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ON THE SOLUTIONS OF A FAMILY 
OF QUARTIC THUE EQUATIONS 

ALAIN TOGBE 

ABSTRACT. In this paper, we solve a certain family of diophantine equations 
associated with a family of cyclic quartic number fields. In fact, we prove that 
for n < 5 x 106 and n > N = 1.191 x 1019, with n, n + 2, n2 + 4 square-free, 
the Thue equation 

'D 'n(X, Y) = x4-_n2x3y -(n 3 + 2n 2 + 4n + 2)x 2y2 _n2xy 3 + y 41 

has no integral solution except the trivial ones: (1, 0), (-1, 0), (0, 1), (0, -1). 

1. INTRODUCTION 

We consider the following Thue equation: 

(1.) 4 (X, Y) =X4-n2x3y-(n3 + 2n +4n+ 2)x2y2 2n 3 ?y4 =1, 

and we plan to prove that for n < 5 x 106 and n > N 1.191 x 1019, with n, 
n + 2, n2 + 4 square-free, this equation has only the solutions (1, 0), (-1, 0), (0, 1), 
(0 -1). 

In 1991, L. C. Washington [13] and 0. Lecacheux [4] independently studied the 
units of Q(w), where w is a root the polynomial 4fn(x, 1). Their results were helpful 
to solve the equation (1.1). For the proof, we use estimates from linear forms in 
the logarithms of algebraic numbers, techniques from diophantine approximation 
and new methods of computation. 

This paper is based upon the results of our Ph.D. dissertation [12] and is divided 
into 5 sections. In the second section, we shall give some elementary properties of 
the above polynomial and recall the result of L. C. Washington and 0. Lecacheux 
about the fundamental system of units of the number field associated with this 
Thue equation. We shall study the approximative properties of the solutions in the 
third section. In the last two sections, we solve the equation using respectively the 
method proposed by M. Mignotte in [6] and the Bilu-Hanrot method (see [2]). 

2. ELEMENTARY PROPERTIES OF THE POLYNOMIAL 

We have the following properties. 
(a) 4(n(?Ii0) = 4(n(Oi?1) = 1. So (1,0), (-1,0), (0,1), (0, -1) are solutions 

of (1.1) and are called the trivial solutions. 
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(b) ?,n(X,y) = ??n&-X,-y) = ??n,(y,x) = 4?n&-y, X), so if (x,y) is a solution 
of (1.1), so are (-x, -y), (y, x), (-y, -x). Without loss of generality, we shall 
consider only the solutions (x, y) with y positive. 

Lemma 2.1. If n =& 0, then 4?(x) = 4bn(X, 1) is irreducible. 

Proof. Let a be a root of 4>(x) and ay = c + 1. Then, rq is a root of 
2~~~~~ 

z2 _n2z - (n3? 2n2? 4n+4). 

The discriminant of z2 _-n2z- (n3+?2n2+4n+4) is A = (n+2)2(n2+?4), which is 
not a square for n =& 0. So the quadratic subfield of K is k = Q( ri2 ?4). Suppose 
now that a E Q(rq). We know that a is a root of X2 - Xr + 1 = 0 for which the 
discriminant is 

w = 7: 2 - 4 = (n3?+ 2n2 + 4n) + n?2r . 

We have NQ (q) ,/Q(W) = nr2(n + 2)2(n2 + 4). This norm is a square if and only if 
n = 0. So X2 - Xr + 1 is irreducible over Q(rq), i.e., a ? Q(ri) if n 74 0. C] 

We know from [4] and [13] that the Galois group of K = Q(a), a being a root of 
4>(x) = 4 n(X, 1), is a cyclic group of order 4, generated by a. Moreover 

D(x) = (x - a)(x + 3)(x - l/a)(x + 143), 

where a = a, is the largest root of 4>(x), the other roots being a2 = o(al) with 

n ) (?n+2) ( ? 
n+2) 

c ( n+2 

a3 = a2(a) = 1/Cal, aC:4 = a 3(a) = 1/a>2 

For n > 4, we have the following inequalities for ci: 
2 3 -o~ 2- fifif2 _2 

n2 +n+l1+ 2 - 2 < a,l < n2 + n+ 1 + n - 2 

n l- 1 + 1 < 2 < -n- 1 + 2 

1 2 1 1 
n2 n < al3 < n2 n3 

_L+ 
1 

_ < a4 < n + v 

Now let n 7 -1 be an odd integer such that n, n + 2 and n2 + 4 are square-free. 
Then the discriminant of K is D = r2(n + 2)2(n2 + 4)3 and the fundamental unit 
of k is 

6 2 

We know from [13] that {1, ?, a,, Ca2} is a basis for the ring of integers OK of K; 
moreover, {1, ?, a, , ECa,} is an integral basis for K, which shows that {1, a, } is a 
basis for K over k. We have the following result (see [4] or [13]). 

Theorem 2.2 (L. C. Washington, 0. Lecacheux). When n, n + 2 and n2 + 4 are 
square-free, {e, ai, , 2} is a fundamental system of units of K when InI > 3. When 
n = 1, the subgroup (-1, , a,, Ca2) is of index 2 in the full group of units. 
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3. APPROXIMATIVE PROPERTIES OF THE SOLUTIONS OF (1.1) 

We shall begin this section with the following result. 

Proposition 3.1. Let (x, y) be an integral solution of (1.1); then we have JyJ > 2 
or (x, y) = (1, 0), (-1, O), (O, 1), (O,-I). 

Proof. We know that if y = 0, then x = ?1. Now suppose y = 1; then 

x = 0 or P(x) = x3 _ n2x2 (n3+ 2n2+ 4n + 2)x-rn2 = 0. 

So for n > 1, P(x) has three real roots. Moreover, we have 

P(-nr-1) = n2+3n+1 >0, P(-n-2) =-n3-3n2 - 2n-4 < 0, 

P(-1) = n3 + 4n + 1 >, P(O) = -n2 < O, 

P(n2?+n+ 1) =-2n3-4n2 -3nr- < 0, P(nr2+n+2) =n 4?+n3+3n2+2n+4 > 0. 

Then these roots are in n - 2,-n - 1[, ]-1,0 [, ]n2 + n + 1,rn2 + n + 2[, 
respectively. D] 

Now let (x, y) be a non-trivial solution of (1.1). Then 

(3.1) 4bn(X, y) = (X - ay) (x +3y) (x--) (x+>I) = 1 

is the norm of the algebraic unit -Yi := x - aly (9lE, so there are unique integers 
Uo E {0, 1}, U1, U2, u3 such that 

Yi = (_l)UO U1 CU2/3U3. 

We call uo, u1, U2, u3 the associated exponents of the solution (x, y). Moreover, 
we have 

{ Nk/Q(E) = Eo(E) = -1, 

Y+ =a(-yi) = x - ai+ly, I < i < 3. 
So we have 

( V7i = - Ul ayU2 /3U3, ) E -_Ui1)3U2 a-U31 (3.2) J g= 1 yU2 /3 

INI E741= ? 1 3-U2 a2U3 

The inequalities for the axi give 

(3 3) -0 < - < I< a< 13 

so 

(3.4) x - a < x 1< x + < x + . 
y y ae y '3 y 

There are four possibilities to obtain the minimum of 1i I, 1 < i < 4. We shall say 
that (x, y) is a of type 1, 2, 3 or 4: 

* type 1, if all -yi's are positive and x - ay = min {x -aiy; 
1<i<4 

* type 2, if all -yi's are negative and -x -y = min {ix -aiy|; 
1<i<4 

* type 3, if -Y1, 'y3 are negative, 72, -4 are positive and y -x = min {Ix-aiyI}; 
1<i<4 

* type 4, if 'Y1, 'y3 are negative, 72 74are positive and y +x = min {Ix-aiyq}. The a t s1<i<4 

The above types exhaust all the possibilities. 
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4. PART I 

4.1. Solutions of type 1. Suppose that (x, y) E 22 is a non-trivial solution of 
type 1. 

Lemma 4.1. We have 

0 < < Y2n67 

Y (aE + ) < %2 < Y (?e + 0 + 2 6 ) 

Y (R-OZ < _73 < Y (Ce + 12n6 ) 

y(a?/3) Y2n6 ) 

Proof. We have yax - axiI < ?x - ceyl + Ix - cxiy < 2(x - aiy) for 2 < i < 4, and 

then 

1 ~~2 
< 2<i<4. 

x- aiY- y(ac- O!) 

So we obtain 
4 4 

' 2 _ 8 _ 

X-cYy - ajcy)yP'1f(a) 
i=2 = 

where VX'(ca) = (C -e 2)(a - 3)(ag - r4). But VX'(ax) > n6, for n > 1; therefore 

8 3 8 1 
-71 = X - aEy < (Y-3 < <-,< ~~~~~f -() y3n6 -6?l6 

whereupon 0 - 
n 2Kn 

(y > 2), from which we conclude that 

Y(a - ei) < < K <Y (a -ei + 2n6) for 1 < i < 4. 

So we obtain the desired result. D] 

Let us consider the Siegel identity 

0 a< l4(a1 - a2) 1 _yi(a2 - a4) 
"N(al - '4) Y2(a l a-4) 

so 

(a +2 2( a2U313-2U2 (a+ i~1(3~" 

Put A1 = 2U3, B1 = -2U2, A1 = c'Aj, Ti = '1 , to obtain the following 

linear form in logarithms: 

(4.1) A1 = A1 log(a) + B1 log(/3) + log(Al) = log(1 + Tl). 

Several results can be deduced from this. 

Lemma 4.2. A1l : 0. 

Proof. Because Ti > 0. D 

Lemma 4.3. We have 

U2 <U3 <0 and 0< JA1j <B1. 



ON THE SOLUTIONS OF A FAMILY OF QUARTIC THUE EQUATIONS 843 

Proof. From the formula (3.2), we obtain 

C2+C4 Cl+C3 (Cl-C3) log(ca)+(c2-C4) log(p) 

2log(e) 2 log(,-)' 2[log2(ca) 
+ log2Qp)] 

(cl-c3) log(p)-(c2-C4) log(a) 
U3 

= 

2[log2(a) + log2(/p)] 

with Ci = log I'yi1. So l < C3 < C4 < C2, Cl-C3< Oandc2-C4> 0, forrn > 3; then 
U3 < 0 and A1 < 0. Moreover, we have 

(cl-C3) log(a)+ C(c2-C4) log(/) 

< log(,B) log 3-log og(a) log (n6(a_). 

The right hand side of the inequality is negative for n > 3. Therefore U2 < 0 and 
B1 > 0, for n > 3. 

Finally, the expression log (3) (log(a) - log(p3)) + log (^<) (log(a) + log(p3)) is 
less than 

-log (2n6 (a--! ) ) (log(a)c-log(/3)) 

a a, + 3 ) ? log (~I?2n) (log (a~)?log (3)), 

which is negative for n > 3; so u2 - U3 < 0, i.e., u2 < U3 < 0, <-2u3 <-2u2, i.e., 
0 < {Al < B1. 

We use the Baker-Wiistholz theorem, (see [1], page 20) to obtain a lower bound 
of A1. 

Lemma 4.4. We have 

log(Ai) > -233 x 37 x log(24) log3 (o3) log(Bl). 

Proof. We have 

h'(ao) = h'(/3) = - log(a3), 
4 

h'(Al) = log 
a +,3 ad+ / I4 log(a,3), 

because the conjugates of A1 are 

a() +,3 > (2) _ $+I/a<1 A(') 
//3>11 

>(3)= _I/a+l/$<1 A(4)_ 1 + a 1 

and because B=max{ -2u2, -2u3, 1}=-2u2=Bi and C(3,4)-37 x 239 log(24). 
So we obtain the desired result. D 

The following result gives us an upper bound for log(Al). 

Lemma 4.5. For n > 4, we have 
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Proof. We know that A1 = log(l + T1) < ii = 'Y2 so 

log(Al) < log O7 ( + 1)= - log )3 (2 1) 

We have to show that 1.4B, log(a) < log (^) + log (0+1). According to the 
expression of B1, it remains to show that 

1.4 log2(t) log + 1.4 log(a) log(/) (gY4 \ 

log2 (a) +log2 (3) Y} log2 (a) +log2 (3) lo y 

< log ( +2) log (:+1 ), 

i.e., 

1. 4 log (at o() lo ()4) log I 
log2 (ae) + log2 (,3) VY2/ 

< log 
0 

+1+log ()+ ( 1.4 log2( ~ log 
< )?g(p2 -)+1 g(7-3)+ log 2(a)+g 1 (/)3)1 \cyij 

We know that 

(72) ( ~~a +0 ) og( 1 + 1 6 o 7) 

and 

log (2n6 a- ) < log '3 

Then we must prove that 

1. 4log (a~)log (3) log+1 
log . 

log2 (a) + log2 (3) ( a + /3 

is less than 

log (c,i3 +1) +log ( 2iF6 )?(1-142( lg( )) log (2n6 (a- )), 

but one can check that this is indeed the case. D 

Using the last two results, we obtain 

1.4B1 log(a.) -233 x 37 x log(24) log3 (a43) log(Bi) < 0. 

Put 

K1 = 2 x 37 x log(24) log3(a43) Gl,n(x) _x-K log(x); 
1. 4 log (a!) G,()=x K o() 

then we have 

G,n,(B1) < 0, G,n(X) = 1 - K C G,n(Ki) = 0, 

Gl,n(Kl) < ?7 Gi,n(Kl 106) >~ O, x 

and then B1 < K106 So K'10 is an upper bound for B1. 
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Now we use a method considered by Maurice Mignotte to solve the problem (see 
[6]). We know that, for ixi < 1, 

0 2 12 log(l+x)=x-=2- , 1 1 =1-x+? ox2, 0<0,00<1, 
2 1 +x 

and we use the inequalities on axi to obtain respectively 

ce=n2(1? ? + i ) + 3 =n(?1+-+?2-_ ) 1<0l 02<2, 
n n2 n3 n n2 n3 

A1 = +/3 _ n + n2 + n3 2< 03, 04< 3. 

Then we deduce that 

log(,3) _ .1 1 
_____wit___I 3 

log(a) 2 4n log((n) 8rn2log(n)' with 1 <3, 

^ = log(Al) = 1 + '01 with IV, < 3O 
log(a) 2n log((n) 4nr log(n)' 

Moreover, we have 

log(,3) log(Al) Tri ___ A1 + B11 +=A1 + B16 + 61& < < 2 forn > 2. 

Then we obtain 

(4.2) B1 + ? rj(i <B1+~ <3B? 
(4.2) (2 +4n log(n))+ 2n log (n) 1 8n2log(n) 8n2log(n)' 

where llxll = Ix - [x] Idist(x, Z). As B1 = -2u2 is an even integer, we obtain 

||B 1+ + I1 41 o 
B +21 B 

2 4rilog (ni) 2rilog (n) 
= 

n Bog 
+2 

Moreover, we have 

B1?+2 <63 <1 ,<63 nlg()-2 
4nrlog((n) 256 4 64 

We know that B1 has an upper bound Kf1 06, and for n > N1 = 1.999 x 1018, we 
have 

B1 < K1 .06 <-nlog(n) -2. 1 64 

In this case, we obtain 

IB K 1 1 11 B, + 2 11_B, + 2 
?2 4n?log(n) 2nrlog((n) 4nilog(n) - 

4n log(n) 

But we have 

B1 + 2 3B1 + 6 
4n log(n) 8n2 log(n)' 

for n > 2. So this contradicts (4.2), i.e., there does not exist a non-trivial solution 
of type 1, for n > N1. 
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4.2. Solutions of type 2. Suppose now (x, y) E Z2 is a non-trivial solution of 
type 2. 

Lemma 4.6. We have 

y a -3 14o) < Y1< y (- at), 

| Y4 < Y2 < Oi 

) ( ?t 2n~~~~4 ) < -73 <y(: 

y - + 1 
214 )< 4 < Y -0 + ) 

Proof. The same as the proof of Lemma 4.1. I 

We use the Siegel identity 

0 < 'Y3( 2 1) =1 3 

Yi (a2 -a3 ) "Yi (a3- a2) 

to obtain the following linear form in logarithms: 

A2 = A2 log((a) + B2 log(3) + log(A2) = log(1 + '2), 

where A2 = -2u2, B2 = -2u3, A2 = 
ce = i 2 (C=/C - 

We obtain the equivalent of Lemmas 4.2, 4.3, 4.4 and 4.5. 

Lemma 4.7. A2 #0. 

Lemma 4.8. We have 

u2 < 0 < U3, 0 < 1u21 < U3, and 0 < A2 < JB21. 

Lemma 4.9. We have 

log(A2) > -233 x 37 x log(24) log3(aj3) log(IB21). 

Lemma 4.10. For n > 4, we have 

log(A2) < -1.12IB2lo0g(ae). 

So K' .104 is an upper bound for IB2 1, and we can use the approach of type 1 
to reach a contradiction for n > N2 = 2.322 x 1018. Hence there is no non-trivial 
solution for n > N2. 

4.3. Solutions of type 3. Suppose that (x, y) C 22 is a non-trivial solution of 
type 3. 

Lemma 4.11. We have 

Y(- -a- 1 ) <-y1 <y ( -a), 

8 (1 +:- 21~2) < -Y2 <v(a+ 

n2 < '7Y3 < 0, 

P p o Lem2 < m < Y a 1 + 1 ) 

Proof. The same a.s the proof of Lemma 4.1. C 
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We use the Siegel identity 

o 
< 

Y2(a3 

Ol4) 

- 

a1 _ 

Y32 

- 
r4) 

4< (a3 -a2 ) 4 (a2 - a3) 

to obtain the following linear form in logarithms: 

A3= A3 log(al) + B3 log9() + log(A3) = log(1 + T3), 

where A3 = -2u3, B3 = 2u2, A3 = 3/c,+/i3 =-3 (I3-i/I3- 

As before, we obtain the following results. 

Lemma 4.12. A3 7 0. 

Lemma 4.13. We have 

0<u3 <U2 and 0< jA31 <B3. 

Lemma 4.14. We have 

log(A3) > -233 x 37 x log(24) log3 (a43) log(B3). 

Lemma 4.15. For n > 4, we have 

log(A3) < -0.25B3 log(). 

So K3 .102 is an upper bound for B3, and we can use the approach of type 1 to 
reach a contradiction for n > N3 = 1.168 x 1019. Hence there is no non-trivial 
solution for n > N3. 

4.4. Solutions of type 4. Suppose that (x, y) E Z2 is a non-trivial solution of 
type 4. 

Lemma 4.16. We have 

Y ? < -yl < Y ( a + ? 

( 

+ 0) < '_2 < + :+23 

-y - <-Y3 <Y ( + 12+ -Y 3 (- a - )<;3<Y - a +2n) 

0< -4 <Y12 

Proof. The same as the proof of Lemma 4.1. O 

We use the Siegel identity 

0 1< y(al4 -1 _ a34(c1 -al 3) 

Y3G(a4 - a,) 3@(al a4)) 
to obtain the following linear form in logarithms: 

A4= A4 log(a) + B4 log(3) + log(A4) log(1 + T4). 

where A4 = 2u2, B4 = 2U3, A4 - , T4 =- ( _/_ 

We obtain the following results. 

Lemma 4.17. A4 #A 0. 

Lemma 4.18. We have 

U3 <0<U2, 0<U2 < jU31, 0<A4 < jB41. 
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Lemma 4.19. We have 

log(A4) > -2 33 x 37 x log(24) log3(ac3) log(IB41). 

Lemma 4.20. For n > 4, we have 

log(A4) <1-01274B4 1 (a). 

So K4 114 is an upper bound for B4, we can use the approach of type 1 to reach 
a contradiction for n > N4 = 1.169 x 1019. Hence there is no non-trivial solution 
for n > N4. 

Now let us put N = max{Ni, N2, N3, N4}. 

Theorem 4.21. For n > N = 1.191 x 1019, with n, n + 2, n2 + 4 square-free, the 
equation 

n (X, Y) =X4 n2x3y-(n3 + 2n2 + 4n + 2)x2y2 - n2xy3 + y4=1, 

has only the trivial solutions (0,1), (0,-1), (1,0 ), (-1, ). 

5. PART II: SMALL VALUES OF n 

For small values of n, the previous method is not successful, so we use a method 
of Y. Bilu and G. Hanrot (see [2]). It is a computational method which allows us 
to determine a Baker's bound for the exponents bi = ui (see (3.2)), to reduce this 
bound, and then to solve completely the equation. We obtain the following result. 

Theorem 5.1. For n < 5 X 106, with n, n + 2, n2 + 4 square-free, the equation 

In (X, Y) =X4 -n2x3y-(n3+ 2n2 + 4n + 2)x2y2-n2xy3 +Y4 =1 

has only the trivial solutions (0, 1), (0,-1), (1,0 ), (-1, ). 

Here are a few remarks about the computation. In order to reduce Baker's bound, 
we determined the expressions Xi, ci, 6i, which allows to determine a Baker's bound 
for the exponents bi, to make the reduction, see [2], and we wrote a program in 
PARI/GP. We know that e < n + 1, Oa < (nr+ 1)2 and 3 < n + 2, so we put 
n2 = (n1 + 2)(Ib1l + 21b2l + jb3l + 1) + 50 as the computation's precision, where ni 
is the number of digits of n + 2. 

After almost 3 reductions, we obtain Bo < 4 and X3 = 1. The integral solutions 
(x,y) verifying IxI < X3, IYI < X3 are: (-1,0), (0,-1), (0,1), (1,0). In fact, we 
let b1, b2, b3 run between -Bo and Bo, and we observed the exponents associated 
with the integral solutions. Then we obtain: 

for types l and 2: b1 = b2= b3 = 0, x = 1, y = 0, so (1, 0) is a solution; 
for types 3 and 4: b1 =0, b2 = 1, b3 = 0, x = 0, y = -1, so (0,-1) is a solution. 
The property (b) of section 2 gave us the other solutions. The computations were 

done with a SUN PARC ULTRAI, and for each value of n, the time of computation 
is between 3 and 5 seconds. 
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