2 or 3. For odd n, it is clear that we can obtain a square discriminant 
by means of substituting t2 - nn for t if n is congruent to 1 mod 4, and -t2 - nn if 
n is congruent to 3 mod 4. In this way we may easily find polynomials with Galois 
group An over Q(t) for odd n. 
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For even n, we can also find a rational function which produces a square dis- 
criminant. If our only interest is in polynomials with Galois group An, it is easier 
to perform a similar analysis with the general form Xn- (x-n) - t, and discover 

xn- (x -n) +t2 + (n 1 
)n-1, 

when n is congruent to 0 mod 4, and 

xn-1 (x -n) _-t2 + (n 1 
)n-1 

when n is congruent to 2 mod 4 give a square discriminant. 
We may perform such an analysis to obtain Galois groups contained in An as 

well. For instance, taking the polynomial 

X6(2- x + 7) - t(x - 1), 
which we obtained from a pair of modular functions, we find that the discriminant 
is 

-77t5(t- 108)3. 

If we wish to find values of t for which this is a square, we need to find rational 
points on the ellipse 

2 

+?t(t -108) =0. 
7 

Since t = 0, y = 0 is one such point, we may find the others by drawing a line 
through this point and intersecting with the ellipse. Setting y -ut in the equation 
for the ellipse and factoring, we obtain 

t(tu2 + 7t - 756) = 0, 

and solving for t in the second factor gives us 
756 

U2 +7 
Substituting this into the original polynomial gives us a square discriminant. 

Converting this into a monic polynomial and exchanging u for t gives us 
8 _ (t2 + 7)x7 + 7(t2 + 7)2x6 - 756(t2 + 7)6x + 756(t2 + 7)7, 

which has Galois group Ps12(7), i.e., L(8). 
An entirely different approach to finding such a rational function is to find values 

of t which give us the Galois group we are looking for, and then to guess what 
rational function could be giving us these values. We may then test this guess and 
determine if it is correct. 

This approach is not without its problems. Suppose we have a polynomial over 
Q(t) with group G, and a subgroup H of G. Suppose that z is a resolvent expression 
in the roots of our polynomial which reduces to an element of Q upon specializing t 
precisely when the Galois group is contained in H. If we now express the algebraic 
relation between z and t by means of a polynomial, we have a curve which has a 
rational point when we have descent to (at least) H. 

This curve need not be of genus 0. Even when it is, finding it by the sort of 
method suggested above is easiest if it is a polynomial function, if it is either even 
or odd, and if it produces an infinity of integer values when evaluated at integers. 
None of these things need be true. 

Consider what happens if we attempt to find the rational function which gave 
us L(8) in degree 8 by this method. Searching integer values produces essentially 
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nothing, since the only integer value produced by 756/(u2 + 7) is 108. Searching 
the inverses of integer values gives us nothing. If we search over half-integer values, 
we find 27/2,189/2,216/2. The common factor of 27 here might suggest to us 
that we should look at numbers of the form 27/i. This nets us values of i equal to 
2, 16, 44, 86,. . ., from which we can guess that 27/(7u2+7u+2) produces acceptable 
values for t. This can easily be transformed to forms we might prefer, such as 
189/(u2 + u + 2) or (what we started with) 756/(u2 + 7). 

Examples more difficult than this appear in the list of polynomials computed- 
for instance, for the polynomial for T23 = GL(2, 3). This was obtained by descent 
from the polynomial listed for T40 = [24]S(4). A number of GL(2,3) extensions 
can be found for various values of t: t = 24,11, -9, -216,.... However, a general 
pattern did not emerge. The values could be seen to cluster near the ramified point 
over t = 27, and to be less than 27. Looking at t = 27 - 1/u, we find values 
produced by a fourth-degree polynomial in u. Substituting this and transforming 
gives the polynomial listed. 

Another interesting case is T1o = [22]4. This I had trouble finding by descent 
from the polynomials I had for T18 = E(8): E4, Tl9 = E(8): 4 or T20 = [23]4. 
For example, the condition to get a [22]4 polynomial by specializing the E(8): E4 

polynomial listed turns out to be an elliptic curve. Since the curve has positive 
rational rank, we obtain in this way an infinity of examples over Q, but not a 
polynomial over Q(t). 

Starting with an example over Q, I was lead to consider the polynomial 

x4-4x3a + (6a2 + 4b2 - 2b)x2-4(a2?+ 2b2 + b)ax + (a2 + 2b 2+ b)2, 

with roots 

a-x /;+ -2b2_2a;, a + v + b2b2+2a;, 

*a- vb-A -2b2 2 2a v, a + V-/-2b b a. 

This has Galois group (in degree four) D1(4) = 2 l 2 over Q(a, b). Substituting 
x =9 2 into this gives a polynomial P with geometric Galois group T29 = E(8): D4 

over Q(a, b). (A similar polynomial with this property, which used to produce the 
polynomial in the table with this group, is 

(x - a)2(X - b)2 - tX2, 

which has geometric Galois group E(8): D4 over Q(a, b, t) upon substituting x2 for 
x.) 

The example I began with was (up to a factor of 2) what one gets on substituting 
a = 3, b = 5 into P, namely X8 - 3X6 + 9x4 - 12x + 16. This has Galois group [22]4, 
and substituting x = afx into it gives us a polynomial with Galois group D(4). 

However, [22]4 has the curious property that it can arise from substituting x2 

for x into a polynomial with cyclic Galois group C(4) as well as one with dihedral 
Galois group D(4). Substituting a = t2 +1, b = t2 + 1 into the first polynomial gives 
us one with Galois group C(4) over Q(t). Substituting x = x2 into this then gives 
us a polynomial with Galois group [23]4. It no longer specializes to the polynomial 
we began with, but it turns out that does not matter! 

We now may check to see which values of t lead to a [22]4 polynomial. One way 
to do this is to substitute x = x + 1 into the polynomial, and then find the "2-set 
resolvent" which is th polynomial for products of distinct roots taken pairwise. This 
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is of degree 28, and has a factor of degree 8. This factor is reducible if t leads to a 
polynomial with Galois group [22]4. 

Checking for values of t leading to reducible polynomials, one find 

0, 2, 8,30,112,418,... 

This appears to satisfy the recurrence relationship ai = 4ai1 - ai2. Hence we 
may suspect there is a Pell's equation involved, which is one form of a genus 0 
condition. The Pell's equation corresponding to this recurrence is 

x2 - 3y2 = 4, 

where for x we get 2,4,14, 52,... with the same recurrence relationship, and for y 
we get 0, 2, 8, 30,..., our desired values for t. Solving this Pell's equation, we find 
that 

2t2 + 3 4t 
x t23' y t23 

Substituting the solution for y into our polynomial and transforming, we obtain 
the polynomial listed in the table. 

10. A PROBLEM GROUP 

Quite a lot of attention has been devoted to the group 2A4 = S12 (3) (see [4] and 
[7].) Despite this, no explicit polynomial giving a geometric extension of Q(t) with 
Galois group 2A4 seems to be known. 

This group is a double cover of the alternating group of degree 4, and has a 
faithful permutation representation of degree 8, which is T12 = 4A4(8) in the list 
of degree 8 permutation groups. 

Polynomials of degree 8 giving this group can be constructed by substituting x2 
for x in a polynomial of degree 4 with norm term a square and with Galois group 
A4, and such that the roots are real and either all positive or all negative. This will 
in general give an extension with group T32 - [23]A(4), but in particular cases the 
extension can be 2A4(8) or T13 = A(4)[x]2 instead. 

One example of such a polynomial is x4 - 22x3 + 1352 - 150x + 1. This has 
Galois group A4, and all of its roots are real and positive. Substituting x = x2 into 
this gives a polynomial with Galois group 2A4(8). 

If we do not require a geometric extension of Q(t), this can be used to give us 
a polynomial over Q(t) with Galois group T12, since by substituting x = x2/t into 
it we obtain x8 - 22tx6 + 135t2x4 - 150t3x2 + t4. Specializing t gives extensions 
which have the same A4 subfield. 

A polynomial over Q(a, b) with Galois group A4 and with square norm term, 
and such that substituting 92 for x gives a polynomial with Galois group T32,is 

x4- 200a(b2 -1)2X3 

+ 1500(b2 - 1)3(10a2b2- 10a2b + 5a2 - 294b2 + 50a + 882b - 399)X2 

- 50000(b2 - 1)5(10a3b2- 30a3b - 882ab2 - 50a2b 

+ 35a3+ 2646ab + 225a2 + 4410b-947a-3465)x 

+ 250000(b2 - 1)6(5a2b2- 15a2b - 441b2 - 50ba + 5a2 + 693b - 441)2. 
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This has a region where the roots are all real and positive, which contains the 
region a > 12, b > 4. We can find specializations which produce a 2A4(8) poly- 
nomial, but the descent problem presents difficulties. Examples where a and b are 
both positive integers less than 50 are a = 11 and b = 9,13,29,49; a = 27 and 
b = 9,29,49; and a = 15 and b = 3. It seems likely that there is a pattern of some 
sort. 

11. DETERMINATION OF GALOIS GROUPS 

In compiling our tables, two things needed to be determined and proven: that 
the Galois group is in fact the one listed, and that the extensions are in fact geo- 
metric. To accomplish the first, we for the most part used the Maple program 
of Sommeling/Mattman/McKay, with checks on its accuracy provided by testing 
specializations using other programs. 

However, in some cases these Maple routines failed to provide an answer, be- 
cause of the large space requirements that routinely result in computer algebra 
applications. In those cases, a moral certainty can be obtained by testing succes- 
sive specializations; however, without a theorem telling us how many successive 
specializations will suffice for a given input polynomial (something which would be 
desirable to have), an actual proof requires that we do the polynomial "by hand", 
so to speak. By this I mean that we must direct the computations instead of letting 
the program do it for us. 

The heavy lifting of this Maple program is accomplished by two routines named 
"rsetpol" and "twoseqpol". The first finds the minimal polynomial for the products 
of n of the roots, and the second does the same for ri + 2r2, where r1 and r2 are 
any two roots. These routines do not use floating point methods, which is why 
the program could be extended to cover function fields (and might be extended to 
cover other possibilities, such as p-adic or number field base fields). Determining the 
degrees of the irreducible factors (provided they are distinct, which we can always 
assure) gives invariants which in most instances, together with the discriminant, 
allow a determination of the Galois group. 

To take one example, the program is able to determine that the Galois group of 
(the splitting field for) 

x8 + tx7-28X6-7tx5 + 70x4 + 7tx3-28X2-tx + 1 

is T7 = 2 [23]4. Alas, this elegant polynomial is not geometric, and the program as 
it was originally configured failed with the computers I used. However, a simple 
change of strategy made the same approach work. The program chooses to compute 
products of three roots before invoking "twoseqpol"; however, the factor type 8 162 
is in fact unique among groups not contained in A8, and it is easily computed when 
invoked. 

For the group T15 = C(8): E4 we once again have a nongeometric polynomial 
which the computer can handle, namely 

(x4 + 4x2 + 2)2 + t, 

and a geometric polynomial it has trouble with. In this case, we have a number of 
possible groups with a nonsquare discriminant and the same 2-set and 2-sequence 
invariants. The computer program therefore attempts to find the 3-set invariant 
(which does distinguish the group), and this runs into space problems. 
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However, the polynomial in question was constructed using the split-extension 
method described in the section on semidirect products. Hence, it can be no larger 
than T15, and simply checking a few factorizations at specializations to primes of 
Z[t] (which is to say, specializing t and reducing modulo a prime integer) suffices 
to show it must also be at least this large. 

This also allows us to show that the polynomials for E(8): F21 and E(8): 7, 
which are far too large for the computer to handle, in fact give the claimed groups. 

This left me with a few cases where I still had no proof, but only a moral certainty. 
But in those cases one can convert the moral certainty into a proof. If it comes 
down to factoring the "twoseqpol" resolvent, then factor the resolvent for a number 
of successive specializations, and then reconstruct the factors by interpolation, and 
so factor the resolvent "by hand". Often a simple transformation of the polynomial 
must be effected first, to prevent repeated factors in the resolvent polynomial. 
Except in the case of the polynomial for rl + r2 + r3 + r4 - r5 - r6-r7 - r8 in 
degree eight, simply adding one to each root always sufficed. 

One can work in a similar way if some factor of some resolvent must be factored 
over an extension field. In effect, I was doing "by hand" a factorization algorithm 
which could be coded, and whose principle merit is that it is economical of space. 
The polynomials in the table were sometimes right on the edge of what was possible 
with these methods, but were never so far over the edge that a different resolvent 
altogether had to be used. 

My first version of these tables included many entries which were not geometric. 
I used a set of Maple routines written by David Ford to determine the discriminant 
of the ring of integers of successive specialization, since it seemed to be more efficient 
than what was in the Maple distribution. If the GCD of these discriminants was 1, 
I could conclude without further work that no algebraic subfield could exist. 

In other cases, I would get a nontrivial GCD most commonly, a power of two. 
I then made use of the fact that usually (and in all the cases for which a question 
remained) I had a maximal quotient group which was solvable, and hence any 
algebraic subextension would have to be solvable. Such an extension would have a 
maximal abelian subextension, and this in term would have maximal p-elementary 
subextensions for each prime p. By checking the (usually quadratic) factors of this 
subextension, one can determine if an algebraic subextension exits. This can be 
done using class field theory; one checks at primes where the polynomial factors 
into linear factors, to see if the cyclic extensions with the relevant discriminants 
sometimes do not factor. In practice, this most often amounted to checking the 
factorization of x2 + 1, x2 + 2, and x 2- 2, after determining (using discriminants) 
that only the prime 2 need be considered. 

12. TABLES 

Group Name Polynomial 

1 S2 x2-tx+ 1 

Group Name Polynomial 

1 A3 x3 + tx2 + (t- 3)x - 1 
2 S3 x3 -3x-t 
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Group Name Polynomial 

1 C(4) x4 + tx3 - 6x2 - tx + 1 

2 E(4) x4 + tx2 + 1 

3 D(4)-2? 2 x4 + tx3 + tx + 1 

4 A4 x4 + 18tx3 + (81t2 + 2)X2 + 2(54t2 + I)tx + 1 

5 S4 x4 +tx+1 

Group Name Polynomial 

T, C(5) x5 + x4t2 -(2t3 + 6t2 + lOt + lo)X3 

+(t4 + 5t3 + lit2 + 15t + 5)X2 
+(t3 + 4t2 + lOt + lO)x + 1 

T2 D(5) =5: 2 x(x2-25)2-t(X-1)2(X + 3) 
T3 F(5) 5: 4 X5 + lOX3 + 5tX2 - 15x + t2 - t + 16 

T4 A5 x5 + (t2 - 3125)(x - 4) 

T5 S5 x5 +tx+ 1 

Group Name Polynomial 

T, C(6) x6 + 2tx5 + 5(t + 3)x4 + 20x3 + 5tx2 -2(t + 3)x + 1 

T2 D6(6) (X2 + 4)(X2 + 1)2 + 3t2 

T3 D(6) X2(X2+ 3)2 _ t 

T4 A4(6) x6+ tx4 + (t-3)X2-1 

T5 F18(6) = 3 2 (X3-3x-1)2 + tX2(x + 1)2 
T6 2 l 3 x6 _4t2(t2 + 3)(324t2) 

T7 S4(6d) = [22]S(3) x6 + tx2 - 1 

T8 S4(6c) = 1 [23]S(3) (x2 + 1)(X2 _ 2)2 + 3t2 

Tg F18 (6): 2 x4 (x-6)2 t2 - 1024 

Tio F36 (6) (x + 2)2(x - 1)4 + t2x3 (3x - 2) 

Ti i 2 l S(3) (x2 + 1)(X2-2)2 + t 

T12 L(6) x6 + (lOt2 - 50)x5 + 55(t2 - 5)2x4 + 140(t2 - 5)3x3 

+175(t2 - 5)4X2 + 2(53t2 + 375) (t2 - 5)4X + 25(t2 - 5)6 

T13 S(3) l 2 x4(x-_1)2-_t 

T14 L(6): 2 =PGL(2,5) x4 (X2 +4x +20) - t(x-l1) 

T15 A6 x5(x-6)-t2 + 3125 

T16 S6 x +tx+1 
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Group Polynomial 

T1 x8 - (t4 + 12t2 + 4)X6 + (3t2 + 1)(t4 + 12t2 + 4)x4 

- (3t2 + 2)(t4 + 12t2 + 4)t2x2 + (t4 + 12t2 + 4)t6 

T2 x8 - t2x7 - (7t2 + 12)x6 + (t2 - 3)t2x5 + (2t4 + 6t2 + 38)x4 

+ (t2 - 3)t2x3 - (7t2 + 12)X2 - t2x + 1 

T3 x8 - 12tx6 + (30t2 + 8)x4 - 4(7t2 - 4)tx2 + (3t2 - 4)2 

T4 x8 - 1O(t - 2)(t + 2)x6 + (33t4 - 208t2 + 472)x4 

- 40(t - 2)(t + 2)(t4 - t2 + 9)X2 + 16(t4 + 17t2 _ 9)2 

T5 x8 - 4(t2 + 2)(t2 + 1)x6 + 2(3t2 + 1)(t2 + 1)(t2 + 2)2x4 

- 4t2(t2 + 2)2(t2 + 1)3x2 + t4(t2 + 2)2(t2+ 1)4 

T6 x8 _ (t2 + 12t + 4)X6 + (3t + 1)(t2 + 12t + 4)x4 

- (3t + 2)(t2 + 12t + 4)tx2 + t3(t2 + 12t + 4) 

T7 x8 - 12(5t2 - 6t + 2)(t2 - 6t + 1O)x6 

+ 6(5t2 - 6t + 2)(t2 - 6t + 10)(23t4 - 140t3 + 300t2 - 224t + 64)x4 

-108(t2 -6t+ 10) (5t2 - 6t+2) (3t4 - 20t3 +44t2 -32t+8) (t2 -2t+2)2x2 

+ 9(5t2 - 6t + 2)(t2 - 6t + 10)(t2 - 2t + 2)2(t2 - 6t + 4)4 

T8 x8 - (16t8 + 64t6 + 96t4 + 80t2 + 36)x6 

+ 4(4t6 + 20t4 + 40t2 + 31)(4t8 + 16t6 + 24t4 + 20t2 + 9)t2x4 

- 32(4t6 + 14t4 + 16t2 + 7)(4t8 + 16t6 + 24t4 + 20t2 + 9)(t2 + 2)2t4x2 

- 64(t2 + 1)(4t8 + 16t6 + 24t4 + 20t2 + 9)(t2 + 2)4t6 

T9 x8 + tx6+ (2t-1)x4 + tx2 + 1 

T1o x8 + 2(t2 + 1)(t2 + 9)X6 + 2(t2 + 1)(t2 + 9)(t4 + 14t2+ 9)x4 

+ 2(t2 + 3)2(t2 + 1)2(t2 + 9)2X2 + (t2 + 1)2(t2 + 9)2(t2 + 3)4 

T11 x8 - 4t(t + 1)x6 + 2t(t + 1)(3t2 + t - 2)x4 - 4t3(t2 - 1)X2 + t4(t2-1)2 

T12 x8-22tx6 + 135t2x4-150t3x2 + t4 

T13 x8 + 18tx6 + (81t2 + 2)x4 + 2(54t2 + 1)tx2 + 1 

T14 (x4- 42X2 + 729) (X2 + 3)2 + 3t2X2 

T15 x8 - (36t2 - 4032)x6 - 108(t2 - 112) (t2 + 88t + 820)x4 

- 15552(t+ 11)(t2 -112)(t2 +52t+424)x2 - 746496(t+29)(t2 -112)(t+ 11)3 

T16 x8 + 8(5t2 + 6t + 5) 2(25t2 + 14t + 25)2x6 

+ 14(5t2 + 6t + 5)4(25t2 + 14t + 25)4x4 

- 8(5t2 + 6t + 5)6 (25t2 + 14t + 25)6X2 

+ (5t2 + 22t + 5)2(5t2 + 6t + 5)7(25t2 + 14t + 25)7 

T17 x8-tx7-11x6 + 7tx5+ 36x4-7tx3-11x2 + tx + 1 
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Group Polynomial 

T18 x8 + tx6+ tx2+ 1 

Tlg x8 - (t2 + 1)2x6 + 2(t2 + 1)(t2 -t + 1)(t2 + t + 1)x4 

- (t2 + 1)3t2X2 + (t2 + 1)2t4 

T20 x8 - 4(t2 + 1)x6 + 2(t2 + 1)(5t2 + 4)x4 

- 4(3t2 + 4)(t2 + 1)2x2 + (3t2 + 4)2(t2 + 1)2 

T21 x8 + 8x6 - (16t6 + 64t4 + 80t2 + 16)x4 

- 64(t2 + 2)(t2 + 1)2x2 + 64(t2 + 1)3t2 

T22 x8 - 4(t + 1)(t - 1)x6 + 2(t + 1)(t - 1)(3t2 - 2t - 4)x4 

- 4(t + 1)2(t - 1)2t(t - 2)X2 + (t + 1)2(t - 1)2(t - 2)2t 

T23 (x 2 + 9)(X2 - 3)3 -t3(t + 4)(2x4 -8X2 + 9) 

T24 _ (92 W) + tx2 

T25 See below 

T26 X8 + 8(t2 - 1)2X6 + 14(t2 -1)4x4 

- 8(t2 - 1)6X2 + 3(t + 3)2(t2 - 1)7 

T27 x 8 + tx7 -2x6 + 2tx5-5x4 + 2tx3-2x2 + tx + 1 

T28 (x4 + (t2 + 1)x2 + t2 + 1)2 -t2 - 1 

T29 (x 2-t-1)2(x2-t + 1)2-tx4 

T30 x2(X2 - 4)(x2 - 2)2 - 2(x2-1)(x2-3)(2t2 + 6) + (2t2 + 6)2 

T31 x8 + 8x6 -(16t3 + 64t2 + 80t + 16)x4 -64(t + 2)(t + 1)2X2 + 64t(t + 1)3 

T3 2 (x2 + 1)(x2-3)3 + t2 + 27 

T33 x8 - 4(x4 + 12x + 82x2 + 192x + 256)x2(t2 + 27) 

+ (6x4 + 96x3 + 464X2 + 960x + 1296) (t2 + 27)2 

+ (4x2 + 48x + 72)(t2 + 27)3 + (t2 + 27)4 

T34 (x2- 18)4 + (2x - 9)2(3t2 -1728) 

T35 (x4 + tx2 + t)2 _ t 

T36 See below 

T37 x8 + (t2 + 7)x7 + 7x6(t2 + 7)2 - 756(t2 + 7)6x + 756(t2 + 7)7 

T38 x6(x2 -4) + t2 + 27 

T39 x8 + tx2+ 1 

T40 (x2 + 1)(x2 -3)3 + t 

T41 (x2-2)4 + t(2x - 3)2 

T42 (x2- 3)4 + 3t2(2x - 3)2 

T43 x6(x2-x + 7)-t(x-1) 

T4 4 x8+ tx7+ tx + 1 



SOME POLYNOMIALS OVER Q(t) AND THEIR GALOIS GROUPS 793 

Group Polynomial 

T45 (x2 - 3)4 + t(2x - 3)2 

T46 (x4 + 4x - 3)2 + t2x4(4x-3) 

T4 7 (X 4 (x + 1)2 + t(X + 1)x4 

T48 x(x7 - 8x6 + 16x5 + 6x4 - 18x3 - 182 - 7x - 1) - t(2x + 1)2 

T49 x7(x - 8) + t2 + 823543 

T50 x7(x-8) + t 

Let 1 - t6 + t5 + t4 + t3 + t2 + t + 1. Then a polynomial for T25 is 

x8 + l(84t6 + 84t5 - 112t4 - 308t3 - 700t2 - 504t + 84)x6 

+1121(t - 1)(5t1" + 15t10 - 5t9 - 62t8 - 93t7 

-9lt6 - 126t5 - 166t4 - 113t3 - 30t2 - 8t - 12)x5 

+9812(15t12 + 30t11 + 3t19 - 122t9 - 492t8 - 274t7 

+1225t6 + 2092t5 + 2175t4 + 2006t3 + 906t2 + lOOt + 127)x4 

+22412(9t18 + 27t17 + 138t16 + 146t15 - 1167t14 

-1547t13 + 7049t12 + 18959t11 + 12770t10 - 1200t9 + 4097t8 

+9439t7 - 12075t6 - 28217t5 - 13039t4 + 2393t3 - 212t2 - 2430t + 58)x3 

+2812(55t24 + 220t23 + 2153t22 + 4691t2l - 5418t20 

+23233t19 + 228452t18 + 475520t17 + 287159t16 - 600374t15 

-1984307t14 - 3379523t13 - 4660453t12 - 5845875t11 

-6137953t10 - 5782110t9 - 5639153t8 - 4845124t7 - 3078208t6 

-2133257t5 - 2075038t4 - 1607507t3 - 622674t2 + 4721t + 92679)X2 

+1612(39t30 + 195t29 + 2790t28 + 8519t27 + 16940t26 

+225855t25 + 1104180t24 + 2242889t23 + 1399808t22 

-6020961t2l - 25508840t20 - 49019705t19 - 58600367t18 

-69234886t17 - 102278166t16 - 112179983t15 - 70498523t14 

-39241916t13 - 35156807t12 + 2191322t1l + 57656039t10 

+74500144t9 + 72804904t8 + 79557490t7 + 70533449t6 

+48000512t5 + 34276466t4 + 21509663t3 + 5376298t2 - 1410928t - 610984)x 

+713(15t3? + 75t29 + 1597t28 + 4837t27 + 23884t26 + 347732t25 

+2111634t24 + 5807707t23 - 871233t22 - 50322479t2l - 111635825t20 

-28345436t19 + 193203437t18 + 346778159t17 + 656100311tI6 

+1389057175t15 + 2002720726t14 + 2197415248t13 + 2560304502t12 

+2936446653t1l + 2672763639t10 + 2134534195t9 + 1835594167t8 

+1442639068t7 + 890569771t6 + 522893385t5 + 352986417t4 

+187040567t3 + 83103483t2 + 52679639t + 27709039). 
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Let 1 = t6 + 56t4 - 7t3 + 980t2 - 189t + 5103. Then a polynomial for T36 is 

x8 + 841t(t5 + 7t4 + 77t3 + 413t3 +1260t + 6048)x6 

+1121t(12t1" + 14t10 + 1456t9 + 1687t8 

+67816t7 + 79786t6 + 1492540t5 + 1847888t4 

+15067647t3 + 20994687t2 + 51902613t + 94517766)x5 

+9812(127t12 + 98t1" + 14861t10 + 17024t9 + 700637t8 

+983066t7 + 16546411t6 + 23970996t5 + 195888672t4 + 226709280t3 

+954750888t2 + 354923856t + 416649744)x4 

+22412(58t18 + 4746t17 + 11466t16 + 848533t15 + 956613t14 

+63940695t13 + 44653847t12 + 2622099564t11 + 1310602461tl0 

+62800333736t9 + 25896405969t8 + 868595348565t7 + 354357606708t6 

+6267169256355t5 + 3143228815944t4 + 16609715039484t3 

+13293262163538t2 - 10542228066342t - 3720786376356)x3 

+2812(92679t24 + 27251t23 + 22341494t22 + 1970703t2l 

+2377821859t20 - 240284219t19 + 147080271408t18 

-40133661729t17 + 5850921810489t16 - 2479591212651tI5 

+156245540841530t14 - 85460151822283t13 + 2833137718953549t12 

-1785942335328053t11 + 34407743050495192t10 - 22484916215014995t9 

+267949508417695944t8 - 155111569609853808t7 + 1216946756938622976t6 

-395161827317561304t5 + 2582944198926978096t4 + 1006961653695531744t3 

+1207469594855049120t2 + 5260150115982004320t + 1367076447255216096)9 

-1612 (610984t30 - 1814358t29 + 173412876t28 - 559269767t27 

+22215296852t26 - 78272133695t25 + 1693448633947t24 

-6574758748187t23 + 85165722582185t22 - 369101044061057t2l 

+2955182978201118t20 - 14590325493108141t19 + 71604511995708853t18 

-416655064165453477t17 + 1188305557133823772t16 

-8674662266588396099t15 + 12503079535353566551tI4 

-131164617287149386157t13 + 60477161743382905710t12 

-1416213397101350695932t11 - 292455772615528882857t10 

-10557931743508007769876t9 - 6515994233868926912595t8 

-51084827821598387592258t7 - 39552526739628735284088t6 

-140788682522299613035836t5 - 87194523110846975505108t4 

-140691994656875937962064t3 + 16720104436846434640800t2 

+144009541799423532572760t + 62979503079488736522600)x 

+713(27709039t3? + 31223556t29 + 7833378014t28 + 8760462179t27 
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+1006873891569t26 + 1119419376019t25 + 77741715374757t24 

+86111109399567t23 + 4011691914670251t22 + 4439407451249239t21 

+145581051354018525t20 + 161498379453143537t19 

+3804201727782153131t18 + 4247052560379095481t17 

+72008641447685051599t16 + 81226343219113714293t15 

+978223087576340403546t14 + 1118046058222551179673t13 

+9287040686789967525585t12 + 10736207594262764690328t11 

+58484587187200337972928t10 + 67268821419254486839248t9 

+220790751720343098064848t8 + 235447728140821637919744t7 

+395798513988183140997792t6 + 252982270940951430978624t5 

+117912897702128865103488t4 - 479678343600685954894848t3 

+29557104173955942139584t2 + 425691200757907229701248t 

+327105849840544576154304). 
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