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A PARAMETRIC FAMILY OF QUINTIC THUE EQUATIONS 

ISTVAN GAAL AND GUNTER LETTL 

ABSTRACT. For an integral parameter t E Z we investigate the family of Thue 
equations 

F(x, y) = x5 + (t - 1)2x4y -(2t3 + 4t + 4)x3y2 

+ (t4 + t3 + 2t2 + 4t - 3)X2y3 + (t3 + t2 + 5t + 3)xy4 + y5 = +1, 

originating from Emma Lehmer's family of quintic fields, and show that for 

Itl > 3.28.1015 the only solutions are the trivial ones with x = 0 or y _ 0. Our 
arguments contain some new ideas in comparison with the standard methods 
for Thue families, which gives this family a special interest. 

1. INTRODUCTION 

For t Z z let us define the polynomial 

ft(x) =x5 + (t- 1)2x4 - (2t3 + 4t + 4)x3 

+ (t4 + t3 + 2t2 + 4t - 3)X2 + (t3 + t2 + 5t + 3)x + 1. 

This family of quintic polynomials was first considered by Emma Lehmer (cf. [6]). 
Note that instead of the original parameter n we use the parameter t = n + 1, 
which fits our arguments better (cf. [11, p. 548]). The corresponding parametric 
family of totally real cyclic quintic fields Kt = Q(QOt), z9t a root of ft, was also 
investigated by Schoof and Washington [11] and Darmon [2] for prime conductors 
mO = t4 + t3 + 6t2 + 6t + 11. 

In a recent paper Gaal and Pohst [3] showed that any four distinct roots of 
ft form a fundamental system of units in Kt for any conductor mo, constructed 
explicitly an integral basis of Kt for those mo that are square free apart from 5, 
and studied the problem of power integral bases. 

In the present paper we will investigate the corresponding family of quintic Thue 
equations 

(1) F(x, y) = x5 + (t - 1)2x4y - (2t3 + 4t + 4)X3y2 

+ (t4 + t3 + 2t2 + 4t-3)x2y3 + (t3 + t2 + 5t + 3)xy4+y5 1 

The first infinite parametric family of Thue equations was a cubic one, studied 
by Thomas [12]. He proved that if the parameter is large enough, the equation has 
only the trivial solutions. His ideas were extended to several other families of cubic 
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and quartic Thue equations in Thomas [13], Petho [9], Mignotte, Petho and Roth 
[8], Lettl and Petho [7], Petho and Tichy [10]; for a survey see [5]. Heuberger [4] 
was the first who obtained results on a quintic family. 

The above quoted papers usually apply some standard techniques for Thue equa- 
tions and Baker's method to derive an upper bound for the unknown exponents of 
the fundamental units (corresponding to a non-trivial solution) in terms of the 
parameter. If the rank of the unit group is small, a difference in the size of the 
logarithms of the fundamental units implies a difference in the order of magnitude 
of the exponents. This allows us to derive a lower bound for the largest exponent, 
contradicting the upper bound and thus proving the non-existence of non-trivial 
solutions if the parameter is large enough. 

Investigating equation (1), we have to handle a unit group of rank 4, and it 
turns out that the exponents have the same order of magnitude. So we had to 
design a new method to overcome this problem. Using asymptotic expansions of 
the expressions involved, we construct non-vanishing linear combinations of the 
exponents, which are small. These allow us to derive lower bounds for IyI and the 
largest exponent, and again one obtains the desired contradiction for sufficiently 
large parameters. This method can be applied for families of Thue equations with 
high unit rank, as long as the coefficients of the asymptotic expansions of the roots 
with respect to the parameter are rational. 

The main result of this paper is the following. 

Theorem. For Itl > 3.28 1015 the only integral solutions of equation (1) are the 
trivial ones, 

(X, y) = (?1,0 ), (0, 1). 

We remark that for the calculations involved in our estimates we extensively 
used Maple. 

2. ELEMENTARY ESTIMATES 

For t E 2, let Ol be a root of the polynomial ft(x) = F(x, 1). The field K = 

Q(oz) is a totally real cyclic field, the Galois group of which is generated by the 
automorphism 

(t + 1) + (t--1)c -_a 
I1?(t?1 )cZ 

We denote the roots of ft(x) by a 1,... , a5, such that a 1 is the smallest one and 
(p(Oli) = cli+i for i = 1, . . . , 5 (note that here and in the following the indices of the 
ai are to be taken mod(5)). According to [3], any four distinct roots of ft(x) form 
a system of fundamental units in K. 

FRom the asymptotic expansions of the roots we obtain that for Itl > 100 one 
has 

?E1 =t2 - 2 - t 1 oZ2 := t + I + 62 
t t t3 t4 , 

(2) 1 ~~~1 3 4 4+&3 1 1 1 +&4 (2) =-t3+t4 t5 t6 t t-t3- t4 
= 

1 1+65 
OZ5 = + - 
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with some 1&il < 0.1 (i = 1,... ,5). This can be checked by substituting these 
expressions with &i = ?0.1 into ft(x) and observing that ft(x) changes its sign 
between these two arguments. Let us remark that for t > 0 one can show that 
a1 < cr5 < cr3 < a2 < cr4, whereas for t < 0 one has oz, < c2 < c4 < cr3 < c5. 

If y = 0, (1) has only the trivial solutions (?1, 0). So let us assume for the 
following that It> ? 100 and that (x, y) E Z2 is a solution of (1) with YI > 1. Put 

/3i=X--ajy for j=1,...5, 

and define i to be that index with 1f3i = min,<j<5 13j . Then for m 7& i we obtain 

(3) |Olm - - < I ozm - di,ml Iv y 
where di,m is the arithmetic mean of ali and its neighbouring root between axi 
and acm. (This may be different for t > 0 and t < 0. Indeed, if e.g. i = 4 
and t > 0 then d4,m = (ac2 + ac4)/2 for all m 7& 4, whereas for t < 0 one has 

O&4,1 = 5Z4,2 = (ac2 + ac4)/2 and cZ4,3 = ce4,5 = (ac3 + ac4)/2.) Using (3), we deduce 
that 

x 1 1 1 1 
czi - < Hm?i '?m - Hm#i I'im -'i,m 

and by estimates (2) for the roots we obtain, for all i = 1, ... , 5, 

(4) ~~ ~~~~~x 8.06 
(4) iai- - < 

y Iy5 JtJ3 

Since Iti > 100, this implies jai - x/yl < 1/(2 JyJ2); thus x/y is a convergent arising 

from the continued fraction expansion of ai. Calculating the continued fraction 

expansion of the roots, we obtain for t > 5 

OZJ = (_t2 _ 3; 1, It - II [t/3], . . . 

at2 = (t;t,t - 1,...- ), 

OZ3 = (_I; 1,t3 +t2 + 4t +21... )I 

at4 = (t + 1;tjt - I... )I 

at5 = (-I;1t 1,2 _ t +41... )I 

and for t < -8 

OZJ = (_t2 - 2; ltl, [(Itl - 1)/3], . .. )I 

at2 = (t - 1; 1,ti - 1, ti + I... )I 

OZ3 = (0;-t3-t2 -4t-3,[)tl/2] - 1,...), 

l4 = (t; 1, tl - 1, tl +l,. 

a5 = (0; tl -1, 1,t2 + Itl + 4,... ), 

where [x] denotes the largest integer not exceeding x. To get the continued fraction 

expansion of the roots we had Maple calculate them for -20 < t < 20, from which 

we guessed the general shape of the partial quotients. For the proof of these expan- 

sions let us note that the partial quotients aj for all 0 < j < m of the continued 

fraction expansion of some real number Ol = [ao; a,, a2,...] are determined by the 

property that Ol lies between [ao; a,, ... , am] and [ao; al, ... , am + 1]. Calculating 

the above expressions with (an upper bound for) the last indicated partial quotient 
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am and (a lower bound for) am + 1, resp., one verifies that ft (x) changes its sign 
between these two values for all t which are to be considered. 

FRom the above continued fractions we can calculate all convergents of the roots 
with denominators less than t2 + 1 (in the case of oz, one also has to consider some 
possible small values for the next two partial quotients which are not indicated 
in the above expansions). Substituting the numerators and denominators of these 
convergents for x, y into (1), we do not get any solutions except the trivial one 
(0, ?1). For this reason we conclude that 

(5) IyI > t2. 

3. BAKER'S METHOD 

Let j, k be such that i, j, k are distinct indices among 1, . . ., 5. FRom Siegel's 
identity 

(czi - cj)/3k + (Ocj - ck)f3i + (Ozk -ci)f3j = 0 

and using (4), we obtain 

Oz?i - Oj Ok|_1 < |ai i .z A _ z k1 O= A 

O|i-'Ok /3j - -i Ozk /3j Ozi-'Ok f3j 

Ozk - |j y | < O|k -Ozj 8.06 lyIj51tlj3 
O| Oz-?k Oz 0j - y Ozi - Ok la -0t aOil -8.06 ltl-3 

In order to get appropriate estimates we choose (i,j,k) = (1,3,5), (2,5,3), (3,1,4), 
(4,1,3), (5,2,4) in the five cases that are to be considered, depending on the value 
of i. By (2) one obtains that for all t with Itl > 100 

- ck Oj 8.06 lylj51tlj3 8.1 

| -Ozk | oj- ozil - 8.06 ltlK3 IyI5 JtJ4 

Since for any real z > 0.2032 the inequality Ilog(z)I < 21 z - 1 holds, we finally 
conclude from these estimates that for each i E {1,.. ., 5} 

Ozi - Oj A3 c A- 3 16.2 
(6) Ai log p <2 1 | ai j .- < 

Ne-xt we are going to apply Baker's method to get a lower estimate for Ai. We 
take li, cr2 , cr3 , c4 as a system of fundamental units. Then there are U, . . ., U4 E Z 
such that for m = 1,.. ,5 we have 

(7) 3M = OZ'l a12 1- a U3 U~4 (7) 13m ?' m _ m+1 am+2 am+3 v 

and so 
(8) 

Ai = log + 
- aj + Uilog 

-'k- 
U21og 

Ck+l + U3 log + U4log 
k+3 

Cei- Ok %zi aj+j aj+2 aj+3 

To obtain good estimates for log Iam I and log Icam - a,, we derive from the series 
expansion of the logarithm the following auxiliar result: 

Lemma. Let a1,a2,a3,t (E R with ItI > 100, Ia11 < 1, Ia2) < 3, 1a3) < 5 and 
-3 < -aja3 + al2a2 < 8. Then 

log I , + 2 + t3 a, = + a2 -a/2 + a3-aja2 + a/3+ 

for some 6 JR with 161 < 0.1. 
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Proof. Putting c := aI/t +a2/t2 + a3/t3, the above conditions yield Icl < 1.0305/ltl, 
and by estimating the series expansion of the logarithm we obtain 

c2 c3 0.003 
0<c-- + - -log(I+c)< + C 3 . 

2 3 JJ 

Next one can show that the difference between c - c2/2 + C3/3 and the expression 
claimed in the lemma is at most 0.083/ tJ3. Combining these inequalities, we get 
the assertion. O 

Applying our lemma and using (2), we obtain the following estimates: 

t2 +t36 

logc102l = log Itl + 
I 

+ t7 t2 t3 

(9) log 31 = -3 log Itl - t - + t3 

109 141 109 I+t + 2t2 + 9 1 1- -23+& 

log1 5 - - log9 Itl + - + 10 
t t2 

where 16mI < 0.2, m = 6,... ,10, and similarly, 

logK-cl -21=2 log Itl + 
I 

+ 3 + 1/3 + 

log ul-a31=2logItl+j+ t1 +6 

logla-f1 2lgt+t 2 -/t3+13, 

(10) 1og lal - a3l = log 5tl + 2 + 
I 

' 

log kol2 - al4I1 = 616 

log1 l2 - a45 = log itl + 2 + 

t+ t2 + t3 

logcl 3- O51 = - log Itl - 12 + 61 

(10) 109 glo - al l= 109ltl + t+ -t3-1 /3 0 
109 Ja2 1 3 -5/3+616 ~~ ~~~3t 

where 6Eml (1093, mJ= 11,-. .. ,20. 
Now we apply the theorem of Baker and Wuistholz [1, p. 20] to the linear form 

of logarithms (8) with n = d = 5 and U = ma{ul, ., u41}. This yields 

t2 , ., _ A7. ,/ R R 0/k 4TT 
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Note that the terms of the linear forms are linearly independent over Q, since by 
our choice of the indices (i, j, k) the numbers (Oci - Ozj)/(Oci - Ok) are not units. 
Using (9) and (10), it is a routine matter to estimate the heights of the algebraic 
numbers involved, and we obtained 

h'l( h) =h'(?l) < 1.0005logItI and h'(i ) < 0.801logItl, 

and finally the lower bound 

(11) Ai > exp (-0.1707. 1025 (log It )5 log U) 

valid for each i. 

4. A LOWER BOUND FOR U 

Taking logarithms of the absolute values of (7) yields the system of equations 

(12) 
x 

log IyI + log czm - - = U1 log 109 m l + U2 10g Iam+1 | + U3 log I rn+21 + U4 log10 a+31 
y 

for m = 1,. . ., 5, m 7& i. The determinant of this system of linear equations in 
Ul, ... , U4 is, up to sign, just the regulator RK of the field K, and using (9) we get 

RK = 71 (log ltl)4 + 56(log +t)3 308(log tl)3 + 21(log tl)2 + 621 

(13) RK7(ot~4 +2 
= (71 + 622)(log ltl)4 

with 16211 < 115 and 16221 < 0.13. 
Note that by (4) and (5) we have 

x 623 
log aOm - - = log aYm - ai + 

y 1 

where 16231 < 8.06. By (2) we obtain for these expressions the same asymptotic 
expansions as in (10) for Iam - ail, again with some 16mI < 0.3 for m = 11, . . ., 20. 

For each case of i E {1,. . ., 5} we solve the system of linear equations (12) by 
using Cramer's rule and obtain 

(14) 

RK Uj = log IYI (dj (log 3tl)3 + dj2(109 ltl)2 3( t)2+ dj4 log Itl + dj5 
RKUJ = log~~~~~~(og tydi(l(lot)3 tl+ 

+ej( tl)4 + ej2(log +t)3 ej3(log tl)3 + ej4(log t1)0 + ej5 

t +t2 

for j = 1,. . ., 4, with rational coefficients djk, ejk E Q for 1 < k < 4 and bounds for 
dj5, iej5 It turns out that in all cases the uj's have the same order of magnitude. 
Therefore we look for integral linear combinations boRK + b1RKU1 + . + b4RKU4 
with bj E Z which are positive and small in such a way that the coefficients of the 
main terms log IyI(log It )3, log IyI(log It )2/t, (log It )4 and (log It )3/t vanish. This 
amounts to solving a system of linear Diophantine equations. Then since 

(15) 1 < v = bo + biul + + b4u4 E Z 
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and 

(16) 

RKV 109 d6 (109 It D + d7 109 Itl + ds)+ e6(1og9 tl)3 + e7(1og9 tj)' + e8 lyl t2 + .~~~~~~~~~~~t2 

we can use RK V > RK and (13) to derive a lower bound for log IyI of the form 

(17) log IyI > C1 t2(log ltl)2. 

Explicitly, in the five cases for i we arrived at the following values for the bj's in 
(15): 

i bo bi b2 b3 b4 

1 0 10 3 9 -27 

2 -22 -65 49 -51 -15 

3 1 -1 -21 10 -8 

4 6 -6 -5 18 -17 

5 1 -5 18 -17 10 

and for the coefficients of RK V in (16) and the constant c1 in (17) we obtained 

i d6 d7 I d8l < e6 e7 le81 < cl 

1 710 170 136 1349 269 1860 0.094 

2 2130 130 591 2769 363 4268 0.032 

3 355 180 52 71 0 498 0.178 

4 355 -10 114 284 3 989 0.196 

5 355 -10 114 -71 -1 670 0.197 

FRom d6, e6 > 0 in the cases 1 < i < 4 we immediately have RK v > 0; thus v > 1. 
For i = 5 we used log IyI > 2 log ItI from (5) to show the same. 

To improve the value of c1 in the cases i = 1, 2 we looked for other bj's giving 
a smaller coefficient d6 for RK v, but no longer requiring the term (log ltl)3/t to 
vanish, and found 

bo bi b2 b3 b4 cl 

0 -26 37 -11 -15 0.319 

2 -3 -17 10 -6 -5 0.197 

With the lower bound (17) for log IyI obtained in the first step we could show that 
again RK V > 0, and so we get the improved values for cl as indicated in the above 
table. 

From the lower bound (17) for log IyI it is clear that U = maxl<,?4 jUnI = jUj I 
for that uj having the largest coefficient djl (in absolute value) in its expansion 
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(14). Using this uj, (13) and (17),-we have 

(71 + 622)(10g itl)4U = RK jUjl 

> c1 2(l0g ltl)2 (djll(log ltl)3 _ _dj2l(10__tl)2_ 

Idj3i (log ttl)2 + dj41(log Itl) + Idj5I 
t2 

-ejI l(log Itl)4 _ ej2 I (log tl)3 _ Iej3 I (log ltl)3 + ej4 I (log ltl) + iej5i 

which gives a lower bound for U of the type 

(18) U > c2t2log tl 

with 0.1548 <-c2 < 0.285, depending on the different cases of i. 
On the other hand, the inequality 

(71 + 622)(10g itl)4U = RK iUjl 

< log I +dIdj1l I(log tl)3 + idj2 I (109 ltl) dj3 Ilog 
1 

tl)2 + Idj4i log Itl + Id5i 

+ eeji(log 0tI)4 + te23log It) ej3I(1og tl)3 + ej4i log Itl + iej5i 

iti +2 
yields 

(19) C3 Ulog itl < log IYI 
with 0.686 < C3 < 1.358. Combining (6) with (19), we conclude that 

Ai < exp(2.8 - 3.43 U log itl -4 log ltl) < exp(-3.43 U log tl). 

This upper bound together with the lower estimate (11) yields 

U <4.98. 1023(log ltl)4. 

Using (18), by the monotony of x/logx we get 

0.1548 t2 log Iti <4.98 1023 (log ltl)4. 
log (0. 1548 t2 log I t ) 

This inequality holds for Itl = 3.27. 1015 but fails for ItI = 3.28 1015, which implies 
that the existence of a non-trivial solution leads to a contradiction if 

itl > 3.28. 1015. 
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