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LOCKING-FREE FINITE ELEMENTS 
FOR THE REISSNER-MINDLIN PLATE 

RICHARD S. FALK AND TONG TU 

ABSTRACT. Two new families of Reissner-Mindlin triangular finite elements 
are analyzed. One family, generalizing an element proposed by Zienkiewicz and 
Lefebvre, approximates (for k > 1) the transverse displacement by continuous 
piecewise polynomials of degree k + 1, the rotation by continuous piecewise 
polynomials of degree k + 1 plus bubble functions of degree k + 3, and projects 
the shear stress into the space of discontinuous piecewise polynomials of degree 
k. The second family is similar to the first, but uses degree k rather than 
degree k + 1 continuous piecewise polynomials to approximate the rotation. 
We prove that for 2 < s < k + 1, the L2 errors in the derivatives of the 
transverse displacement are bounded by Chs and the L2 errors in the rotation 
and its derivatives are bounded by Chs min(l, ht-1) and Chs-i min(l, ht-1), 
respectively, for the first family, and by Chs and Chs-i, respectively, for the 
second family (with C independent of the mesh size h and plate thickness 
t). These estimates are of optimal order for the second family, and so it is 
locking-free. For the first family, while the estimates for the derivatives of 
the transverse displacement are of optimal order, there is a deterioration of 
order h in the approximation of the rotation and its derivatives for t small, 
demonstrating locking of order h-1. Numerical experiments using the lowest 
order elements of each family are presented to show their performance and the 
sharpness of the estimates. Additional experiments show the negative effects 
of eliminating the projection of the shear stress. 

1. INTRODUCTION 

In this paper we analyze two families of triangular finite elements for the ap- 
proximation of the Reissner-Mindlin plate equations, paying particular attention to 
the issue of "locking," a problem which causes poor approximation for thin plates, 
and which typically occurs when standard low-order finite elements are used. 

The Reissner-Mindlin model describes the deformation of a plate subject to a 
transverse loading in terms of the transverse displacement w of the midplane and 
the rotation 0 of fibers normal to the midplane. More precisely, w and 0, defined 
on the middle surface Q of the plate, are determined as the solution of the partial 
differential equations 

- divCS$) -At-2 (grad w - 0 in Q, 

-At 2 div(grad w - g g in Q, 
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subject to appropriate boundary conditions. Here t is the plate thickness, SO is 
the symmetric part of the gradient of ?, g is the scaled transverse loading function, 
and A = Ek/[2(1 + v)], where E is Young's modulus, v is Poisson's ratio, and k the 
shear correction factor. For all 2 x 2 symmetric matrices r, Cr is defined by 

E 
CTr 12(1 2) [(1 - v)r + v tr(r)I]. 

In this paper we shall consider the case of the hard clamped plate, which corresponds 
to the boundary conditions 

w O, q=O on aQ. 

Introducing the shear stress -y At-2 (grad w - ?), a weak formulation of this 
problem follows. 

Find > E H1(Q), w E H1(Q), and y L2(Q) such that 

(1.1) a(0, +) + (-y, grad v -) = (g, v) for all g, E H1(Q), v C H1(Q), 

(1.2) (grad w - q) A-1t2(y,7) = O, for all 7 c L2(Q), 

where a(0, g,) = (CE(o), ?(g,)) and (., *) denotes the L2 inner product in Q. 
Many of the finite element methods which have been proposed to overcome the 

problem of "locking" have the following variational formulation. Find Oh E oh, 

wh C Wh, aYh c rh such that 

(1-3) a(/h, I) + (7h, grad v-Rh ) (g, v) for all gC E oh, V E Wh, 

(1.4) (grad Wh- RhOh, i) - AJ1t2 (h,q) 0 for all c- rh, 

where eh, Wh, and rh are finite-dimensional subspaces of H1(Q), H1(Q), and 
L2(Q), respectively, and Rh is an interpolation or projection operator defined on 
an appropriate space and mapping into rh* In some cases, the spaces are non- 
conforming and the differential operators in the formulation are applied on each 
element. The elements we consider in this paper are conforming elements which fit 
the above framework. 

The lowest order element of the first family we consider is an element proposed by 
Zienkiewicz and Lefebvre [23]. It approximates w by continuous piecewise quadrat- 
ics, 4 by continuous piecewise quadratics plus quartic bubble functions (i.e., ele- 
ments which are polynomials of degree < 4 on each triangle of the triangulation and 
vanish on all the triangle boundaries), and ^y by discontinuous piecewise linear func- 
tions. The operator Rh is an L2 projection. For general k > 1, this family uses con- 
tinuous (k+ 1)-degree piecewise polynomials to approximate the transverse displace- 
ment, continuous (k + 1)-degree piecewise polynomials enriched by (k + 3)-degree 
bubble functions for the rotation, and k-degree discontinuous piecewise polynomials 
to approximate the shear stress. We prove that for 2 < s < k + 1, the approximate 
values of the derivatives of the rotation converge with order hs-1 min(1, ht-1) in 
L2, the values of the rotation converge with order hS min(l, ht-1) in L2, and the 
derivatives of the transverse displacement converge with order hS in L2. In both 
cases the constant in the estimate is independent of the mesh parameter h and 
the plate thickness t. Note that the estimate for the derivative of the transverse 
displacement is of optimal order, while there is a deterioration of order h in the 
approximation of both the rotation and its derivatives for small t, demonstrating 
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locking of order h-1. There is no improvement in the order of convergence for the 
approximation of w itself for small t, as shown by computations reported in this 
paper. 

The second family we consider is similar to the first, except that the rotation is 
approximated by continuous k-degree piecewise polynomials enriched by (k + 3)- 
degree bubble functions. We prove that for 2 < s < k + 1, the approximate values 
of the derivatives of the rotation converge with order hs-1 in L2, and the values 
of the rotation and the derivatives of the transverse displacement converge with 
order hS in L2. In this case, the order of convergence for the approximation of the 
derivative of the transverse displacement, the rotation, and the derivatives of the 
rotation are all optimal order, so this family of methods is free of locking. Again, 
computations show there is no improvement in the order of convergence for the 
approximation of w itself. 

In this paper we provide some numerical tests of the lowest order elements in 
both these families which confirm the order of convergence results discussed above. 
Further numerical experiments show the negative effects of eliminating the projec- 
tion operator Rh. Additional numerical results can be found in Tu [22]. 

The second family described above appears to be a new family of locking-free 
elements for the Reissner-Mindlin plate. A rigorous error analysis of the method 
proposed in [23] and its generalization is also new. 

There has been considerable progress in recent years on designing new locking- 
free elements and in proving that elements previously proposed in the literature 
are in fact free of locking. We mention several which fit the framework discussed 
above. Combining ideas from the design of stable mixed finite elements for the 
Stokes problem and second order elliptic problems, Bathe, Brezzi, and Fortin [7] 
proposed several families of elements and proved error estimates for the limiting 
case t = 0. The simplest triangular element in their families approximates the trans- 
verse displacement by continuous piecewise quadratics, the rotation by continuous 
piecewise quadratics plus cubic bubble functions, and interpolates the shear stress 
in the second lowest order rotated Raviart-Thomas space. For t > 0, Brezzi, Fortin, 
and Stenberg [10] (see also Peisker and Braess [17]) completed the error analysis for 
the family of finite elements given in [7], deriving error estimates uniformly valid 
with respect to the thickness for all variables. Experimental results for some of 
these elements can be found in Bathe, Brezzi, and Cho [6]. A similar low order 
element was analyzed by Durain and Liberman [12]. It uses continuous, piecewise 
linear elements to approximate w and continuous, piecewise linear elements plus 
the span of A2A3T1, A3A1T2, and AlA2T3 as the trial space for the rotation, where 
{ A}i<i<3 are the barycentric coordinates and Ti is the tangential vector to the edge 
i of the element T. To avoid locking, the shear stress is interpolated into the lowest 
order rotated Raviart-Thomas space. This element is shown to be free of locking 
and optimal in order. Durain and Liberman [13] also analyzed the convergence 
of a related element proposed by Zienkiewicz, Taylor, Papadopoulos, and Oniate 
[24], in which w is now approximated by continuous, piecewise linear elements plus 
the space spanned by A2A3, A2A2, A12A3, A1A2, A12A2, and A1A22. This element is also 
shown to be of optimal order and free of locking. 

Arnold and Falk [2] proposed a simple finite element which uses nonconforming 
linear finite elements to approximate the transverse displacement, conforming lin- 
ear finite elements augmented by cubic bubbles to approximate the rotation, and 
projects the shear stress into the space of piecewise constant vectors. They show 
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that the method has an optimal order of convergence independent of the plate 
thickness. The cubic bubble functions can be eliminated by static condensation, 
producing a method only involving linear elements but with a slightly perturbed 
stiffness matrix (cf. Arnold J1J). A generalization of this method with a somewhat 
simpler stiffness matrix has been developed independently by Durain, Ghioldi, and 
Wolanski [11], and Franca and Stenberg [14]. Some results of numerical computa- 
tions with these methods are reported in Franca Stenberg, and Vihinen [20], and 
Stenberg and Vihinen [21]. 

Nonconforming elements are also used in the scheme proposed by Ofiate, Zarate 
and Flores [16]. This method uses nonconforming linear elements as the trial space 
for the rotations and conforming linear elements as the trial space for the transverse 
displacement. The shear stress is interpolated into a rotated space of lowest order 
Raviart-Thomas elements. Arnold and Falk [5] analyzed this element and proved 
that the method gives optimal order error estimates uniform in t when t < h, but 
that the method does not converge as h goes to zero for t fixed. 

A unified approach for error analysis, which can be applied to many of the 
elements described above, can be found in R. Durain and E. Liberman [12]. Another 
general approach to error analysis can be found in Pitkaranta and Suri [19]. The 
degrees of freedom for some of the elements described above are summarized in 
Figure 1. 

There are several other approaches for finite element approximation schemes 
which are not based on the modified variational formulation (1.3)-(1.4), but which 
also produce error estimates uniform in the plate thickness. In important early 
work by Brezzi and Fortin [9], the Helmholtz decomposition was used to obtain 
a new variational formulation of the Reissner-Mindlin model, using w and 4) and 
two additional unknown functions. The drawback to this approach is that because 
of the additional unknowns, the resulting discrete problem is more complicated to 
solve. 

Hughes and Franca [15] proposed a "stabilized" finite element scheme by modi- 
fying the Galerkin variational formulation to include least-square residual forms of 
the moment equilibrium equation and transverse shear constitutive equation. They 
proved that as long as sufficiently high-order finite elements are used, the method 
converges uniformly for all values of the plate thickness. 

There are also methods which view the Reissner-Mindlin model as a penalized 
form of the Kirchoff plate model and are therefore appropriate in the limiting case 
t = 0. An example of such a method along with a mathematical analysis can be 
found in Pitkaranta [18]. 

Branble and Sun [8] introduced a least squares discretization based on the 
Helmholtz decomposition reformulation of Brezzi and Fortin to approximate the 
solution of the Reissner-Mindlin problem. In their work, a discrete minus one norm 
is used for the least squares method. The main result is that one can choose the 
subspaces for different variables independently without satisfying the discrete "inf- 
sup" condition. Optimal order error estimates are obtained uniformly with respect 
to the thickness t. 

An outline of this paper is as follows. After a brief section on preliminaries, we 
turn in Section 3 to the derivation of error estimates for the two Reissner-Mindlin 
element families proposed in this paper. The final section contains results of some 
numerical experiments with these and similar elements. 
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FIGURE 1. Some finite element schemes for the Reissner-Mindlin 
plate based on the variational formulation (1.3) and (1.4) 

2. PRELIMINARIES 

We shall assume that Q is a convex polygon and that {Th}{O<h<1} is a regular 
family of triangulations of Q, where the subscript h refers to the diameter of the 
largest triangle. Denoting by Pk(T) the set of functions on T, which are the re- 
strictions of polynomials of degree less than or equal to k, we define the following 
finite element spaces: 

Mk: {j E L2(Q): p J E Pk(T) for all T E Th}, 

Mok Mk n Hl (Q), 

Mok: Mk n H(Q), 

Bk: elements of Mok which vanish on all element edges. 

Then, defining for r = k (we shall refer to this as the FT family) or r = k + 1 (we 
shall refer to this as the ZL family), 

0 0 

eh = [M e B k+3]2, Wh = Mk+l, rh [Mk]2, 

our approximation scheme for either family of elements may be written as follows. 
Find Oh E eh, Wh E Wh, aYh E rh such that 

(2.1) a(Oh, ) + (h, grad v-4) = (g, v) for all 4 E oh, v E Wh, 

(2.2) (grad wh - 
Oh,') 

- A-1 t2 (Ith,q) = 0 for all i E rh. 
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Introducing the L2 projection II: L2 -* rh and observing that grad wh E rh, we 
see that 

ah = At2 (gradWh -hI , 

so that ah can be easily eliminated. This leads to the following method in the 
variables h and Wh- 

Find h E eh and wh E Wh such that 

a(Oh, 'b) + At-2 (grad wh-Hh, grad v-H'i) =(g,v) for all 4'EEoh, VEWh- 

In the above and in the remainder of the paper, we use boldface to denote vector 
functions, operators, and spaces. To simplify the remainder of the analysis, we shall 
henceforth set A = 1. 

3. ERROR ESTIMATES 

We shall analyze the convergence of the two families of mixed finite elements 
defined in the previous section by starting. with a lemma similar to one developed 
by R. Duran and E. Liberman in [12]. 

Lemma 3.1. Let wI E Wh, /1 E eh, and ay = t-2(grad wI - I). Then 

11OI - h 111 + tlhI - 'Yh |o 

< C(1k11 - 111i + tIVr1 - VJlIo + hIP)y - I?IIVlo). 

Proof. Subtracting (2.1) from (1.1), we get the error equation 

(3.1) a(b - Oh< 'i) + (y + yh, grad v -114') 
()=-y,4 - II+4) for all 4'E oh, V E Wh. 

Hence 

(3.2) a(4)j -h, 4 ') + (YI -a-h,grad v -11I') 

a (I-, /4) + (yI -y, grad v -11I') + (wP -11I). 

Taking 4' - ?>I - Oh E Oh and v= WI - Wh E Wh, we have grad v - 114' 

(^z-I h), and inserting this in (3.2), we get 

a(l- 4h) I- 4h) + t2 (-7I-h'YI aYh) 

= a(Ol - I- /h) + t2 (I-y - ah) 

+ (^y, [&I - kh] = [4I -hD 

= a(4l - 4I - Oh) + t2 (QyI - ^, rI -h) 

+ (I - IIy, [q!.1 - kh] [&l -hD 

Using the coercivity and continuity of a(., .), the Schwarz and arithmetic-geometric 
mean inequalities, and standard approximation properties, we obtain 

|| _+ 11 2 + t2|| 11 a 112 IIcOI; -h 'I~hl ? 21-YhlI 

? CIoI, - 411i11i - hlll ? ty - YIIOII-YI -YhHlO 

+ lh- H IIIOlI(4I - 4h) - H(4I - 4h)hIo 
? C(Ib1-I 411 + t211 _- -112 + h211y _- H'yll2) 

? II/1 - 4h 112/2 + t2 l -lYh I01/2- 
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Therefore, 

< - O Ih + tll^ -IlHo ? hy -HhIo). 

Next we define some special approximations and examine their properties. Define 
wJ to be a standard interpolant of w in Wh and define & = ? + 4b, where 40 
is a standard interpolant of ?/ in [MO]2, and 4b E [Bk+3]2 is defined by 14b = 

IHI?-HII?- IIgrad w+grad WI. Lemma 3.2 shows that y = liy, and Lemma 3.3 
shows that & will be a good approximation to 4. 

Lemma 3.2. Let -yl and [Iy be as defined above. Then yl = [Fy. 

Proof. Using the definitions, we have 

aI = t2 I(grad w- I) = t (grad wI - _ 1- b) 

= t2 (grad w -I- I-o + HI4) + H grad w - grad wI) 

= t-211(grad c-4) = HFy. E 

Lemma 3.3. There exists a constant C, independent of h, such that 

110 -OI||1 

<C[II0-0IIl+h-l(II0-0|IIo + 11[Igrad w-grad wilo + ilgrad (w-wi)||o)] 
In particular, if k = 1 in the definitions of & and wl, then 

k/ - ii< Ch(110112 + 11W113)- 

Proof. We first prove that 

(3 3) Il1I 11o < C|Ib l 

Since 44 z [B k]2, we may write it on each triangle T in the form AlA2A3Pk, where 
Pk is a vector polynomial and Ai are the barycentric coordinates of T. Since Ai < 1, 
i = 1,2,3, we get 

! |bIO,T = j Al2A2 A2p2dxdy < jAlA2A3P2dxdy I 
0T 

= (4I, Pk)T = (H4I, Pk)T < I 1H1o,TIIPkIIO,T. 

The result follows from the fact that 114b411O,T and IIPkIO,T are equivalent norms on 
the space of vector polynomials of degree < k. Hence, we have 

11IIf)bI|o = I I-Io - II I-n grad w + grad wII o 

(3.4) < IIII(O - 4)lIo + 11HIgrad w - grad wlho + Ilgrad (w - w-I)Io 

< C(I) - 4)Ilo + lIIIgrad w - grad wilo -- ;jgrad (w - wi)l|o). 

Now, by the triangle inequality, standard approximation theory, and (3.3), (3.4), 

11) _ 411), = 114 _ 00- _)bIIl < 11 _ -)II1i + 1(bIIl 
< 114 -.0011i + Ch-1I IobIo < 114 - 4)I1i + Ch1 II H'bI1O 

+ C[| - +I III w 

+h-l(II0- Oollo + 111IIgrad - grad wilo + ilgrad (w - wl)lo)]- 
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In particular, if k = 1 in the definitions of 5b and wj, then, using standard approx- 
imation theory, we have 

114 - 4,iI, < C[hJ14I12 + h-1(h211I112 + h2llgrad W112 + h211W113)] 

< Ch(|11I12 + 11w113). LI 

Using these results, we now derive our first estimate. 

Theorem 3.4. Suppose (0,w,y) and (0h,Wh,Yh) solve (1.1)-(1.2) and (2.1)- 
(2.2), respectively, for some g E L2(Q) and some t E (0, 1]. Then there exists 
a constant C, independent of h and t, such that 

11- 4hlll + tllY -Yh|O 

? C[1) - 4)011I + (t + h)-y - Hllo 

+ h-1(II4 - ?)Illo + fIlgrad w - grad wlHo + Ilgrad w - grad w,110)]. 

Proof. The result follows immediately from Lemmas 3.1-3.3, and the triangle in- 
equality. DU 

Applying standard approximation theory, we then obtain 

Corollary 3.5. For 2 < s < k + 1, if 0 E Hs, w E Hs+l, and ^y E Hsl, then 

1Ik - 4hlll + tlly - hjo < ChS1 (1I4)Is + IHs?+1 + hIylls-2 + tIIy187-1), 

where C is independent of h and t. 

Note that for s > 5/2, the norms on the right-hand side are not bounded inde- 
pendent of t (cf. [3], [4]). Also note that the estimate for sb is optimal order for the 
FT family of elements, but suboptimal by one order for the ZL family. 

Remark. If we apply Lemma 3.1 for the ZL family with sbI and wi chosen as 
standard Lagrange interpolants of sb and w, respectively, then, for 2 < s < k + 1, 

11_ - yIo < t-2( lgrad [w - wi]llo + 114) - Hl4llo + lIIH[k - 4]flo) 

< t-2(Ilgrad [w - wi]llo + 11) - Hlkllo + 114 - 4illo) 
< Ct-2h`(||wfls+j + lIl4ls). 

Hence for 2 < s < k + 1, if s E Hsw E Hs+l and y E Hs-l, 

110 -4hlll + tIl)y - _'hIO 
< Ct-lhS(Ij4js + tj4)H8s+j + jjwjls+j + tjjyjjs_8), 

where C is independent of h and t. 
This standard estimate improves the order of convergence, but the estimate 

deteriorates as t -O 0. Combining this result with Corollary 3.5, we get, for the ZL 
family, 

Theorem 3.6. For 2 < s < k + 1, if 4 E Hs, w E Hs?l, and y E HSl, then 

110 - Oh lll1 + tll'-Y '-h |10 

< Chs-1 min(l, ht- )(114)11s + thI1I1ls+1 + j[Wj?s+1 + 1ylIls-2 + t11y18|-1). 

The above estimate indicates a deterioration of order h from t = 1 to t = h 
in the approximation of the derivatives of the rotation, demonstrating locking of 
order h-1. This deterioration is clearly seen in the computational experiments in 
Section 4. 
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Theorem 3.7. Under the assumptions of Theorem 3.4, we have 

11 - 4hIIO< ?C(l -IlH4llo + (h2 + ht)lly - [IFyllo + h|lk - 401, 
+ 11k - 4IIlo + 11[Igrad w - grad wio + ligrad w - grad wiIlo). 

0 0 

Proof. We introduce the dual problem: Find 4 z H1(Q), W E H1(Q), and C 
L2(Q) such that 

0 0 

(3.5) a(4', P) + (grad v -4', ) = (4, ( -Oh) for all 4' E H1(Q), v z Hl(Q), 

(3.6) (rq, grad W - - t2(i7, C) = 0 for all 7 (z L2(Q). 

Choosing 4b =0 - Oh and v = w- Wh in (3.5), we get 

grad v -4' = grad w - gradwh - ! + Oh 

= t2 t2 h + h -Ih 

Hence, 

1k)- OhII = a(4)- Oh,hP) +t2(y-Yh,C ) + (Oh - 11h) C) 

Now from (3.1), for any ('b,4) E Wh X E) h and -t-2 (grad v -114') we have 

a(4 -Ot)h, ) +t2 (_y - h,) 
- -11)- 

Combining these results and using standard estimates, we get 

(3.7) 

112 = a(C -4h,I- + t2K_ - 'Yh f 

+ (kh - ) - ) + r(4 - +) 
? C(+!) - 4hH~ -_ ) + t2 K ( - Yh 

+ ( Oh,I~ - 4^ICIo+ ! - 1h,IoIC I 

+ (O)h H' + hII + h -) + (' rIO4 -) 

+- n[' , Ch-(I(I)I + (IT - ri3/HC o-p -o ?[ CI -II]) 
_< CIIO -h||l1||+- +1.1 + t Yh7-Ah11o 14-110 

+ 110h - r(Oh +) 0olll0o + 110 - rIo1101C11 

+ 11-Y - IIaYllolllk - MP110I + 11-Y - llayllollf - (D - rI(+ - (P)110 
_< QIO - Ohlll ||4 - |11 + t211_y- _hilll-VllC o11 

+ hIjOh - 0111l100 + 110 - HI11011cilo 

+ 117-y IIlloh'l 'PJ12 + 117-y- 11^Ioh1l| -(bil). 

By Lemma 3.3 we can choose +b and a such tha.t 

l4- +111 < Ch(|liDI12 + |[W113)) IIC -VJlo < ChlIC11. 

By the regularity proved in the Appendix in [2] we know that 

HVW1I3 + l1IIl2 + IICIo + t||C||1 < CII OhilO 
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Applying these inequalities and standard approximation theory to the right-hand 
side of (3.7), we then have 

110 - Oh112 < ChII) -)hIIo(I) - 4hlll + tlh' - _Yhfl 

+ h-1 114 - IlHllo + hK - rlyHlo). 

The theorem now follows directly from Theorem 3.4. 0 

Applying standard approximation theory, we then obtain 

Corollary 3.8. For 2 < s < k + 1; if 4 E Hs, w E Hs?l, and y E Hsl, then 

11? - 4)h,0o < ChS(110)1s + IIW)Is+1 + HI_YHIs-2 + tiLyIls-i), 

where C is independent of h and t. 

Again note that for s > 5/2, the norms on the right-hand side are not bounded 
independent of t. 

Remark. As in the case of the previous error estimate, the estimate for 4) is optimal 
order for the FT family and can be improved for the ZL family at the expense of 
introducing a negative power of t. To do this, we follow the derivation of (3.7), 
except that the term ( Ho-I114, () is estimated by 

(4)- <l), C) = (4) -4),C - IC) ? 1? - IHHlo X - rUICo 
< Cht-1 11) - Hfllotlllll < Cht-1 11?4 - H15ol?) - 4)hl0? 

Hence for 2 < s < k + 1, if 4) E Hs, w (E Hs+?, and y E Hs-1, then 

115 - 4hHlO < Ct-lhS+l(II0)Is + tH4)HIs+j + IKHlls+j + tllyls_j), 

where C is independent of h and t. 
Combining this result with Corollary 3.8, we obtain, for the ZL family, 

Theorem 3.9. For 2 < s < k + 1, if E HS, w E HS+l, and E Hs-l, then 

b10 - O)h 1 < ChS min(l, ht-1)(11411, + ti4)H?s+1 + KHWIIs+1 + Ljj-Ijs-2 + t4y11s-1). 

We next show that for both families of elements, the derivatives of w are approx- 
imated to optimal order uniformly in t. 

Theorem 3.10. Under the assumptions of Theorem 3.4, we have 

11 - Wh|l ? C(||Q I - Wlll + 11) - Il|o 

+ (h2 + ht)IIy - [lFo + hili - 4?11i 
+ H4 - 4)llo + 11lIgrad w - grad Wllo). 

Proof. Taking +/ = 0, v = vh E Wh, and i7 = At-2grad vh in (1.1)-(1.2) and 
(2.1)-(2.2), we get 

(3.8) t-2(grad w - ), grad vh) = (g,vh), 

(3.9) t-2(grad Wh - H4h, grad vh) = (9, vh). 

Subtracting (3.9) from (3.8), we deduce that for all vh E Wh 

(grad [w - whj, grad vh) = (4)- Hfh, grad vh). 
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Hence, 

(3.10) (grad [WI - Whj,grad Vh) 

= (grad [wJ - J], grad Vh) + (O - fOh, grad Vh). 

Choosing vh =WI - Wh in (3.10) and applying the Schwarz inequality, we get 

Ilgrad (WI - Wh) 1o <? lgrad (WI - W)IIo + 11H - HsbhI HO 

It follows easily that 

WI -WhHlll ? C(< QIWI- lll + ?H 5 -H4hHIo) 

< C(IWi - Wll + 114 - HIsbo + ||fl(s - 4h)H?) 

< C(IWI - Wll + 11?4 - HsbHo + 114 - 4hIHO) 

Applying Theorem 3.7, we obtain 

'wi - Wh|1 ? C(< QWI - W||l + || - rIH40o 

+ (h2 + ht)|l? - IFyo + hHll - 0?11 

+ ?- Illo + 11lIgrad w - grad wlHo). 

The result now follows from the triangle inequality. DU 

Applying standard approximation theory, we then obtain 

Corollary 3.11. For 2 < s < k + 1, if 0 E Hs, w E Hs+l, and Y E Hs-l, then 

IIW - Whill < ChS(11011s + IIwHIs+j + L)1ils-2 + thLyHs-0) 

where C is independent of h and t. 

Finally, we derive estimates for the approximation of the shear stress. 

Theorem 3.12. Under the assumptions of Theorem 3.4 we have 

- YhH-1 < C[lly - H'Y-i + (h + t)llK - 1LIjo + 114 - 4+? 

+ h-1(110 - 4>llo + 1lIgrad w - grad wHlo 

+ Ilgrad (w - i) 11o)], 

1 - 'hho < C[(1 + th-1)1y - rl'Io + h-111, - ?H11 
+ h- (11(0 - ?llo + fl grad w - grad wHlo 

+ 11grad (w - wi) 1o)] 

Proof. Choosing v = 0 in (3.1), we easily see that 

(3.11) ([Fy [) = a( -Oh, b) -(-, /- fl4) for all +/ E Oh. 

0 

For C E H1, let /' eeh satisfy 

(3.12) Hlv = HIl II 1- vilo + h||+|lj < Chill(ll. 

Such a /' is easily constructed by first using the Clement interpolant and then 
adding bubble functions to enforce the condition Hl' = HC. Then, using (3.11) 
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and (3.12), we have 

a- Yh, C) = (JiY - -Yh, [IC) = (HIaly- 1Yh MO) 
= a(b - Obh, b) - (71 Y-b M) 

= a(C4 - Oth, 1) - (1 + - r ', + H- -) 

CII C|- hI1110111 + 117- ryII7ol II +|-rI|jo 
< CCi0(04 - hII1 + hl?y - III-yo). 

Hence, 

IIY YhII-1= SUp 
(3.13) CCH | 

< QIO - hHlll + hIla - II[Y0o). 

The first estimate of the theorem follows directly from the triangle inequality and 
Theorem 3.4. To obtain the second estimate, let 4z E )h satisfy 

[Ib = Ha- a1h) b011 < CHFY - -Yh Ho. 
Such a function is easily constructed using only the bubble functions in e)h (cf. 
(3.3)). Then 

IIIII -Yh 0 = (JT-n Y 1h,HM) = (MIy- 1h+,b) < 11n? YhII-1 10111 

< Ch-1lHIIy - Yh||-1IbHO < Ch 1Hy - YhII-111HY - 'Yh|0 

and so, from (3.13), 

IIY - 'Yh II < Ch 1II-y - YhL-1 

< C(h-111 - Ihll1 + 11K - [IYIo). 
The second estimate of the theorem now follows directly from the triangle inequality 
and Theorem 3.4. E 

Applying standard approxiamtion theory, we then obtain 

Corollary 3.13. For 2 < s < k + 1, if O E Hs, w E Hs?l, and -y E H"1, then 

K - Yh H1-i < ChSl(1bI1s + HIW&sis+ + Kh/1s-2 + tIl-yHis-1), 

11Y - 'YhHO < Chs-2(114118 + IIWIs1+ + KH^111s-2 + tIl'YIi-1), 

where C is independent of h and t. 

Note that when k = 1 we obtain a convergence rate of 0(h) in the minus one 
norm, but no positive rate of convergence in L2. For k = 2 and s = 5/2 we get a 
convergence rate of 0(h1/2) in L2, where the norms on the solution are all bounded 
independent of t (cf. [3], [4]). Of course, at the expense of introducing negative 
powers of t, it also follows directly from the definitions, standard estimates, and 
Corollaries 3.8 and 3.11 that 

K1 - 'YhH < Ct-2 (grad [w - wh]Ho + k10 - H4o + I1l[4 - Ohl o) 

< Ct-2hs(H4liHs + HIWHIs+1 + 11K lis-2 + t||-YH|s-1). 

These estimates may be combined to give 

- 'Y-h lo ?- Chs-2 min(1, t-2h2)(11ll18 + IKHs?i + IKls-2 + tI'I|s-) 
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4. NUMERICAL RESULTS 

In this section we present numerical results for several examples of Reissner- 
Mindlin elements. The aim is to show that the estimates derived in the previous 
section are sharp, and also to show what happens if the projection into the lower 
order space is eliminated. 

All the examples are done for a unit circular plate which is clamped on its edge 
and loaded by g = 1. Because of the symmetry of the plate, we need only discretize 
one quarter of the domain. The meshes used in our computations are shown in 
Figures 2 and 3. 

Essential boundary conditions sb1 = 52 = w = 0 are applied on the curved 
portion of the boundary, while on the vertical segment of the boundary '1 = 0 is 
imposed and on the horizontal segment of the boundary 42 = 0 iS imposed. For the 
other parameters, we choose Young's modulus E = 1, the Poisson ratio v = 0.3, 
the shear correction factor k = 5/6, and the thickness t = 1 and 0.001. For each 
value of the thickness, we compute on a sequence of five meshes with 4N2 elements, 
where N = 1, 2, 4, 8, 16. The exact solution of this problem is given by 

X(X 2+ 2-1) y(x2+y2-1) 

16D ) 02 16D 
_ 
= (9 + ,2)2 _ y 2) 

A\ 
t+ + I 

!A-1t2 + 1 
64D (9+ 4 At 32Dj 4 +64D' 

where D = E/[12(1 -I2)]. 

FIGURE 2. Triangular mesh of a quarter circle with 4 elements and 
16 elements 

FIGURE 3. Triangular mesh of a quarter circle with 64 elements 
and 256 elements 
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TABLE 1. FTI for hard clamped plate on a unit circle when t = 1.0 

% error 
component N=1 N=2 N=4 N=8 N=16 

sb1 58.45 16.32 4.23 1.07 0.27 
4)2 58.45 16.32 4.23 1.07 0.27 
w 8.02 2.30 0.60 0.15 0.04 

0a41 /0x 59.88 29.40 14.56 7.26 3.63 
0a42/0X 128.73 68.58 35.25 17.79 8.92 
0w/0x 9.81 2.64 0.68 0.17 0.04 
a4?1/aY 128.73 68.58 35.23 17.78 8.92 
0942/0Y 59.88 29.40 14.57 7.26 3.63 
0w/0y 9.81 2.64 0.68 0.17 0.04 

We define the FT1 element by choosing k = 1 in the FT family (r = 1), i.e., we 
choose the usual conforming P1 element augmented by three bubble functions as 
the space e)h to approximate the rotation 4, and Wh as the conforming P2 element 
for the displacement w. From Corollaries 3.5, 3.8, and 3.11, we obtain the following 
optimal order error estimates for 4 and w: 

||- hll + tllY - 'YhHo < Ch(1|0112 + IIWH13 + tllYlll + 11Y110), 

- 4hIlO + Hw - WhHl ? Ch 2(11112 + IIWH13 + tlYlill + lAYjjo)- 

The numerical results in Tables 1 and 2 show that the method converges for 
all variables when t = 1.0 and t = 0.001. The order of convergence for the first 
derivative of 41 and 42 is 1, and the order of convergence for the first derivative 
of w and for the L2 norm of 4 is 2, which is consistent with the above estimates. 
Note that there is no improvement in the order of convergence of w itself. 

If we choose k = 1 in the ZL family (r = 2), i.e., the usual conforming P2 element 
augmented by three bubble functions as the space E)h to approximate the rotation 
4 and Wh the conforming P2 element for the displacement w, we get the triangular 
plate element ZL1 proposed by Zienkiewicz and Lefebvre [23]. 

TABLE 2. FT1 for hard clamped plate on a unit circle when t 0.001 

% error 
component N =1 N =2 Nz=4 Nz=8 N-16 

80.17 36.24 12.20 3.47 0.90 
4)2 80.17 36.24 12.19 3.47 0.90 
w 78.53 36.51 12.25 3.44 0.89 

Oa1 /Ox 79.97 54.21 32.34 17.55 8.92 
042/Ox 146.87 99.22 57.51 29.69 14.66 
aw/ax 81.04 36.28 12.18 3.46 0.90 
Oa4)/OY 146.87 99.22 57.54 29.70 14.66 
a02/MY 79.97 54.21 32.34 17.54 8.91 
aw/Dy 81.04 36.28 12.17 3.46 0.90 
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TABLE 3. ZL1 for hard clamped plate on a unit circle when t 1.0 

% error 
component N = 1 N = 2 N = 4 N = 8 

?N1 4.87 0.60 0.08 0.01 
02 4.87 0.60 0.08 0.01 
w 1.15 0.15 0.02 0.00 

001/Ox 11.77 2.78 0.69 0.17 
0/2/OX 26.72 6.45 1.64 0.42 
Ow/Ox 4.42 1.22 0.32 0.08 
0?a1 /aY 26-72 6.45 1.64 0.42 
002/OY 11.77 2.78 0.68 0.17 
Ow/Dy 4.42 1.22 0.32 0.08 

TABLE 4. ZL1 for hard clamped plate on a unit circle when t 0.001 

% error 
component N=1 N =2 N =4 Nz=8 

k1 33.94 14.16 4.01 1.03 
02 33-94 14.16 4.00 1.03 
w 29.72 12.50 3.47 0.88 

0ck1/Ox 58.01 38.18 20.12 10.15 
0a2/OX 83.90 53.88 30.63 16.23 
Ow/Ox 37.45 14.61 4.07 1.04 
Oai /aY 83-90 53.88 30.68 16.25 
0O2/OY 58.01 38.18 20.11 10.14 
Ow/Oy 37.45 14.61 4.06 1.04 

From Theorems 3.6 and 3.9 and Corollary 3.11, we obtain the following error 
estimates for 4, -y, and w: 

110-OhII1+tII7-Y-h||O < Ch min(l, ht-1)(11112+tillOI3+ |i)||13+tll-Ylll+ ll-yllO), 

11- khlo < Ch2 min(1, ht-1)(11?112+tll?413+ |wI13+tll'y1 ?+llyllo), 

IIW - )hill < Ch2(11k112 + IIW113 + tllYlll + VlYjjo)- 

The numerical results in Tables 3 and 4 show that the method converges for 
all variables when t = 1.0 and t = 0.001. Also the order of convergence for the 
first derivative of k1 and 42 is 2 for t = 1, but deteriorates to 1 when t = 0.001, 
while the order of convergence for the first derivative of w remains at 2. There is 
a similar deterioration in the order of convergerLce for ? and w from 3 for t = I 
to 2 when t = 0.001. This is consistent with the order of convergence estimates 
given above (the L2 estimate for w was omitted, since there is no improvement over 
the H1 estimate for t small and the result for t = 1 is easily obtained by standard 
methods), and shows that they are sharp. Thus, this element demonstrates locking 
of order h-1 in the approximation of the rotation and its derivatives. 
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TABLE 5. P2P2B4 for hard clamped plate on a unit circle when t 1.0 

% error 
component N = 1 N = 2 N = 4 N = 8 

01 5.13 0.62 0.08 0.01 
02 5.13 0.62 0.08 0.01 
w 1.21 0.15 0.02 0.00 

01/0x 11.95 2.79 0.69 0.17 
042/&X 26.46 6.43 1.64 0.42 
Ow/Ox 4.42 1.22 0.32 0.08 
Oa1I/OY 26.46 46.3 1.64 0.42 
&02/MY 11.95 2.79 0.69 0.17 
Ow/Dy 4.42 1.22 0.32 0.08 

TABLE 6. P2P2B4 for hard clamped plate on a unit circle when t 0.001 

% error 
component N=1 N =2 N =4 N =8 

1l 89.28 98.53 91.36 44.04 
02 89.28 98.53 91.35 44.01 
w 85.04 97.57 91.04 43.51 

ca1 /Ox 113.01 104.75 92.76 45.61 
c02/Ox 116.96 105.07 92.81 45.75 
Ow/Ox 89.33 98.54 91.36 44.04 
Oa1 /0Y 116.96 105.07 92.81 46.75 
O02/OY 113.01 104.75 92.76 45.62 
Ow/Oy 89.33 98.54 91.35 44.01 

TABLE 7. P2P2 for hard clamped plate on a unit circle when t 1.0 

% error 
component N = 1 N = 2 N = 4 N = 8 

01 6.52 0.82 0.10 0.01 
02 6.52 0.82 0.10 0.01 
w 1.21 0.15 0.02 0.00 

ak1/Ox 14.81 3.51 0.86 0.21 
Oa2/OX 23.68 5.95 1.54 0.40 
Ow/Ox 4.44 1.22 0.32 0.08 
Oa1 /lY 23-68 5.95 1.54 0.39 
a02/MY 14.81 3.51 0.86 0.21 

Ow/Oy 4.44 1.22 0.32 0.80 

Finally, Tables 5 and 6 show the negative effect of dropping the L2 projection, 
and Tables 7 and 8 show the result of experiments with a standard piecewise qua- 
dratic approximation for both variables, with no bubbles or projection. 
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TABLE 8. P2P2 for hard clamped plate on a unit circle when t = 0.001 

% error 
component N = 1 N = 2 N-4 N= 8 

ol 86.80 97.06 92.21 49.38 
02 86.80 97.06 92.20 49.35 
w 81.73 95.86 91.84 48.85 

041 /0x 106.37 102.48 93.46 50.69 
04.2/0x 114.54 103.37 93.58 51.60 
0w/0x 86.91 97.07 92.21 49.38 
0O4 /0Y 114-54 103.37 93.58 51.60 
0902/0Y 106.37 102.48 93.47 50.71 
0w/Dy 86.91 97.07 92.20 49.35 
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