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THE THIRD LARGEST PRIME DIVISOR 
OF AN ODD PERFECT NUMBER 

EXCEEDS ONE HUNDRED 

DOUGLAS E. IANNUCCI 

ABSTRACT. Let v(n) denote the sum of positive divisors of the natural number 
n. Such a number is said to be perfect if v(n) = 2n. It is well known that a 
number is even and perfect if and only if it has the form 2P-1 (2P - 1) where 
2P- 1 is prime. 

It is unknown whether or not odd perfect numbers exist, although many 
conditions necessary for their existence have been found. For example, Cohen 
and Hagis have shown that the largest prime divisor of an odd perfect number 
must exceed 106, and lannucci showed that the second largest must exceed 
104. In this paper, we prove that the third largest prime divisor of an odd 
perfect number must exceed 100. 

1. INTRODUCTION 

For the natural n, we denote the sum of its positive divisors by 

5(n) =E d. 
dln 

We define n to be perfect if v(n) = 2n. 
An even number is perfect if and only if it has the form 2P- (2P - 1), where 

2P- 1 is prime. 

Whether or not any odd perfect numbers exist is still unknown. Many condi- 
tions necessary for their existence have been found. We refer the reader to the 
introduction section of [5], where the author, in a brief history, mentions some of 
these results. 

Let us consider the possible class of theorems for the existence of odd perfect 
numbers, given by 

P(K, M). An odd perfect number is divisible by K distinct primes, each of which 
exceed M. 

The best result to date for the case K = 1 was obtained by Cohen and Hagis 
[2]; namely, P(1, 106). For K = 2, we have the result of the author [5], 7P(2, 104). 
We combine these results and state 
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Lemma 1. The largest prime divisor P of an odd perfect exceeds 106. The second 
largest prime divisor S of an odd perfect number exceeds 104. 

The purpose of this paper is to obtain a theorem of the form P(3, M). In 
particular, we shall prove P(3, 102), and we state this result as 

Theorem 1. If T is the third largest prime divisor of an odd perfect number, then 
T> 102. 

For an integer k > 3, we say that a natural number n is multiply perfect with 
index k (or, simply, k-perfect) if v(n) = kn. Hagis [41 showed for all k > 3 that 
the third largest prime divisor of an odd k-perfect number exceeds 102. Theorem 1 
is the analogous statement of this result for the case when k = 2. While there are 
some similarities between Hagis's proof and that of Theorem 1, the latter proof is 
rendered far more complicated by the smaller index of k = 2. 

Computation plays a huge role in the proof of Theorem 1. All computations and 
computer searches for this paper were conducted on an IBM-486 personal computer 
using a UBASIC software package. Verification of all primes was carried out using 
the APR primality test, due to Adleman, Pomerance and Rumely [1]. 

2. SOME PRELIMINARIES 

Throughout this paper, nonnegative integers are denoted by a, b, c, d, a),3, y, as 
well as by h, i, j, k, 1, m, n, and H, I, J, K, L, M, N. Primes, which are odd unless 
noted otherwise, are denoted by 7r, p, q, r, s, t, u, v, and P, Q, R, S, T. 

We say pklIm if pk m but pk+1 t m, and we say vp(m) = k if pk Jm. If p t a, we 
denote by op(a) the exponent to which a belongs, modulo p. 

Recalling (m (a) (i.e., the cyclotomic polynomial of order m evaluated at a), we 
have 

( 1 ) bTh~1~yn _ I (Dd(b) 
dln 

and 

(2) 07(P') (D d (P) 
dja+1 
d>1 

If N is an odd perfect number with unique prime factorization given by HE= 1 

we have 

k 

(3) 2N = H I (?d(Pi)- 
i=l dlai+1 

d>1 

We conclude this section by giving several results which will be applied frequently 
throughout this paper. We refer the reader to the preliminaries section of [5], where 
we gave these same results along with their references (or with brief proofs). 

Lemma 2. For primes p and q, q I4(D,(p) if and only if m = hq7, where h = oq(p) 
and y > 0. If y > 0, then qII(,(p). 
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An immediate consequence of (2) and Lemma 2 is 

(Vq(4?h(P)) + vq(a + 1), if hla + 1, h > 1, 
(4) vq (u7(pa)) vq (a + 1), if h = 1, 

10, otherwise. 

Lemma 3. If q I 4Ta (p) and r I lb (p)), where a 7& b, q = 1 (mod a), and r 1 (mod b), 
then q 7& r. 

Lemma 4. If m > 3, then 4,m(P) has a prime divisor q with the property q- 1 
(mod m). 

Lemma 5. An odd perfect number must have unique prime factorization given by 
4m+1 2al 2a2 2ak 

ir Pi p2 ... Pk 

where 7r -1 (mod 4). 

We will refer to ir as the special prime. Recalling the function v(-1(n) = 7(n)/n, 
we see that n is perfect if and only if a-1 (n) = 2. The function v_u1 is multiplicative, 
and 

p 
(5) j-_1(pa) < c_1(pb) < if a <b 

(6) c-l(q b) < _1(pa), for all a > O and b > O, if p < q. 

3. ACCEPTABLE AND ADMISSIBLE POSITIVE INTEGERS 

The proof of Theorem 1 will be given in Sections 4, 5 and 6. In order to make the 
proof more tractable, it is necessary to provide two definitions. First, we consider 
the set of primes given by 

X 3, 5, 7, 11, 13, 19, 31, 61, 97}. 

Next, we give 

Definition 1. For p E X and q < 100, let h = op(q). We say that the positive 
integer k is (p, q)-acceptable if each of the following is true: 

1. k+1=hp7, where y>0. 
2. 4 t h, and 2 t h if q _ 3 (mod4). 
3. j(qk) has no prime factor between 102 and 104. 

4. a(qk) has at most one prime factor between 104 and 106. 
5. a(qk) has at most two prime factors greater than 104. 

Let j3 be the smallest positive integer such that hpO > 50. It follows by Lemmata 
4 and 3, equation (2), and conditions 3, 4, and 5 of Definition 1 that k is not (p, q)- 
acceptable if k + 1 = hpy and 7y > 3 + 2. Thus the set of (p, q)-acceptable integers 
is finite. 

TABLE 1. The values AP, BP, CP and A(p) for p E X 

p AP Bp Cp A(p) p Ap Bp Cp A(p) p Ap Bp Cp A(p) 
3 6 3 2 11 11 3 0 2 5 31 2 1 1 4 
5 0 1 1 2 13 3 0 1 4 61 2 0 0 2 
7 7 1 2 10 19 2 1 2 5 97 1 0 0 1 
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A computer search was conducted and a list of all (p, q)-acceptable values was 
compiled. Then, for each fixed p E X, four integers, each depending on p, were 
determined as follows: 

1. AP denotes the sum E vp(j(qk)), taken over all k and q such that k is even 
and (p, q)-acceptable, and such that r < 100 if rlu(qk). 

2. Bp denotes the maximum value of vp(u(qk)), taken over all k and q such that 
k is odd and (p, q)-acceptable. 

3. Cp denotes the maximum value of all sums of the form Evp(of(qk)), where 
each sum is taken over k and q such that k is even and (p, q)-acceptable, 
and such that j(qk) is divisible by a prime exceeding 104, but neither three 
distinct primes exceeding 104 nor two distinct primes between 104 and 106 
appear among the prime divisors of all values (J(qk) involved in the sum. 

4. A(p) denotes the sum Ap + Bp + Cp. 
The values AP, BP, CP and A(p) for all p E X are given in Table 1. 

Definition 2. If p < 100 or if p > 104, we say that the positive integer d is 
p-admissible if each of the following is true: 

1. d is odd unless p = 1 (mod 4), in which case 4 t d. 
2. i4d(p) has no prime factor between 102 and 104. 
3. i4d(p) has at most one prime factor between 104 and 106. 
4. i4d(p) has at most two prime factors greater than 104. 
5. If 104 < p < 106, then i4d(p) has no prime factors between 104 and 106, and 

at most one prime factor greater than 106. 
6. If p > 106, then i4d(p) has at most one prime factor greater than 104. 

4. RESTRICTIONS ON vp(N) FOR p E X 

We may now begin the proof of Theorem 1, which is given by redutctio ad absur- 
dum. Without further explicit mention, we will assume that N is an odd perfect 
number, all of whose distinct prime divisors, save two, are less than 100. Let P 
and S denote the largest and second largest prime divisors of N, respectively, and 
let a vp(N), j3 = vs(N). Then 

(7) N =LS13P, 

where p < 100 if pIL. By Lemma 1 we have S > 104 and P > 106. Since N is 
perfect, we have 

(8) 2N = a(L)a(SO)a(PF). 

Under these assumptions, we can find restrictions for the values vp(N) for p E X. 
The remainder of this section is devoted to this end. 

Suppose paflN and dja + 1, d > 1. By (3), (7) and Lemma 1, it follows that 
conditions 2, 3, and 4 of Definition 2 must be satisfied by d (as must conditions 5 
and 6 if p > 104). Furthermore, by Lemma 5, condition 1 of Definition 2 is also 
satisfied. We have proved 

Lemma 6. If d is not p-admissible, then d t vp(N) + 1. 

We now establish an upper bound on vp(u(L)) for p E X. 

Lemma 7. For p E X we have vp(cr(L)) < A(p), with A(p) given in Table 1. 
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Proof. Suppose qaflL and plo7(qa). Let h = op(q). Then h a + 1 by (4), so we may 
write a + 1 = bhp7, where p t b and a > 0. Thus by (4) we have vp(o7(qa)) = 
vp(u( qk)), where k + 1 = hp7. Since k + l la + 1, k satisfies condition 2 of Definition 
1 by Lemma 5. Conditions 3, 4, and 5 are also satisfied by k, since 7(qk)jIa(qa) and 
j(qa)12N. Hence k is (p, q)-acceptable. 

Thus, if L has unique prime factorization Hl> qi, and if p j(q i), there exists 
a (p, qi)-acceptable value ki such that vp(of(q i )) vp(or(q ki)). We may write 

C 

Vp ( (l) ) =EVp (o (qi ))=EVp(o (qki ) ) 

i=l1 

where the right-most sum is taken over all qi such that pjc(qa )). At most one of 
the ki can be odd, by Lemma 5. Also, if one lists the prime divisors of all the values 
j(qki) in the sum, there can appear no more than two distinct primes exceeding 
i04, nor more than one prime between 104 and 106. Recalling how Ap, Bp, Cp and 
A(p) are defined in Section 3, the result follows. 

- 

We now state and prove 

Lemma 8. Suppose forp E X and d > A(p)+1, thatuV I d(p), where 104 < U < V. 

Constder the following three statements: 
1. 41op(Q), or 21op(Q) and Q _ 3 (mod4). 
2. Either r is not Q-admissible for some rlop(Q), or Q 1 (modp) and p is not 

Q-admissible. 
3. There exists t > 104, t :i u, t 74 v, such that either tljir(Q) for some rlop(Q), 

or tI-4p(Q) and Q 1 (modp). 

If, for both cases Q = u and Q = v, any of these three statements is true, then 
d t vp(N) + 1. 

Proof. Suppose, for some p E X, that dlvp(N) + 1, d > A(p) + 1, and zV|4ld(p), 
where 104 < u < v. Then u = S and v = P, by (3) and (7). Thus, by Lemma 7 and 
equation (8), p divides either a(SO) or u(PF). Suppose pja(SO). Then statement 
1, as above with Q = S, is false by (4) and Lemma 5. Statements 2 and 3, with 
Q = S, are false by (4), (3), Definition 2, and (7). Similarly, if pl (PC), then 
statements 1, 2, and 3 are false when Q = P. 0 

We now wish to show that d t vp (N) + 1 for certain cases where I?d(p) is divisible 
by exactly one prime exceeding 104. Consider the set of 24 ordered pairs given by 

Y = {(3,13), (3, 23), (5, 7), (5, 11), (5, 13), (5, 47), (7, 13), (11, 7), 

(11,9), (11, 17), (11, 19), (13, 5), (13,7), (13,9), (19,19), (31,5), 

(31, 7), (31,17), (61, 7)(61, 9), (61, 23), (97, 5), (97,11), (97, 17)}. 

Computation shows that each ordered pair is of the form (p, d) for some p E X such 
that i4d(p) = JQ, where JIL and Q > 104 (recall L from (7)). Computation also 
shows that four important properties are shared by all (p, d) c Y: 

1. Property A: For r < 100, r : p, one of the following hold: 
(a) 4 oQ(r) or 2 oQ(r) and r 3 (mod4), 
(b) qt IoQ (r), qt < oQ (r), t = 31, 37, or t > 43, 
(c) t is not r-admissible for some tIoQ(r). 

2. Property B: Either 2 is not Q-admissible or (p, d) is either (13, 9) or (31, 17). 
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3. Property C: Either 3 is not Q-admissible or (p, d) is one of (3, 23), (5, 7), 
(13,9), (31,17) or (97,11). 

Before stating Property D, we need the following result, which appears as Lemma 
2 in [3]: 

Lemma 9. Suppose (D,(p) = Kqb, where b > 1 and q # K. Let h op(q) and H 
op(K). Define c to be the least nonnegative solution to the congruence Kh _ 1 px 
(modp2) . Then Pll Dhh(q) if H 74 c. 

A special case of Lemma 9 appears as Lemma 3 in [7]: 

Lemma 10. If (D,(p) = qb for some b > 1, and h = op(q), then P||@h(q). 

Then we have 

4. Property D: For all r such that 5 < r < 100, one of the following is true: 
(a) 2 or 3 divides or(Q). 
(b) There exists t which is not Q-admissible and is such that either t o,(Q) 

or Q _ 1 (mod r) and r is not Q-admissible. 
(c) There exists tjo,(Q) such that 4?t(Q) = KM (or Q - 1 (modr) and 

b(DQ) = KM), where q < 100 if qIK, M > 1, q > 104 if q M, and 
writing H = oQ(K), we have H -7 c if KH _ 1 = cQ (mod Q2). 

We are now ready to state and prove 

Lemma 11. If (p, d) E Y, then d t vp(N) + 1. 

Proof. We use reductio ad absurdum. For, suppose divp(N) + 1 for some (p, d) E Y. 
By our previous remarks, (d(P) = JQ, where JIL and Q > 104; furthermore, (p, d) 
has Properties A, B, C and D. Thus QIN by (3); either Q = S or Q = P (in fact 
Q =S if Q < 106). 

We first consider Property A. Let r < 100, r :4 p, and suppose rb IN. If 410r(Q) 
or if 21or(Q) and r _ 3 (mod 4), then Q t a(r b) by (4) and Lemma 5. If qtIoQ(r), 
qt < oQ(r), and t = 31,37, or t > 43, then by (4), (3), and Lemmata (3) and (4), 
the assumption that Qlc(rb) implies N is divisible by two distinct primes, each 
exceeding 100, and, by Lemma 2, different from Q; this is impossible. Finally, if 
t is not r-admissible for some tloQ(r), then Q t u(rb) by (4) and Lemma 6. We 
conclude from Property A that Q t u(r b) if rb IN. Furthermore, Q t vp(N) + 1 by 
(3) and Lemmata 3 and 4. Thus by (4) we have Qllu(L). 

We next consider Property B. If 2 is not Q-admissible, then Q 7& 7w by Lemmata 
6 and 5. If we have (p,d) = (13,9), then Q = 1609669. Since 1609671 D2(Q), 
then Q = 7r would imply P = Q and S = 160967, and hence S _ 1 (mod 13) 
while 013(P) = 3. Thus by Lemma 7 and 8 we have 13 4l(SO)a(po). However, 
if 1321u(S'), then by (4), (3), and Lemmata 3 and 4, we have QPrI2N for some 
r _ 1 (mod 132), which is impossible. Thus 13c3lc(P'). As P3-1 = 143 (mod 132), 

we have 13 i D3(P) by (1), and thus it follows similarly that 13 3 t a(PC). Finally, 
if we have (p,d) = (31,17), then, as above, if Q = r, then P- 1 (mod31) and 
031(S) = 5. By Lemma 7 and (8), either 316 l(pF) or 316 lc(SO). Again, it is 
impossible to have 3161Iu(pF); thus 316 lc(SO). But S5 - 1 _ 930 (mod 312); hence 
by (1) 311I5(S). Thus by (4) 3141,3 + 1; again, this is impossible. We conclude 
from Property B that Q 7& 7r, and hence vQ(N) > 1. 

We now consider Property C. By Lemma 6, 3 t VQ (N) + 1 if 3 is not Q-admissible. 
Otherwise, suppose dlvp(N) + 1, where (p,d) is (3,23), (5,7), (13,9), (31,17) or 
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(97,11). As previously noted, (d(P) = JQ, where JjL and Q > 104. Computation 
then shows that i3(Q) = IR, where I L and R > Q. Hence if 3lvQ(N) + 1, 
then P = R and S = Q. In the case where (p,d) = (3,23), we have 36 a(SO) 

or 36 la(P') by Lemma 7 and (8). As o3(S) 2 and S 7r, we have 3 t a(jS') 
by (4) and Lemma 5. But P _ 1 (mod 3), and hence 36 r u(P') by (4), (3) and 
Lemmata 3 and 4. In the case where (p,d) = (5,7), we have 51a(SO)a(PF) by 
Lemma 7 and (8). But S F_ 1 (mod 5), where 5 is neither S-admissible nor 
P-admissible. Similarly, if (p,d) = (13,9), then 13ja(S')a(Pc), but 013(P) = 4 
(where 4 is not P-admissible), and 013(S) = 6 (by (4) and (3), 13lcr(S') would 
imply iD2(S)iD3(S)iD6(S)j2N, clearly a contradiction as the product involves three 
primes exceeding 104). If (p,d) = (31,17), then 3161c7(SO) or 316 U(Pc). But 
031(P) = 30, where 2 is not P-admissible, and S 1 (mod 31), implying by (4), (3) 
and Lemmata 3 and 4 that 316 t cr(S'O). Finally, in the case where (p, d) = (97, 11), 
we have 971 (SO)a(Pc) but 097(S) = 16 and 097(P) = 32. Thus we may conclude 
from Property C that 3 t vQ(N) + 1. Since also 2 t vQ(N) + 1, it follows from (8) 
that Q217(P) if Q = S, or Q2 ja(SO) if Q = P. 

Finally, we consider Property D. Write y = vQ (N) and let r < 100. If 2 or 
3 divides or(Q), then r t u(QY) by (4) and Properties B and C. Otherwise, we 
have two possibilities. The first is that t is not Q-admissible for some tjo,(Q) (or 
Q 1_ (modr) and r is not Q-admissible). In this case, r t u(QY) by (4) and 
Lemma 6. The second possibility is that either (it(Q) = KM for some tIor(Q), or 
Q -1 (modr) and Dr(Q) = KM, where K IL and q > 104 if qlM; furthermore, if 
H -oQ (K), we have H : c if KH_1 cQ (mod Q2). Now, if t is not Q-admissible 
(or if r is not Q-admissible in the case when Q _ 1 (mod r)), then, as above, we 
have r t c(QY). Otherwise, 1t(Q) = KRb for some tjor(Q) (or, in the case when 
Q 1 (modr), iDr(Q) = KRb), where b > 1 and R > 104. Suppose, then, that 
rjr(QY). By (4) and (3), we have S = Q and P = R if Q < R, or we have S R 
and P Q if Q > R. Without loss of generality we may assume S = Q and P R. 
Let h o ?(P). Then Lemma 9 implies S(Dh(P). Then S t vp(N) + 1 if S 7(FPC) 

by (4), (3), and Lemmata 3 and 4. Thus vs(u(Pc)) < 1 by (4); this contradicts 
the conclusion at the end of the preceeding paragraph of this proof; namely, that 

S2Ia(Ppa). We conclude that r r a(QY) for all r < 100 if y = vQ(N). 
Without loss of generality, let S = Q. Then, as r t u(S'3) for all rIL, we have 

57(S) = pb for some b > 1. By Lemma 10 we have S lbh(P) if h = os(P). 
The same argument as in the preceeding paragraph tells us that S t a + 1 and 
vs(j(PcY)) < 1, which contradicts the fact, previously deduced from our hypothesis, 
that S2 la(P?). This contradiction completes the proof of Lemma 11. 

- 

In order to complete this section, we need one more auxiliary result; namely, 

Lemma 12. If 51N and 5 = wr, then 5H1N. Thus if v5(N) is odd, then v5(N) = 1. 

Proof. Again, we use reductio ad absurdum. For, suppose 5 = wr and that a > 1, 
a = v5 (N). If a = 5, then by (3) we have 5 .D2 (5) (>3 (5) (>6 (5)12N; this contradicts 
the well-known fact that no odd perfect number can be divisible by 3 .5 .7. As 10 
is not 5-admissible, we have a 7& 9 by Lemma 6. Thus a > 13. By Lemma 7 and 
(8) we have either 56 u(SO) or 56ua(pa). If 56ua(S), then 3 + 1 is odd, as S 7& 7w. 
Hence by (4) o5(S) is odd; therefore S _ 1 (mod 5) and so 561p3 + 1. But this is 
impossible by (3) and Lemmata (3) and (4), and the same argument precludes the 
possibility that 56 a(P). D] 
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The reader may now note that Lemma 6 gives us by computation the following 
67 ordered pairs (p, d) for which p E X and d t vp (N) + 1: (3, 7), (3, 9), (3, 1 1), 
(3,15), (3,17), (3,19), (3,25), (3,31), (3,43), (3,47), (3,53), (3,67), (5,9), (5,10), 

(5,15), (5,17), (5,19), (5,23), (5,25), (5,31), (5,37), (7,5), (7,7), (7,9), (7,11), 
(7,19), (7,23), (7,31), (7,37), (11,5), (11,13), (11,23), (11,29), (11,31), (11,41), 
(13,6), (13,11), (13,17), (13,23), (13,29), (19,3), (19,5), (19,7), (19,13), (19,23), 
(19,29), (19,41), (31,3), (31,11), (31,13), (31,19), (31,23), (31,29), (61,5), (61,6), 
(61,11), (61,17), (61,19), (61,29), (61,41), (97,3), (97,6), (97,7), (97,19), (97,23), 
(97,29), (97,41). 

Similarly, Lemma 8 gives the following 20 ordered pairs (p, d) where p E X 
and d t vp(N) + 1: (3,29), (3,37) (3,41), (3,59), (3,61), (5,29), (5,41), (5,43), 
(7,17), (7,29), (7,41), (11,11), (13,13), (13,19), (13,41), (19,11), (19,17), (31,41), 
(61,13), (97,13). 

Combining these remarks with the statements of Lemmata 11 and 12, we sum- 
marize the results of this section by stating 

Lemma 13. If p E X and pIN, let the notation (p jil,... , k, [1]) mean that 
vp(N) = jl,---, jk or vp(N) > 1. Then we have (3: 2,4,[70]), (5: 1,2,4, [52]), 
(7: 2, [42]), (11: 2, [36]), (13: 1,2, [30]), (19: [30]), (31: [30]), (61: 1,2, [30]), and 
(97: 1, [30]). 

Furthermore, if p E X, paflN, and a > 4, then there exists rla + 1 such that 
q > 100 if q 1_ (mod r). 

5. IMPROVED LOWER BOUNDS ON S AND P 

By applying Lemma 13, we can dramatically increase the lower bounds given in 
Lemma 1 for S and P. Indeed, in this section we show that P > S > 232. 

Montgomery [6] gives all solutions to aq-1 1 (mod q2) with 2 < a < 99 and 
q < 232. As a direct consequence of Montgomery's result, and by computation, we 
have 

Lemma 14. If p E X, <04 K q < 232, and pq-1 1 (modq2), then oq(p) is 
composite. 

For each p E X, we may define cp and dp as follows: 

p: 3 5 7 11 13 19 31 61 97 
cp: 70 52 42 36 30 30 30 30 30 
dp: 21 14 12 10 9 9 7 6 5 

We next state the following results which is verified by computation. 

Lemma 15. For all p E X, consider the congruences 

Xp = 1 (mod pdP) and xP-1 -= (1 p+ p + . + pdp-l)P-1 (mod pdp) 

For any prime solution q to either of these two congruences for any p E X, we have 
q > 232 

Now we may state and prove 

Lemma 16. If p E X and vp(N) > 4, then P > S > 232. 

Proof. Suppose p E X and vp(N) > 4. Then pCp IN by Lemma 13. Thus by Lemma 
7 and (8) either vp(o-(SO)) or vp(o-(P')) is no less than the least integer which is 
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greater than or equal to (cp - A(p))/2. If pla(S'3), then p4 t 3 + 1 by (3) and 
Lemmata 3 and 4. Similarly, p4 t a + 1 if pIo-(Pa). As 

dp < F(cp - A(p))/21 - 3) 

it follows from (4) that either pdpkl?h(S) or pdpkl?h,(P), where h = op(S) and 
h' = op(P) (recall the ceiling function, Fxl = the least integer not less than x). 

If pdppI (S), then Sh =1 (modpdP) by (1). Since hlp - 1, we have SP-` 1 

(modp P), and so S > 232 by Lemma 15; a fortiori P > S > 232. 
Otherwise, pdPII?h,(P); again, this implies pP-1 (modpdP). By Lemma 13, 

there exists rjvp(N) + 1 such that q > 100 if q -1 (modr). Thus p # 1 (modr). 
Thus by Lemma 2, for all qjI(,(p), we have r = oq(p), implying q -1 (nodr), or 
q > 100. Thus by (3) and (7) we have 

(pr(p) = 1 + p +... + pr-I = Sbpa 

where 0 < a < a) 0 < b < /3. Then b > 0, as otherwise, by Lemma 10, plj(hh(P), 
which is false. 

Suppose b > 1. Then r = os(p) by Lemma 2. Hence, as S2 I r(p), we have 
pS` 1 (mod S2). Thus S> 232 by Lemma 14, for os(p) is prime. 

Otherwise, b = 1. We may assume a > 0, as otherwise S = (Pr(P) > pr-1 > 
330 > 232 (recall that r > 31 by Lemma 13). Then 

1+ p+ ...+ pr spa 

Since PP-1 _ (modpdP) and dp < r (recall that r > 31, above), this gives us 

SP- = (1 +p? ?pdP1)P1 (modpdP), 

implying S > 232 by Lemma 15. C 

We are now ready to prove 

Lemma 17. P > S > 232. 

Proof. Either 7, 3 or 5 divides N, for otherwise, by (5) and (6), we have 

o-1(N) ?10007 1000003 jI p1<2 
10006 1000002 p- 

ll<p?97 

Suppose 71N. By Lemma 13, either v7(N) > 4, in which case S > 232 by Lemma 
16, or 72flN. In the latter case, as 19I03(7), we have 191N by (3), whence S > 232 

by Lemmata 13 and 16. 
Suppose 31N. If v3(N) > 4, then S > 232 by Lemma 16. Otherwise v3(N) = 2 

or 4. 
If 3211N, then 131IN as 130I3(3). Again, S > 232 if v13(N) > 4; otherwise 

v13(N) = 1 or 2. If 1311N, then 7IN (as 7I(P2(13)); hence, as we have seen, S > 232. 
If 132flN, then 611N. Again, if v61(N) > 4, then S > 232; otherwise v61(N) = 1 
or 2. The former case gives us 31IN (as 31I(P2(61)), whence S > 232 by Lemmata 
13 and 16. If 612 flN, then 97IN (as 97j(P3(61)); again, this implies S > 232, as 
v97(N) > 4 or 9711N, where 71(P2(97). 

If 34flN, then 11IN, as II1h15(3). If vil(N) > 4, then S > 232; otherwise 112 lN. 
As 713(11), this implies 71N, and hence S > 232. 

Suppose 51N. If 51lN, then 31N, and so S > 232. If v5(N) > 4, then S > 232 by 
Lemma 16. If 52 lN, then 31IN (as 31 = (3(5)), but v31(N) > 4 and so S > 232. 
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Otherwise 54flN; thus IIIN (as 111(5(5)). As above, either viI(N) > 4 or 112JN; 
as we have already seen, either case implies S > 2 D 

We may now restrict vp(N) for all p < 100 (besides the elements of X). Thanks 
to the new bound on S and P, we have the following immediate result: 

Lemma 18. For the given primes p, along the given values d, we have d t vp(N)+1. 

p d p d p d 
17 3, 4, 5, 7 43 2, 3, 5, 7 71 2, 3, 5 
23 2, 5, 7 47 2, 5, 7 73 3, 4, 5 
29 5, 7 53 3, 4, 5, 7 79 2, 5 
37 4, 5, 7 59 2, 3, 5 83 2, 3, 5 
41 3, 4, 5, 7 67 2, 5 89 3, 5 

Lemma 18 follows as a corollary to Lemma 17, since computation shows that 
either d is not p-admissible or 1?d(P) is divisible by a prime q such that 104 < q < 232. 

Since S > 232, it follows that d t vp(N) + 1. 
We conclude this section with a few more auxiliary results. The proof of Theorem 

1 will be completed in Section 6. 

Lemma 19. 6t v37(N) + 1. 

Proof. Suppose otherwise. Then by (3) we have 

37. (D2(37)43(37)(D6(37)I2N, 
or, equivalently 

3 .7 19 31 37 43 671N. 

If 34N we have, by (5), 

o-i(N) > o-1(3. 7 .19 .31 37 .43 .67) > 2, 

a contradiction (recall that 72IN, since 7 7r w). Otherwise 32lIN, and hence (13(3) = 

13IN, giving 

o--,(N) > o--1(3 2 7 2. 13 .19 .31 .37 .43 .67) > 2. Cl 

Lemma 20. If v3 (N) > 4 or v5 (N) > 4, then S or P is the special prime. 

Proof. If v3(N) > 4, then v3(N) > 70 by Lemma 13. Thus, by Lemma 7 and (8), 
3301r(SO) or 330c-(Pa). If 3301cu(S,), then 35 t3+ 1 by (3) and Lemmata 3 and 4. 
Thus, by (4), 326I h(S) (where h denotes 03(S)), and h > 1. This implies h = 2 
and therefore, by Lemma 5, S = wr. Similarly, P = qr if 330 lo(Pa). The exact same 
argument shows that if v5(N) > 4, then S or P is the special prime. D 

Lemma 21. Neither 29 nor 89 is the special prime. 

Proof. Suppose 29 = wr. As 3. 5l(D2(29), we have 3. 51N. Then v3(N) = 2 or 4 by 
Lemma 20; similarly v5(N) = 2 or 4. 

If 34 lN, then (D5(3) = 112IN; thus by (5), u-I(N) > o -1(34 52 . 112) > 2. 
Similarly, (D5(5) = 11 .71; hence if 54 flN, then o-1 (N) > o-1(32 54 222 .71) > 2. 

Thus v3(N) = v5(N) = 2. As (D3(3) = 13 and (D3(5) = 31, we have u1_I(N) > 
o1 (32 52 .132 312) > 2. This contradiction shows that 29 :& wr. The exact same 
argument shows that 89 :& wr. D 
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6. A COMPUTER SEARCH 

We are now ready to complete the proof of Theorem 1. We begin by summarizing 
the results of Lemmata 13, 18, 19 and 21 as follows: 

Lemma 22. If p < 100 and pjN, let the notation (p jl, j2, ,jk, [1]) mean that 
vp(N) = jl,..., jk or vp(N) > 1. Then we have (3: 2,4,[70]), (5 : 1,2,4[52]), 
(7: 2,[42]), (11 2,[36]), (13 1,2,[30]), (17 : 1,[10]), (19: [30]), (23 2,:[8]), 
(29 : 2,[8]), (31 : [30]), (37: 1,2,[8]), (41 : 1,[10]), (43 : [10]), (47: 2, [8]), 
(53 : 1, [10]), (59 : [6]), (61 : 1,2, [30]), (67 : 2, [6]), (71 : [6]), (73 1, [6]), 
(79: 2, [6]), (83 : [6]), (89 : [6]), and (97 : 1, [30]). Furthermore, if pal'N and 
a> 4then pa > 235 

For each p < 100, let ap = vp(N) and let 

L(p) 
l 

{ log _I(paP), if 0 < ap < 4, 
log(p/(p - 1)), if ap > 4. 

Thus, as a consequence of (5), 

(9) log o-_ I (paP) < L (p). 

We now state 

Lemma 23. N must satisfy the inequality 

S L(p)-log2 <231. 
p<100 

Proof. FRom (8) we have log 1-- (L) + log i-- (SO) + log i-- (P) = log 2; that is 

(10) E log c_ 1 (paP) = log 2 - log ui- 1 (SO) - log ou_ I (Pa). 
p<100 

Since by Lemma 17 P > S > 232, we have by (5) and (6) 

0-_ I(p,) (SO) 232 + 1 3 
(11) 2-3(P2)<o-i(S)< =1 +2 32 

Applying the inequality log(1 + x) < x for x > 0 to (11) gives log_ u1(SO) + 
log o-1(PPc) < 2-31, and hence, from (10), 

log2 - 231< E log o_ (paP). 

p<100 

Thus the left-hand inequality of the statement of the lemma follows from (9). 
To prove the right-hand inequality, note that as a consequence of (10) 

(12) E log _1(paP) < log 2. 
p<100 
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Let R(p) = L(p) - log j_I(pap). Then R(p) = 0 if ap < 4. Otherwise by Lemma 22 
pap < 235, in which case 

__ pap+ll 
R(p) = log - - log a p1I pap (p -1 

= log (I + papI+ - 1) 

1 1 

pap+l - 1 236 

so that R(p) < 1/(236). Hence 

/ R(p) <24 <-31 
(13) R(p) < 2 < 2 

236 
p< 100 

Thus, by (12) and (13), 

S L(p) = 5 log-_ I(paP) + 5 R(p) 
p< 100 p< 100 p< 100 

< log2 + 23, 

and so the lemma is proved. C 

At this stage, it was desired to conduct a computer search for all odd positive 
integers which satisfy Lemmata 22 and 23. To make the search more manageable, 
more restrictions were sought. For example, it is well known that if N is an odd 
perfect number then 3.5.7 t N. In fact, our hypotheses on N, along with elementary 
arguments, enable us to deduce the following additional restrictions: 3 .5 511 t N, 
if 511N, then 32ljN; if 34 lN, then 5 t N; if 32 JN, then v5(N) f {2, 4}; and if 72flN, 
then 32 JN or v3(N) > 4. 

These additional restrictions were incorporated in the computer search, making 
it more feasible. It was conducted on an IBM-486PC, using a UBASIC software 
package, as were all computations for this paper. The search was conducted for all 
odd positive integers with no prime divisors exceeding 100, which satisfy Lemmata 
22 and 23, along with the additional restrictions discussed above. No such integers 
were found. 

We conclude that Theorem 1 holds for all odd perfect numbers. 

7. SOME CONCLUDING REMARKS 

Thanks to Lemma 1 and Theorem 1, we now have 1P(K, 108-2K) for K = 1, 
2, and 3 (and vacuously for K = 4). These lower bounds obtained for the first, 
second, and third largest prime divisors of an odd perfect number could be extended 
by applying the same techniques in the papers in which these results appeared, 
provided one has sufficient computer capability, energy, and patience. 

I would like to express my thanks to Peter Hagis Jr., who took the time to 
proofread an earlier draft of this paper. My gratitude extends as well to the referee, 
whose suggestions concerning this paper (as well as [5]) were most helpful. 
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