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A MIXED FORMULATION OF BOUSSINESQ EQUATIONS: 
ANALYSIS OF NONSINGULAR SOLUTIONS 

M. FARHLOUL, S. NICAISE, AND L. PAQUET 

ABSTRACT. This paper is concerned with the mixed formulation of the Bous- 
sinesq equations in two-dimensional domains and its numerical approximation. 
The paper deals first with existence and uniqueness results, as well as the 
description of the regularity of any solution. The problem is then approximated 
by a mixed finite element method, where the gradient of the velocity and the 
gradient of the temperature, quantities of practical importance, are introduced 
as new unknowns. An existence result for the finite element solution and 
convergence results are proved near a nonsingular solution. Quasi-optimal 
error estimates are finally presented. 

1. INTRODUCTION 

Let Q be a bounded domain of IR2, with a Lipschitz continuous boundary r. 
We consider the stationary equations of thermohydraulics in the setting of Bous- 
sinesq approximation with Dirichlet boundary conditions for the velocity and mixed 
Dirichlet and Neumann boundary conditions for the temperature: 

-vLUu+(u.V)u+a0+Vp_=f inQ, 

-kLAO+(u*V)O=g in Q, 

V u=0 inQ, 
(1) 

u =0 on r, 

0=0 on rD, 

Ao = 0 onrN, an 

where u is the velocity field, p the pressure, 0 the temperature, and 

(u.V)u= (S7 O EUi 2 ax 0 V U Ui 0 12 

rD is a nonempty open part of r, rN = r \ rD, n denotes the unit outward normal 
to r, and by a , we mean the exterior normal derivative. We suppose that the 
right-hand sides of (1) are square-integrable in Q, i.e., we impose that f E (L2(Q))2 
and g e L2(Q). The coefficients v and k in (1) are assumed to be positive; v is 
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called the kinematic viscosity and k the thermal diffusivity. a denotes a constant 
vector in R2, the term aO in the first equation is related to the buoyancy forces; 
in our context a is arbitrary while usually in physical contexts it is parallel to the 
vertical axis. 

Recently, Paquet [14] and Bernardi et al. [1] have studied systems of equations 
similar to (1). They have proved that this problem has at least one solution. In 
[1], the authors also show that under some very restrictive hypothesis on the data, 
this solution is unique; moreover they analyze the corresponding discrete problem 
by classical finite element methods. 

Let us mention that the first equation of (1) is slightly different from the one 
considered in Bernardi et al. [1]. However, in Section 2 we adapt the proof of 
the existence results obtained by Bernardi et al. to our system (1). We further 
give sufficient conditions on the data f and g insuring uniqueness. The difference 
between system (1) and the system considered in [14] comes from the boundary 
conditions since there thermocapillarity effects are taken into account. Note also 
that in [14] existence results are based on fixed point arguments (as in [11]), while 
here we use the degree theory as in [1]. 

In Section 3, we analyze the regularities of the solutions u, p and 0. Namely 
assuming that Q has a polygonal boundary, we give the optimal regularities of 
the solutions (in the spirit of [13, 4, 5]). As a consequence, we deduce sufficient 
geometrical conditions insuring the regularity H2(Q) for u, 0 and H1(Q) for p. As 
usual such results are useful for finite element analysis. Here they are also used to 
check the equivalence between the classical weak formulation of problem (1) and 
its mixed formulation. 

In Section 4, we consider a mixed formulation of problem (1), where the gradient 
of the velocity and the gradient of the temperature are introduced as new unknowns. 
Thus the problem (1) can be formulated as 

a= vVu in Q, 

V.(a-p8)- >a.u-a0+f=0 inQ, 

V u=0 inQ, 

=kVO in Q, 
(2) 

V*(-k u (+g= 0inQ, 

u=0 onr, 

0=0 onrD, 

90 =0 on FN, 
on 9n 

where 6 is the identity tensor, 

( auj)i 2S E;aj) 2j), Vu= (x (rU=E jjjj U)U 
~J /1<i,j?2 = = 
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and for a tensor r, 

VT Tll O T12 OT21 +T22 
O x1 OX2 ' x1 Ox2 J 

Clearly, a classical finite element method may be used for the approximation of 
(1) as used in [1]. However in many applications, the knowledge of the gradient of 
the velocity and the gradient of the temperature (a and () is of particular impor- 
tance. In such cases, the use of a mixed finite element method might be preferred 
as long as it provides a better accuracy for a and (. 

The mixed finite element that we will consider in this paper, for problem (2), is a 
combination of the one that we have analyzed in [9] for the Navier-Stokes problem 
and the lowest degree Raviart-Thomas finite element [15] for Dirichlet's problem. 
Assuming that (u, p, 0) is an isolated solution of (1) and that the mesh width h is 
small enough, we will prove in Section 5 that the discretized scheme has a solution 
and we will find optimal bounds for the error of the same order on u, p, 0, a and (. 
Let us mention that a numerical test confirming the theoretical estimates has been 
performed in [10]. 

We close this introduction by pointing out that the analysis of the mixed finite 
element for problem (2) with nonhomogeneous boundary conditions presents more 
technical difficulties. This problem is left for the future. 

2. EXISTENCE OF A SOLUTION 

TO THE STEADY-STATE BoUSSINESQ EQUATIONS 

AND A UNIQUENESS RESULT 

We first introduce some notation that will be used in the following. H8 (Q), 
O 8 

H (Q), s e R, denote the standard Sobolev spaces normed by lIll,Q [13]. In 
particular H (F) is the space of traces of functions in H1 (Q) and H- (F) is its 
dual space. The inner product of L2( Q) := H?(Q) is denoted by (., .). Since no 
confusion can arise, we use the same notation for the corresponding norms and 
inner products on L8(Q) = L8(Q) x L8(Q), H8(Q) = H8(Q) x H8(Q), etc. Lo(Q) 
stands for the subspace of L2 (Q) consisting of functions with zero mean value over 
Q. We will frequently use the spaces 

H(div, Q) = {v E L2(Q): V v e L2(Q)} 

and 

H(div, Q) = H(div, Q) x H(div, Q), 

which are equipped respectively with the norms 

IIVIIH(div,Q2) = {llVlls2 + lv 2 

and 

llTIIH(div,Q) ={llrK0, + liV. T||0,S}2i 

Note that the trace operator v v n is a continuous mapping of H(div, Q) onto 
H- 2 (F) where n denotes the unit outward normal to F (cf. [12]). 

The purpose of this section is to prove the existence of a solution to the Bous- 
sinesq equations (1). We will also give sufficient conditions insuring the uniqueness 
of the solution. In particular, it will be shown that the solution is unique if the 
right-hand sides are sufficiently small. 
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Let us first start with the existence problem. The arguments involved consist in 
a slight variant of those in [1], the difference coming from the fact that in [1] it is 
assumed that f = 0 in the first equation of (1). 

Let us now derive the variational formulation of our problem. We begin by 
introducing the following functional spaces: 

(3) V = {v z (H (Q))2; div v = O in Q}, 
(4) H*'(Q) = {E H1(Q); I ID 

= }, 

endowed with the norms 

1Iv112 = j(gradvi12 + Igradv212) dx Vv = (vl,v2) E V, 

ll712 = fIgradq1 2dx Vq E H*1 (Q). 

Performing a formal integration by part in the two first equations of (1) against 
some v e V and 1 e H*1 (Q), respectively, we get the following weak formulation 
of problem (1). Find a pair U = (u,0) E X := V x H*1(Q) such that for every 
V = (VEl) E X: 

f M fS2 grad u grad v dx + ?f2(uV)u * V dx + ?f2 aO Vdx = f2 f v dx, 
(5) l k fg2 gradO grad dx + fg2(uV)Oq dx = gr2g dx. 

We first need some a priori estimates whose proof is similar to the one of Propo- 
sition 2.1 of [1]. 

Proposition 2.1. Let U = (u, 0) E X be a solution of (5). Then we have 

(6) 110H < k ' 

(7) llull ?< Pa l Ol + llf lo,Q, 

where 

(8) y sup J2\ gr dx 
nE H (Q)\ {0} 1lLlHS 

(9) lP= sup Lrlo, sup lo, 
1 IQ\O ll17l 77EHI(Q)\{O} lj 

Consequently, we also have 

(10) lluH ? al a +- lfIlofs2* Ilul I 
vk v 

In particular, the solutions U = (u, 0) E X of (5) are a priori bounded. 

As in [1], we are going to use degree theory. Let us then endow X with the 
following inner product. For every U = (u, 0), V = (v, 71) e X, we take 

(U,V):= jgradu. gradv dx + jgrado . gradiq dx. 
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For every a e R 2 and f E L2(Q), we define a nonlinear map 4b',f from X into 
X as follows. For every U = (u, 0), V = (v, 71) E X: 

(11) (4?'U, V) = Jgradu gradv dx + - J(uV)u v dx 

+ aX a v dx- - f vdx 

+ Xgrad 0 grad 77 dx + k j(uV)07 dx -k X g9 dx. + ~~~~~~~~ 
In other words, the right-hand side of (11) defines a continuous linear form on X, 
which by the Riesz representation theorem is the inner product with one and only 
one element of X, called 'fU. Clearly, U = (u, 0) E X is a solution of (5) if and 
only if 4'Yf U = 0. 

We can also define another nonlinear map Fc'f from X into itself by 

(12) (F''fU, V) = (baf U, V) - (U, V) VU, v E X. 

It results from (11) and (12) that 'f - I + F af ; consequently the equation 
V'f U = 0 is equivalent to -.F',fU = U. Therefore, we are reduced to find a fixed 
point for the mapping - f. 

In the following, (9 will denote a fixed bounded open set of X containing the set 

(13) {U = (u,0) E X; 11011 < 2 , Ilull < lal Ia + - 
Ilf o.s}}- 

- kvk v 
Accordingly, by Proposition 2.1, we are sure that 

(14) VUEa(9: 'f fU 0. 

To be allowed to speak about the degree of ',f with respect to ( and 0, we 
must show that ',f : 0( - X is completely contihuous [16, p. 184]. As the Riesz 
isomorphism from X' into X is continuous, it suffices to show that the mapping 
0 -X: U -* (Ya'U,f *) is completely continuous. Now from (12), ( a'f U ) 

extends naturally to a continuous linear form on H1 (Q) x H1 (Q). Denoting this 
extension by (.o',fU, * ), it is clear that it suffices to show that the mapping: (9- 

(H1 (Q) x H* (Q))' = H-1 (Q) x H* (Q) ' : U -* ( af U, *- is completely continuous. 
This is easily shown by using the same arguments as in the proof of Proposition 
2.5 of [1] based on the compact imbedding of H1(Q) into L4(Q). This fact and 
(14) show that the (Leray-Schauder) degree of 4ba'f with respect to ( and 0 is 
well defined. In conformity with [16, p. 184], we denote it by d[4bof, (9, 0]. By the 
existence theorem of Kronecker [16, pp. 176, 184], to prove that there exists U E (9 
solution of VS U = 0, it suffices to show that d[4VS, (, 0] # 0. 

Proposition 2.2. If the bounded open set (9 is taken sufficiently large, then 
d[V? ?, (, O] E { 1, -1}. 

Proof. The ideas of the proof follow those of Proposition 2.5 of [1] because here 
f = 0 with even the simplification that we only consider homogeneous Neumann 
boundary conditions. D 

Theorem 2.3. Under the assumptions of Proposition 2.2, we also have 
d[4ba, (9,0] E {1, -1} and consequently problem (5) has at least one solution. 



970 M. FARHLOUL, S. NICAISE, AND L. PAQUET 

Proof. We modify the homotopy introduced in Theorem 2.7 of [1] in order to take 
into account the nonzero datum f. Here we take 

/: ( x [0,1] -* X: (U,t) JtctfU. 

By (13) and Proposition 2.1, we have Uta,tf U # 0, for every t E [0,1] and every 
U E (9. 

Clearly #,(U, t) = U + yt,tf U. Let us then define the mapping 

F: ( x [0, 1] X: (U, t) yta,tfU. 

If we show that F is completely continuous, then it will follow from the invariance 
of the degree by such homotopy [16, p. 185] and from Proposition 2.2 that 

d[L f, (9, 0] = d[L? ?, (9, 0] E {1, -1} 

and the theorem will be proved. 
By the continuity of the Riesz isomorphism, it suffices to show that the mapping 

(9 x [0, 1] X': (U, t) (Fta tfU, .) is completely continuous. As before denote 
by F the natural extension of F to H-1(Q) x H1(Q)' defined by 

F: 0 x [0,1] H- 1(Q) x H,1(Q)': (U,t) (ytantfU,) 

The restriction mapping from H1 (Q) x H, (Q) to X being continuous, it suffices to 
prove that F is completely continous. Now from (12), we have 

(yttf (U 0), (v 2)) = - j(uV)u * 
v dx + k j(uV)017 dx 

- j Jgr dx + t [ a M 0.vdx- - f.f vdx]. 

We already know that the first three terms of this right-hand side define a com- 
pletely continuous operator from (9 x [0,1] to H-1(Q) x H1(Q)'. The last term is 
t times a constant term so that it trivially defines a completely continuous oper- 
ator (as a consequence of the compactness of [0,1] in IR). The last but one term 
t 1 oV a v dx defines also a completely continuous operator due to the compact 
imbedding of H 1 (Q) into L2 (Q). This shows that F is completely continuous, and 
thus F too. O 

Now we are going to state and prove a sufficient condition for the uniqueness. 
This condition involved the data f, g as well as the physical constants v, k and a. 
Let us first prove some technical estimates. 

Lemma 2.4. Let U1 = (u1,01),U2 = (U2,02) e X be two solutions of (5). Then 
they satisfy 

VIlUl - - - f1 ((U1 - U2) * V)u2] * (U1 - U2) dx 
(15) 

- jca(0i - 02) * (U1 - U2) dx, 

(16) kil10 - 02112 = - j[(u - U2) * V]02(01 - 02) dx. 
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Proof. Applying successively the first identity of (5) with u = u1, 0 = 01, v = 
U- u2 and u = U2, 0 = 02, V = U- U2 and subtracting the two obtained 
identities, we get 

VIul - u2H12 + f[(ulv)ul - (U2V)u2] * (Ul - U2) dx 
(17) 

+J a(O -02) (Ul -U2) dx = O. 

By Green's theorem and the condition div u1 = 0 in Q, it follows that 

J(UlV)(Ul - U2) (Ul - U2) dx = 0. 

Using this identity into (17), we obtain (15). 
The identity (16) is proved similarly using the second identity of (5). 0 

Lemma 2.5. Under the assumptions of Lemma 2.4, we have 

110 - 0211 < 
Ss* 

II9IIH1(Q)'IIU1 U211, O1 - O k2 HH(-)H1-UH 

where S and S* denote the Sobolev constants 

S= sup II7II,44, 

rqEH (Q)\{O} 

s* = sup IIqII04Q 
7rEH1 (Q)\{O} ll77l 

Proof. Applying successively H6lder's inequality, the definition of S and S* and 
Proposition 2.1, we obtain 

KJ[(u - U2) . V]02(01 - 02) dx 

? Z I(U 1- U2)j110,4,Q & 
a 

O2 1QI1 -O021o1,4,)Q 
j=1,2 axi 

K SS*IIU1 - U2111102111101 - 0211 

88* 
- k 9IIH1(Q)'IIU1 - U2111101 - 0211. 

The result follows using this last estimate in (16). 0 

Corollary 2.6. Under the assumptions of Lemma 2.4, we have 

a (l - 02) -(Ul - U2) dxK < ka PP2 SS* 
I9IIH1(Q)/Iu1 - U2H12 

Proof. This follows from the Cauchy-Schwarz inequality, (9), and the estimate of 
Lemma 2.5. 0 

Lemma 2.7. Under the assumptions of Lemma 2.4, we have 

-(Ul u2) V)u2] (ul - U2) dx 

< - U2 [jajP II9IIH1(Q)' + Ilfllv'] 
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Proof. As (7), one can show that 

JIU211 < al 110211 + Hlflv'. 

The desired estimate follows from the Cauchy-Schwarz inequality, the above 
inequality, the definition of S, and the estimate (6) with (8). D 

We are now ready to prove our uniqueness result (compare with the condition 
(2.25) of [1]). 

Theorem 2.8. If n:= I2 fHv + oSPP*[>sk + S* ]9|H'(Q)' < 1, then problem 

(5) has a unique solution. 

Proof. Let (ul,01) and (u2, 02) be two solutions of problem (5). Then by (15), 
Corollary 2.6 and Lemma 2.7, one gets 

IlUl - U2H12 < rK1u, - U2 12. 

If u1 5 u2, we may divide the two sides of this inequality by lu1 - u212, which 
contradicts the hypothesis. Consequently, u1 = U2 and by Lemma 2.5, we deduce 
that 01=02. 

Corollary 2.9. If j K< 1, then problem 
(5) has a unique solution. 

Proof. By the Cauchy-Schwarz inequality and (9), we have 

lfllv <? PllfHlo, , 11911HI(Q)' < P*119110,Q 
Consequently, with the notation from Theorem 2.8, one has i' ? t<1 and the result 
follows from Theorem 2.8 and the assumption K, < 1. D 

3. REGULARITY OF THE SOLUTIONS 

From now on, we suppose that Q is a plane domain with polygonal boundary. 
More precisely, it is assumed that Q is a simply connected domain and that its 
boundary F is the union of a finite number of linear segments ]F, 1 < j < ne (it 

is more convenient to assume that rj is an open linear segment [13, p. 182]). We 
further fix a partition of {1, .. ., ne} into two subsets K and D. The union of the 
Fj with j E 'D is denoted by rD and similarly the union of the Fj with j E M is 
denoted by FN. As before, we assume that FD is not empty. 

The aim of this section is to describe the regularity of any solution (u, p, 0) E 
V x L (Q) x H1 (Q) of problem (5). We shall see that this regularity is related to the 
singularities of the solution of the Stokes problem with Dirichlet boundary condition 
in Q and the solution of the Laplace equation with mixed boundary conditions. To 
recall the regularity results about these problems obtained in [13, 4, 5], let us 
introduce the following notation. Let Si, j = 1, ... , ne, denote the set of vertices of 
Q and let wj denote the interior opening of Q at Sj. Then the singular exponents 
of the Stokes problem near Sj are the roots A E C \ {O} of 

(18) sin2 (AWjl) _ A2 sin2 Wj = 0 

(see [5] for more details). Let us set 4S(wj) = min{RA; A is solution of (18) and 
RA > 0}. It is well known [5] that 
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The singular exponents of the Laplace operator near Si are simpler [13]: they are 
equal to (2k+1), with k E Z, if mixed boundary conditions occur near Sj (i.e., if 

2wj 
one has a Dirichlet boundary condition on one edge and a Neumann one on the 
other edge); otherwise they are equal to k7r with k E Z. The most singular positive 

Wi 

exponent .A(wj) is then equal to (playing a similar role of (s(wj)) 2w, in the first 
case and -r in the second. 

w3 

Now we are able to state the following regularity result. 

Theorem 3.1. Let (u,p, 0) E V x Lo(Q) x H (Q) be a solution of (5). Then 

(19) (u,p) e H2(Q) x H1(Q), if Q is convex, 
(20) (u,p) e Hl+s(Q) x Hs(Q), if Q is not convex, 

(21) 0 e Hl+`(c) 

where s = min(1, min=. = . s (wj) - E), a = min(1, minj=i... 2( (wj) - E), for 
any E > 0 (except if minIj=i...ne (A(wj) = 1, where we take a = 1). 

Proof. As 0 e L2 (Q), we may look at (u, p) as solution of the Navier-Stokes equation 
with a datum f - aO e L2(Q): 

(-IU + (U * V)U + Vp = f-aO in Q, 
(22) -V uV=V0 inQ, 

u= 0 on OQ. 

For this problem, we use the usual trick which consists in sending the nonlinear 
term in the right-hand side. By Theorem 1.4.4.2 of [13], the fact that u e H1(Q) 
implies that 

(u -V)u EH-'(Q) V > 0. 

Consequently, (u, p) is solution of the Stokes problem with a datum f-ac 0-(u- V)u 
in H-6(Q), and by Theorem 3.6 and Sections 4.1, 4.2 of [5] and the fact that 
(s(wj) > 1/2, we deduce that 

(23) (u,p) E H3/2+e(Q) x H112+E(Q) 

for E > 0 small enough. This additional regularity implies that 

(u V)u e L2(Q). 

Therefore, (u,p) may now be seen as the solution of the Stokes problem with a 
datum f - a 0- (u V)u in L2(Q) and Theorem 3.6 and Sections 4.1, 4.2 of [5] lead 
to the regularities (19)-(20). 

Going back to (1), we may see 0 e H1(Q) as solution of 

( -kLAO = g-(u * V)O in Q, 
(24) ' 0=0 on rD, 

aoh = ? on rN- an&0 nN 

By (23) and the Sobolev imbedding theorem, u e (C(Q))2, accordingly (u. V)0 
belongs to L2(Q). Therefore, 0 is solution of the Laplace equation with a datum 
in L2(Q) and mixed boundary conditions. By Theorems 4.4.3.7 and 1.4.5.3 of [13], 
(21) holds (the case wj = 7r/2 with mixed conditions around Sj is treated separately 
using a reflection to get the H2-regularity). O 
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Corollary 3.2. If wj < ir for all j = 1,... , ne such that mixed boundary conditions 
for 0 occur near Sj, then 

(25) 0 E- H3/2+e 

for E > 0 small enough. 

Proof. It suffices to notice that the assumption implies that a > 1/2. fl 

4. A MIXED FORMULATION FOR THE BOUSSINESQ EQUATIONS 

To introduce a mixed variational formulation of problem (5), we define the spaces 
(compare with [9, p. 118]) 

X = {(r, q) e (L4 (Q))4 x L 2(Q), ('r - q6) e H(div, Q)}, 
Y = (L4(Q))2 

Z = {1e c (L4(Q))2rn H(div, Q), r1 n = O on FN}, 

T = L (Q), 

equipped with the norms 

(r, q) lx = 111O,4,)Q + jqjj,l,Q + 1(r - q6) IH(div,,), JIVHIy = IV110,4,Q, 

ll?7llZ = 171'OJ,4,)Q + I7I IH(div,Q) 11011T = 11 110,Q 

We further introduce the following notations: 

(, r) =j| :rdx = Z j ijTij dx, (u, v)= u vdx= uivi dx. 
j,j=l i 

For a tensor r = (rij)1 <2i?2' the normal trace rn is defined by 

2 2 \ 

7'n = ETi 7nj I ET2j nj| 
j=( j=l 

where ri = (Til, Ti2), i = 1, 2, is a vector corresponding to the line i of r, and finally 
(.,.)r means the duality pairing between H-1/2(F) and H1/2(F). 

Then the mixed formulation of (5) reads as follows. Find (u,p) E X, u E Y, 
e Z, and 0 e T solutions of (26) to (29) hereafter: 

1 
(26) - (u,r) + (V (r - q6), u) = 0 V(,r, q) e X 

V 

(27) (V (a-pb), v)- (a u, v)-(aOr, v) +(f, v) =O Vv EYI 1 

(28) k (;,)+(V*i7,O)=O VqeGZ, - 

(29) (V*69- (u * E,O) +(g,o) =O 0 f V, T. 

We now check that, under the assumption of Corollary 3.2, (5) is equivalent to 
(26)-(29): 
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Theorem 4.1. Assume that wj < wr, for all j = 1, .. ., ne, such that mixed bound- 
ary conditions occur near Sj. Then (u, 0) e V x H1 (Q) is a solution of (5) if and 
only if (, p) e X, u e Y, ( e Z, and 0 e T are solutions of (26) to (29), with the 
next relations: 

(30) a = vVu=v (&u)i 

(31) = kVO. 

Proof. 1 Let (u, 0) e V x H1 (Q) be a solution of (5). Define a and ( by (30) and 
(31), respectively. By Theorem 3.1 and Corollary 3.2, we have 

a e (H 1/2+E(Q))4, t e Hc/2+Q 

for some E > 0. The Sobolev imbedding theorem yields 

H 1/ 2+(Q) c- L4(Q) VE > 0 
and therefore a e (L4(Q))4 and ( e L4(Q. 

Fix an arbitrary ('i, q) e X. Multiplying (30) by r and integrating over Q, one 
gets 

(32) - (u,r) = (Vu,T) = (Vu,r - q6), 
V 

because V * u = 0. By the following Green formula, which holds for any v E 
H(div,Q) and any w e H1(Q) (see the identity (1.2.17) in [12]) 

(33) j V vwdx =-j v * Vw dx + (v * n, w)r, 

the identity (32) becomes 

- (a,r) =-(V . (r-q6), u) + ((r- q6)n, u)r. 
V 

Since ulr = 0, we have obtained (26). 
The identity (28) is proved similarly using (31). 
Starting from the first identity of (5), replacing Vu by a and using Lemma 1.2.1 

of [12], we have 

1 
-(a-p6,Vv) - -(a.u,v)- (caO,v)+(f,v) =O Vv EH'(Q). 

By the Gree-n formula (33) and the fact that v E H (Q), we deduce that 

- (a - p6, Vv) = (V . ( - p6), v). 

Therefore, (27) holds for all v e Ho (Q) and then for all v e Y by density. 
The identity (29) is established analogously with the help of the second identity 

of (5). 
E Let us fix (u,p) e X, u e Y, ( e Z, and 0 e T solutions of (26) to (29). 

Take first as test functions in (26): q = 0 and 'r e (D(Q))4. Then one has 

r (u-) =-(V. r,u) Vr E (D(Q)) 
4 

or equivalently 

Vu= - in (D/(Q))4, 
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which proves (30). Since u e L2(Q) and a E (L2(Q))4, we deduce that u e HC(Q). 
Going back to (26) with test functions q = 0 and r E (Coo(q))4, by the Green 
formula, we get 

(rn) udu =0 Vr E (C' 

which implies that ulr = 0. 
Taking now in (26) 'r = 0 and q E D(Q) nL L2(Q), we have 

(Vu, q6) = O Vq E D(Q) nrLo(Q). 

Consequently, u satisfies 

V u= c E C. 

Applying the Green formula and the fact that u = 0 on r, we deduce that V* u = 0. 
This means that u E V. 

Similarly, taking appropriate test functions in (28), we show that 0 E H1(Q), 

IPD = ?0, ga = 0 and the identity (31). 
Since V is a subspace of Y, (27) implies that 

iI (V *(a-pb), v) - -(a -u, v)- (eaO,v) +(f, v)= 0 Vv EV. 

Using (30) and the Green formula (33), we arrive at the first identity of (5). Remark 
that considering v E (D(Q))2, we also get -vAu+(u.V)u+aO+Vp = f in (DY(Q))2. 

The second identity of (5) follows using the trivial inclusion H1 (Q) C L2(Q) and 
from the identity (29) combined with (31), applying Green's formula. D 

The Boussinesq equations (cf. [1] and Sectiofn 2) have in general more than 
one solution, unless the data satisfy very restrictive requirements. We propose 
here to analyze an approximation of nonsingular solutions of the Boussinesq mixed 
formulation (26)-(29) (cf. [9] and [12, pp. 298-300]). For this purpose, we define 
two linear operators S and L. The operator S associates to any function f E 
(L2(Q))2 the solution ((a, p); iu) E X x Y of the problem 

{ 1 (a ) + (V (r - q6), i) = 0 V('r, q) E X, 
(34) 

t ( (- 6),) (,v)= Vv E Y. 

The operator L associates to any function g E L2 (Q) the solution ( E,0) E Z x T 
of the problem 

{ k (( ) + (V. -, 0) = 0 V E Z, 
(35) 

(V. * ,) + (jp) = 0 V E T. 

Problem (34), respectively problem (35), is nothing else than a mixed formulation 
of the Stokes problem (cf. [7]), respectively the Dirichlet problem, with mixed 
boundary conditions. Thus, using the same techniques as in [2, 7, 12] and the 
regularity results of Section 3, problem (34), respectively problem (35), has a unique 
solution in X x Y, respectively in Z x T. Furthermore, under the assumption of 
Corollary 3.2, the a priori estimates 

l1Sf llj.xiy < C llfllo,?Q X IILjj2xT ? C IljIIo,Q 
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hold with a constant C > 0 which only depends on Q and where 

X = (Lr(Q))4 xL(Q), Y=Z= (Lr(Q))2 2<r <4 

and 

JJ((T,rq); u)JJ y = JTJIJ0,r,Q + JJqJJ0,Q + UllIIO,r,Q, 

11('q10)112xT = 11 IIO,r,Q + 11'IIo,Q. 

Note that we have the following continuous injections: 

Xc-+JX, Y c+V, Z- *Z. 

Next we define the mapping H from X x Z into itself by 

(36) 'q 0 L ( (v * q) 

whereX=XxY, Z=ZxT, r = (('r, q); v), and 71 = (71, ) 

With these notations the Boussinesq equations (26)-(29) take the form 

(37) Find (a>,) EX x Z such that H(a,E) = 0 

where a = ((a, p); u) and 0 = ((,O). 

In the sequel, we shall be concerned with the nonsingular solution of (37). A 
solution (a, c) E X x Z of (37) is said to be nonsingular if the FRechet derivative 

of H at the point (a,6): H'(a, :X x Z- X x Z 

(38) + ( ) ( .v?(u ) ) 
*~~ ~ ~~~~~~~~ L (u-q 

is an isomorphism 
Hence, (a, () is a nonsingular solution of (37) if and only if, for each f* E 

(L2 (Q))2 and g* E L2 (Q), the linearized Boussinesq problem 

(39) Find (a*,*) Xx Z such that H'(o>0)( ,f*)=( o) (*) 

is well posed. 
Now in order to study the nonsingular solution of (37) we introduce the bounded 

linear operator 

I K ((X x Z,X x Z) 

(40) { 1. ) (S 0) (( u 

and we state the following result. 

Lemma 4.2. Assume that (a, c) E X x Z is a nonsingular solution of (37) such 

that u E H2(Q) and 0 E H2(Q). Then the operator (I + IC) is invertible and has a 
continuous inverse in C?(X x Z, X x Z), where X = X x Y and Z = Z x T. 

The proof of this lemma is similar to the one of Lemma 2.1 in [9]. 
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5. THE DISCRETE PROBLEM AND ERROR ESTIMATES 

Let us now introduce the discrete version of (37) by using mixed finite element 
methods. 

Let (Th)h>o be a uniformly regular (or quasi-uniform) family of triangulations 
of Q (see [3] or [12, p. 98]), in the sense that there exist two positive constants u, r 
such that 

rh < hK < ?PK VK ET hVh > O, 

where hK (resp. PK) denotes the exterior (resp. interior) diameter of K. For 
K C R2, let Pk, k > 0 denote the restrictions of polynomials of total degree < k to 
K. 

For any K e Th and x= (xl,x2), let 

RTo =(Po)2 xPo={(a, b)+ C (Xl, X2); a, b, c c R} 

and set 

Xh = {(h,qh) e X; rhIK e (RTo)2, qhlK e Po VK E Th}, 

Yh = {Vh E Y; VhIK E (Po) VKE h}, 

Zh = {h E Z; rhIKE RTo VK E h} 

Th = h E T; hJK E Po VK E Th}. 

Observe that the definition of Zh is possible if the partition into elements is made 
in such a way that there is no element across the interface between IrD and rN on 
r. 

We have the following approximation results (cf. [3, 12, 15]): 

i) Owing to Theorem 111.4.4 of [12], there exist two interpolant operators 1h E 
12(x n((H1 (Q))2 x H1 (Q)), Xh) and ho e i2(Z n (H1 (Q))2, Zh) such that 

(41) II(lh -I) (,q) II 0,,Q < Ch2/q 1 (r, q) |i1Q Vs > 2, 

(42) IIH? liIIsQ < Ch2/, I 71 l1,Q Vs > 2, 

where I ('r, q) 11,Q-I ' 11 Q + I q 11,Q and C is a positive constant independent 
of h; 

ii) Owing to Theorem 3.1.5 of [3], there exist two projection operators Ph E 

L2(H1(Q),Yh) and Pho e C(H1(Q),Th) such that 

(43) IPhv - vllo,s,Q ? Ch2/ I v 11,Q Vs > 2, 

(44) llh4'O - 'IIo,s,Q < Ch2/, I P 11,Q Vs > 2. 

Now, in order to write the discrete problem in the same form as the continuous 
problem, we introduce the discrete operators-Sh and Lh of S and L. For f E 
(L2(Q))2, Shf - ((&h,iPh); Uh) E Xh x Yh is the solution of the problem 

( , (h,h) + (V * (rh - qh), uh) = 0 V(rh, qh) E Xh 

(45) 
I (V * (&h-Ph&),Vh) + (f,Vh) = 0 VVh E Yh. 
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On the other hand, for any g e L2(Q), Lhg = (dh, Oh) E Zh x Th is the solution 
of the problem 

( k((h, h)+(V*rh,iOh)=O V?qhEZh 
(46) 

(V .'h, Ph) + (j,h) = ? V'h ETh 

Next we define the mapping Hh from Xh X Zh into itself by 

(47) Hh (rh,h) (h) (h =h Vh)-/h) 

where Xh = Xh X Yh, Zh = Zh X Th, Th = ((rh, qh); Vh), and 71h = (h, h) 

Then, the discrete problem of (37) reads as follows: 

Find (ah,(h) E Xh X Zh such that 

(48) 
Hh(ah, h) 0, 

where ah = ((ah,Ph);Uh) and 'h = (h,Oh) 

Finally, we introduce the discrete operator tCh of IC. Let ((a,p); u) E X x Y, 
(0,O) E Z x T and set ((a*,p*);U*) = (Hh(a,P);PhU), (h, O) = (H( hPOO). The 
operator Ch E IC(Xh X Zh, Xh X Zh) is defined by 

Sh 0 (a~* v& + 1rh U*) +aO 

(49) Ch(-rh,qh) =( O( + 
h 

h 

where Th = ((Th,qh);Vh) E Xh and 71h = (rh, 00.) E Zh- 

We now prove some technical lemmas. 

Lemma 5.1. For all r such that 2 < r < 4, we have 

(50) (V. ('rh - qh),v h) > C||VhH|O,r,Q VVh E Yh, 
(Trh,qhj cXh 11'rh ,qh) Il 

(51) 
hSUh 

(V hih) >V Chll,Q h E Th, 

where II(r,q)Ilk = 11rllo,r,Q + lqllo,Q, llq7HI2 = ll7llo,r,Q and C is a positive constant 
independent of h. 

Proof. Let us sketch the proof of (50). For any vh E Yh, there exists (cf. [12, p. 
255]) rh E {r E H(div, Q),rlK E (RTO)2VK E Th} such that (VrTh,vh) = |lVh 0'Q 
and 11Th10o,s,Q + P|V * 'rh1o,Q < CH|VhH1o,Q Vs > 2. Now (rh, ?) E Xh and from the 
direct and inverse estimates 

11'rh1O,r,Q < Ch1 
2 

-1h|1o,s,Q, lVh|jO,r,Q < Chr VhlO,Q, 

we have 

(V lTh, Vh) = lVh o Ch1?Q 4VhHO,r,Q 

ll'rh,)lk H 1'rhllh,r,Q 
> Ch 2 

lhI,,Q 
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Therefore, taking s = 2r/(4 - r) (s > 2 since 2 < r < 4), we obtain 

(V Th, Vh) > CIIVh1, 
ll'rh,0)Il CVhO,, 

and (50) follows immediately. F 

Lemma 5.2. Assume that Q is convex and that w3 < ? , for all j = 1,...n, 
such that mixed boundary conditions for 0 occur near Sj. Let f E (L2(Q))2 and 
g E L2 (Q). Then each of the problems (45) and (46) has a unique solution and 

(52) II(Sh - S)flkX < Ch 2/r SfI|i,Q, 

(53) II(Lh - L)IIXT < Ch2/r IlLg|ll,Q. 

Proof. Owing to the inf-sup conditions (50) and (51), it is a routine matter to show 
that each of the problems (45) and (46) has a unique solution. 

To prove the estimate (52), let ((a,p);u) = Sf, ((&h,Ph);flh) = Shf and set 

((&hiP,);fi*) = (Hh(&,P);Phii). Now, similarly to Theorem 3.2 of [8], using the 
theory of mixed finite element methods (cf. [2]) and the fact that (cf. [7]) 

-1rThOQ > Cll('rh,qh) loQ 

V('hh,qh) e{(r,q) e Xh; (V (r-q6),v) =O Vv e Yh}, 

we have 

(54) 
l -&h -hll0,Q + IPh - PhHIO,Q + llUh - Uho,Q < Ch (I I 1,Q + I P I1,Q + I U11Q). 

On the other hand, since (cf. [3, 6]) 

Hoh - &hllO,r,Q < ChK2/r-lll - &hllo,Q; 

I-h - hHlO,r,Q < Ch / i hUhll|0,Qi 

and r > 2, the estimate (54) leads to 

llh- &hHlO,r,Q + IIPh - PhHO,Q + llUh - UhO,r,Q 

< ChC2/r (I & I1Q + I P I| Q + I Ui 11,Q). 
This last inequality, with (41) and (43), gives us 

II - &hllO,r,Q + IIP - Ph IIO,Q + Iil - UhlO,r,Q 

< Ch 2/r(I a I|1Q + IP |IjQ + I U, |1Q), 

which is nothing else than (52). 
The proof of (53) is similar to the one above. D 

Remark 5.3. FRom (52) and (53) one can deduce the following estimates 

(55) II (Sh - S)jIlkxx < Ch2/r f Q Vf e 2 (Q) 2 

(56) Il(Lh - L)11XT < Ch2/r1llllo,Q V9 E L2(Q). 

Lemma 5.4. Under the assumptions on Q of Lemma 5.2, assume that (a, () is a 

nonsingular solution of (37). Then we have 

(57) lim IlC - ChIIr(kx2,kx) 0. 
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Proof. Remark first that the assumptions on Q of Lemma 5.2 yield with Theorem 
3.1 u e H2(Q) and 0 E H2(Q). 

Let(7) E X x Z, ((0r,pP);u*) = (Hh(orp);Phu) and (E*,0h) = (1hOP0h0). 

We have 

(8 (AC-ACh)('r,ri) - ( S(S(Uv + r u)-Sh( v +r u 
))) 

(k 
- 
kh) 

h 
h)Ct+) (58) h\_urv -L~i h~v.) 

+ ( 
SO (a 

J + 

In order to estimate (IC-KCh)(r, ), we shall estimate each term of the right-hand 
side of (58). First, owing to (55), we have 

(59) I I(S - Sh)(cP) IIkx < Ch2/,rllCeV)11, Q < C(&e)h2/rIll)11o,Q. 
The term S(a v + r u) - Sh( a . V + 'r * u) can be written as follows 

(60) 
S(a v V + r u) - Sh(* . v + 'r* u*) 

=S((a -a o*) V) + S(r * (U - U)) + (S - SO (O* * V) + (S - SO (r u* ). 

Using the fact that IISfIlIxk( < Cjflo,XQ for all f E (L2(Q))2, (41), (43) and 
(55), we get 

1S((a- ah) *V)||kx'i < Cll('0- ah) *vIIl.Q 

< CH|o7 - Jh||O,s,Q||V||O,r,Q 

< Ch2'8 I oD,p) |1,Q IIVIIO,r,Q, 

where s = 2r/(r - 2) > 2 since r > 2, 

IIS(r- (u - Uh))lIkXx < C|-r. (u - U*)IIO,Q 

< CIIT|Io,r,UQ ||U-U* IIO,"Q 

< Ch2lq I U I1,Q IITIIO,r,Q, 

I(S - Sh)(Or* V)IlIxi < Ch2/rllor* VII0,Q 

? Ch2/rIIOr*IOIs,QIHV||O,r,Q 

? Ch2/r II (a, p) II1 ,Q I|V |O,r,Q, 

II(S-Sh)( ru* )Ik xY <Ch2/rllr.Ujlo,Q 

? Ch2/r IIrlIo,r,Q IIU* IIos,Q 

? Ch2/rjjuIIl,QjjTIjo,r,Q. 
Therefore, using these estimates and (60), we have 

(61) 

IIS(a v V + * u) - Sh(ao* v + 'r* u*)jIkxx < Chmin(2/r,2/s) (II'r|o,r,Q + HVHO,r,Q> 
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A similar procedure leads to 

(62) 

JIL(u * 7 + v - Lh(U*h * 7 + V * 
(h)IltxT< Chmin(2/r,2/s) (lL71IIO,r,Q + IIVIIO'rQ) 

We then get, from (58), (59), (61) and (62), 

- Ch) (T,I)IIX2 < Chmin(2/r,2/s)l(,)11 

so that 

I11 - KhlL(kx,xkXX) < Ch2/1, 

and this ends the proof. 

Therefore, Lemmas 4.2, 5.4 and a classical perturbation argument (cf. [12]) lead 
to the following result: 

Lemma 5.5. Under the assumptions on Q of Lemma 5.2, for h small enough, the 
operator (I + Ch) is an isomorphism from X x Z into itself. Moreover (I + Ch) 

maps Xh X Zh into itself. 

Lemma 5.6. Assume that the assumptions on Q of Lemma 5.2 are satisfied. If 
(u, ,) is a nonsingular solution of (37), then there exists a constant C > 0 such 

that 

(63 ) IIlHh (, JIk Xx Z < Ch2/ 

where 0h = 
((a*, Ph); Uh) = (h(a, P); Phu) and 

O*h 
= (hOh) - 

(1He'PRhO). 

Proof. Since (a, ,) is a solution of (37), we may write 

H(ah I ) = (6 * ,)+( 0 L -Lh) 9- k (u () 

(64) 

+ Sh 0 
1 
,(a* 

- * U- a * u) + a(O* 0)8 

V ? LhJ V k (h * h-U*( 

FRom (41), (42), (43), (44), (52) and (53), we have 

(65) *o-h - ljkxV < Ch 2 
- -HZXT ?< Ch2/r 

h 

II (S -Sh)(f - (a u) - aO)I - -X < Ch/, 
(66) 1 

II (L-Lh)(9 - ((u &)) |IIXT < Ch2/r. 

The term Sh(a U* - a u) may be written as 

(67) Sh(a U* . -a * u) = Sh(a * (U* - u)) + Sh((a- a) u). 
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Using the fact that IlShfIjxXv < Cllflgo,Q for all f E (L2(Q))2, (41) and (43), we 
get 

IISh(ah* 
(U*-U))IIkXx,Y 

< CIIah* 
(U*-U)II0,Q 

< C|| h ||O,s,Q |Uh - UHO,r,Q (s = 2r/(r - 2)) 

< Ch2/rII(u,p)I11,Q I U 11Q, 

ISh((a* - a) * 

U)Ilkxjy 
< CII(a* - a) 

UII0'Q 
? Cloah - aIOOrQ IIUIIO'sEQ 

? Ch2/r I (a, p) |11Q IIUII1,Q, 

and 

IlSh(at( - 0)) Ixx- < C(a)110 - 11o,Q < C(a)hI0IIl ,Q. 

Therefore, these last estimates, with (67), give us 

(68) IISh(-(o U* - r * u) + a(O* - 0))II X- < Ch 

Finally, a similar procedure leads to 

IlLh(uh * - U )0hZxT < Ch2/rI 

and from (64), (65), (66), (68) and the last estimate, we obtain (63). F 

We are now able to prove the error estimate for honsingular solutions of (37). 

Theorem 5.7. Under the assumptions on Q of Lemma 5.2, if (a, &) is a nonsingu- 

lar solution of (37), then for h small enough, problem (48) has at least one solution 
(Oh, h) such that 

~~~~~~~~~~~~~~~~~~~~~~~ 
(69) II () (rh ()ItX2 < Ch4r, 

h 

where 2 < r < 4. 

Proof. We define the following map S from Xh X Zh into itself 

S( (h,i) h) (I + h) 1Hh(-h,r) 

and prove that it has a fixed point in a neighborhood of (h, h*), where Ah = 

((a*,P*);U)= (Hh(a,p);P'hu) and TOh = ((hQS) (HO 1j0). T 

this end, we start by estimating IIS(Th,?lh) - (*h,Wh*)tIIkxt in terms of 
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V'(Th,7h) - >* * We use the notations 

(r,77)t = 0) and |j(,)t qHXk. 
= I 

(T,77)jjkx 

We have 

SQrh,ri) )- (oh, *)t = (It + -h(I+ Ch)(S(rh,q)-(h, 
*)t) 

h h h h 

so that 

(70) IS(r)h, 77) *hi tjj ? CH(I + Ch) (S()-h, 77) - (hi X)xz 
h h h h 

On the other hand, 

(I + K h) (S(Qh, ) - (Oh, i ) ) h h 

= (I + Ch) ((Trh, 7) -(ah, *)) -Hh (Th, ) 
hhh 

(71) = Hh(*h, ) -Hh(rh, 77) + (I + Ch)((rh, )t-(h (O )t) 

- Hh(O*h, ) 
h 

(Sh ? ) (a*h Th) *(U - Vh@) (* ) 

=J~~ 2h~~~rhiu~~vh 

H(*h 
L Uh Vh) ($4 - 77h)h 

Now, using the fact that jjShfjjkxV ? Cjjfjjo,Q for all f e(L 

ILhgllxT < C|gjjo0,Q for all g e L2(Q), and the inverse inequality (cf. [3]) 

VhHIO,s,Q ? Ch2/8-2/rHlVhIIO,r,Q, we have 

II Sh((a- Th) (U -Vh)) IIkX <? CI (a* -Th) (U 
- Vh) 11o,Q 

< C10 ah -Th||O,r,QIIUh 
- 

VhIIO,s,Q 

< Ch2 r Ila*h - ThIIO,r,QI |Uh - Vh|IO,r,Q 

< ChS~ Or* - ThIIO,r,Q + |U*- VhIIO,r,Q)2, 

IlLh((u -Vh) (( - 7h))IltxT < Ch2 
- 

(2h1- 7hllO,r,Q + IU4- VhI1O1r,Q)2, 

where s = 2r/(r - 2). 
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Therefore, by (70), (71) and (63), we have 

IS(Trh, 7) (o0h, )I ? Clh I K(rh, 77) - (hh *)Ixl + C2h. 
h h h 

Thus, if 

llK(rh,7) -(*hi *)k j?x< p(h) 
h h 

with p(h) satisfying 

(72) Clh r4p2(h) + C2h2 < p(h), 2 < r < 4, 

we have 

(73) |IS(rh,q) - (Orh,)t11kx2 < p(h). 
h h 

If h is small enough, the greatest root po(h) of the equation 

Clh r p2 p+C2h2 =0 

satisfies 

po(h) < C1h4 rr, 

where 2 < r <4. 
Therefore S has at least a fixed point (Orh, (h) in the ball 

Bh{(Th, ) E XX Z, IK(Th, ) (a*h, h*)ljkx2 < po(h) 

and such a fixed point is a solution of 

Hh(0h, ) = 0- 
h 

Since (Oh, h) E Bh, po(h) < Ch r and using (65), we have the desired result. D 
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