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NUMERICAL APPROXIMATIONS 
OF ONE-DIMENSIONAL LINEAR CONSERVATION EQUATIONS 

WITH DISCONTINUOUS COEFFICIENTS 

LAURENT GOSSE AND FRANCOIS JAMES 

ABSTRACT. Conservative linear equations arise in many areas of application, 
including continuum mechanics or high-frequency geometrical optics approx- 
imations. This kind of equation admits most of the time solutions which are 
only bounded measures in the space variable known as duality solutions. In 
this paper, we study the convergence of a class of finite-difference numerical 
schemes and introduce an appropriate concept of consistency with the contin- 
uous problem. Some basic examples including computational results are also 
supplied. 

1. INTRODUCTION 

This paper is devoted to rather general numerical approximations of the following 
linear conservation equation: 

f9 4IL + Ox(ab) = O for (t, x) E ]0, T[xR, 
(1.1) (0,A.) = /Ho e Mloc(R)X 

when the coefficient a satisfies 

(1.2) a e LOO(]O,T[xR), 9,a < a in ]O,T{xR1t, a E L1(]O,T[). 

We shall also consider briefly the corresponding transport equation 

1.3) f OtU + ao9u = 0 for (t, x) e ]0, T[xR1), 
(1.3) lu(,.) = uo e BVloc(R). 
This kind of equation is encountered for example in the field of nonlinear hyper- 
bolic systems. The transport equation appears in the context of nonconservative 
products involved for instance in multispecies chemical reacting models, and in sev- 
eral numerical methods for hyperbolic systems (see, e.g., [9, 20]). The conservation 
equation arises when considering systems with measure-valued solutions (see for 
instance [19, 21, 29]). Another field of application is the so-called pressureless gases 
model: [1, 10, 16, 4, 5]. Equation (1.1) appears also explicitly when linearizing a 
nonlinear hyperbolic equation 

(1.4) t9tu + Oxf (u) = 0 
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with respect to the initial data or the flux f. Concerning the first case, we refer to 
the numerical application by Olazabal [24], where a 2-dimensional perturbation of 
a 1-dimensional shock is studied (see also [15]). A simplified model for this is the 
linearized equation 

(1.5) t9tP! + 9X[f'(u) u] = 0, 

and we refer to [6] for a theoretical study of this problem when f is convex. In the 
context of the flux identification for convex scalar conservation laws, we obtain the 
same equation, with a measure-valued. right-hand side. We refer to [18], where the 
adopted point of view is very close to the one in this paper. 

One may consider also the high-frequency geometrical optics approximations for 
the two-dimensional Helmholtz equation in a nonhomogeneous medium. If one looks 
for planar wave solutions in the form A(x, y)e"w((x Y), where A is the amplitude, w 
the time frequency, and yp the phase of the wave, then yp satisfies a steady eikonal 
equation with a source term on the right-hand side and the "energy" A = A2/2 
might be sought as the solution of divx,(A * Vpo) = 0 (cf. [11, 12]). Most of the 
numerical approximations one can get for this stationary problem are obtained 
by a time dependent scheme iterated up to the convergence. The following one- 
dimensional equation can therefore be considered as a simplified model for this 
process: 

(1.6) otA + axpxzf * A) = 0. 

Since (o is usually defined in the sense of the viscosity theory [23], it is only endowed 
with a Lipschitz smoothness in space. This matches the context in which we propose 
our work. 

An appropriate theoretical framework for (1.1) has been recently introduced by 
Bouchut and James [2, 3] (see also Poupaud and Rascle [26] for another approach in 
the multidimensional case). It turns out that, in most of the cases, ,a is a measure in 
the space variable. So, because of the very low regularity imposed on the coefficient 
a, one cannot treat a priori this Cauchy problem in the theory of distributions. One 
way out is to understand the solution of (1.1) in the duality sense. For this purpose, 
it will be useful to write down the dual problem 

(1.7) f '9tP + aoxp = 0, (t, x) e ]O, T[xR, 
(1*7) l p(T,.) - l e Lip(RI) with compact support. 

It is known that this backward problem admits a Lipschitz continuous solution 
under condition (1.2), and this fact has been used already to obtain uniqueness for 
(1.4) (see [25, 8, 17, 28, 22]). The point is that there is no uniqueness for (1.7), 
and one of the main results in [2, 3] is to characterize a class of solutions, known as 
reversible solutions, for which existence and uniqueness hold. The duality solution 
of (1.1) is then the unique element of the space C([0, T]; Ml,,I(R)) satisfying for all 
reversible p's 

(1.8) | pj(t, x) JL(t, dx) = 0. dt 

A similar notion can be introduced for (1.3). Equipped with this characterization, 
it is therefore possible to give a precise interpretation of the ambiguous product 
(au) in the distributional framework. 
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We now want to make more precise what we mean by numerical approximation 
of (1.1). We consider for K e N conservative algorithms of the type 

(1.9) { i7%1 = (JLjK+1,--,,Lj?K)(R -(A > )R21e) 

-L 3-K (age!_K+l,...,a.+1 K) e R 2K, 

where pX and A+ n denote some approximations of 1u(nAt, jAx) and a(nAt, jAx), 
respectively. At this numerical level, the main difficulty is to handle the lack of 
a priori estimates satisfied by (1.9). Consequently, most of the work is done es- 
timating what we called the dual scheme which is obtained by a summation by 
parts (as it is done for the continuous equations). Because of the smoothness of the 
reversible solutions of (1.7), it seems more hopeful to seek strong properties such 
as BV, L? or Lipschitz-like bounds for these backward approximations. We prove 
that, under some CFL-type conditions on the space-time grid, we have compactness 
results and convergence toward the reversible solution associated to every smooth 
final data. Moreover, property (1.8) is automatically enforced by the definition of 
our dual scheme. Finally, as a consequence of the conservative character of (1.9), 
we have also a uniform bound on the total mass of the approximate solution of 
(1.1). Putting all these arguments together easily gives the expected convergence 
result toward the duality solution of the problem (1.1). 

Consequently, this paper is organized as follows. In Section 2, we recall the 
specific characterizations of duality solutions for (1.1) and (1.3), with the existence 
and uniqueness results. We also present the derivation of the universal represen- 
tative & of a, which gives a meaning to the product a,u in the distribution theory. 
In Section 3, we develop our theory for conservati've (2K + 1)-point schemes for 
(1.1) and (1.3). We define the associated dual scheme and analyse its behaviour 
by checking the sign of some appropriate coefficients. The cornerstones of our con- 
vergence proofs are some positivity requirements for these coefficients, which give 
bounds on the amplitude and the total variation of the approximations, as well as 
monotonicity and monotonicity preserving properties, together with a convenient 
notion of weak consistency with the time-continuous equation (1.1). In Section 4, 
we use these general results to establish the convergence of some very classical nu- 
merical schemes developed in the context of scalar conservation laws belonging to 
the Lax-Friedrichs (LxF) and upwind families. Finally, in Section 5, we present 
some numerical computations obtained with three-point schemes taken from both 
these classes. 

2. SOME FEATURES ABOUT DUALITY SOLUTIONS 

In this section we recall the definitions of the duality solutions to the direct 
problems (1.1) and (1.3), introduced by Bouchut and James [2, 3]. As mentioned 
before, a key tool is the adjoint equation, (1.7) for the conservative case, and 

2 1 f at9t 
7 + Ox (a7r) = O, (t, x) e JO, T[xR (2.1) 7r(T,.) = 1 e L ̀I1(R) 

for the transport equation. We first introduce the notion of reversible solutions to 
the backward problems (1.7) and (2.1). Since one of the aims of this paper is to 
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characterize the approximations of (1.1) and (1.3) for which the aforementioned dual 
scheme mimics these properties, we state precisely the most important properties of 
these solutions. Next, we give the definitions and fundamental properties of duality 
solutions. 

Throughout Section 2 we consider a coefficient a e L??(Q), Q =]O,T[xlR, sat- 
isfying the one-sided Lipschitz condition (1.2). Notice that (1.2) actually implies 
some regularity on a: indeed for almost every t E]O, T[, a(t,.) e BV10c(R) and for 
any x1 < x2 

(2.2) TV[Xl,x2] (a(t, .)) <-2 (loe(t) I (x2 - X) + 11aIL??) 

Following [3], we introduce the following four spaces: 

SM = C([O, T], Mloc(R) -a(Mloc(R), Cc(R))), 

(2.3) 5LiP = LipIO([O, T] x R) 

SBV = O,T], Ll JR)) n BQO T] BVloc(R)) 

SL? = C([O, T], L`O (R11)-o(L`O (R)- LC (R))) 

Here we are interested in solutions p E SLip to (1.7), ,u e SM to (1.1) and to 
solutions ir E SLOO to (2.1), u E SBV to (1.3). 

Detailed proofs of all the theorems in this section are to be found in [3]. 

2.1. Reversible solutions of the dual backward problems. We shall denote 
by C the space of Lipschitz solutions to (1.7). The key problem here is that there 
is no uniqueness for solutions in this class, as is evidenced by the following example 
(Conway [8]). Consider a(x) = -sgn(x). Then any solution to (1.7) is of the 
following form: 

(2.4) P(t,X) = _h(T - t)slgnx) if T-t < x:l, 

for some h e Lip([O, T]) such that h(O) = pT(0). Notice that there is a "canonical 
choice" for the above h, namely h pT(O). If pT has a finite total variation, then 
it is preserved for this solution. Motivated by these observations, we introduce the 
following definition. 

Definition 2.1 (Reversible solutions). (i) We define exceptional solution to be any 
function pe e C such that pe(T,.) = 0. We denote by ? the vector space of 
exceptional solutions. 
(ii) We define domain of support of exceptional solutions to be the open set 

Ve = {(t, x) E Q; i Pe E , Pe(t, X) $ 0}- 

(iii) Any p e C is called reversible if p is locally constant in Ve. The vector space 
of reversible solutions to (1.7) will be denoted by IZ. 

In the preceding example, the exceptional solutions are given by pe(t, x) = 

h((T - t - Ix) +) with h e Lip([O,T]), h(0) = 0, and we have Ve = {(t,x) E Q; 
lxl < T-t}. 

Theorem 2.2 (Backward Cauchy problem). Let p e Liploc(RI). Then there ex- 
ists a unique p e ? reversible solution to (1.7) such that p(T,.) = p" . This solution 
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satisfies for any x1 < X2 and t e [0, T] 

(2.5) Ilp(t *-)I|| L?? (I ) < IIPT || L?? (J), 

T 

f a(s).ds T 
(2.6) |89P(t, )HILo(I) K et ik9U HILo(J), 

with I =]X1, X2[ and J =]xi - IIaIK(T-t), x2+IIaI,0 (T-t) [. Moreover, ixp(t,) > 0 

if axp >_ o. 
Equipped with this class of solutions, we shall now be able to give a precise 

meaning to the formal definition given by (1.8). But before that, we state some 
very important properties of reversible solutions. 

First, more handable characterizations of reversible solutions are given by their 
specific behaviour with respect to monotonicity and total variation properties, 
which are of course related. 

Theorem 2.3. Let p E L. 
1. Characterization by total variation. 

(i) If p is reversible, then t 4 i9xp(t, x) I dx is constant in [0, T]. 

(ii) If the above function is constant and finite, then p is reversible. 

2. Characterization by monotonicity. 

(i) p is reversible if and only if there exists Pl, P2 e ? such that 89xPl > 0, 

19xP2 >0 andp=pi -P2- 

Next, another important feature of reversible solutions is the following stability 

result with respect to perturbations of the coefficient and final data. 

Theorem 2.4 (Stability). Let (an) be a bounded sequence in L?(Q), with an -, a 

in L' (Q) -w*. Assume i9xan < Xn (t), where (an) is bounded in L1 (]0, T[), i9xa < 

a E L'(]0, T[). Let (pT) be a bounded sequence in Lip,,,(R), pT + pl, and denote 

by Pn the reversible solution to 

{ tPn + an xPn = 0 in Q, 

<(Pn (T, *)=PT 

Then Pn -+ p in C([O, T] x [-R, R]) for any R > 0, where p is the reversible solution 

to 

{atp +aOxp=0 in Q, 
p(T,.) = p. 

We turn now to the resolution of (2.1). The following definition and properties 

actually follow by differentiating the reversible solutions of (1.7). More precisely, 
if ir E SLOO solves (2.1), there exists a unique (up to an additive constant) p E 

SLip which solves (1.7) (see Lemma 2.2.1 in [3]). Thus we can state the following 
definition. 

Definition 2.5. We say that ir E SLOO solving (2.1) is a reversible solution if the 

corresponding p is reversible. 

The reversible conservative solutions therefore enjoy the following properties. 
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Theorem 2.6 (Conservative reversible solutions). The following three properties 
are equivalent for 7r C SLOO solution to (2.1): 

(i) 7r is reversible, 
(ii) 7r = 0 in Ve, 

(iii) Vr = 7Tl- i2, for some 7ri C SL?? solutions to (2.1), such that ri > 0. 

F'rom the existence and uniqueness Theorem 2.2 for the nonconservative Cauchy 
problem, we have immediately 

Theorem 2.7 (Conservative backward Cauchy problem). Let 7rT C Ll' (R). Then 
there exists a unique 7r C SLOO reversible solution to (2.1) such that 7r(T,.) = 7r 

This solution satisfies for any x1 < X2 and t C [0, T] 

||7r(t,)| L?? (I) < etT |7r" || L??(J), 

where I =]X1, X2 [ and J =]xi- all aIi(T - t), x2 + I al o(T - t) [. Moreover, 7r > 0 
if 7rT > 0. 

2.2. Duality solutions. Without any further comment, we turn to the forward 
problem (1.1), and state the following 

Definition 2.8 (Conservative duality solutions). We say that ,a C SM is a duality 
solution to (1.1) if for any 0 < r < T, and any reversible solution p to (1.7) with 

compact support in x, the function t | j p(t, x)p(t, dx) is constant on [0, T]. 

Theorem 2.9 (Forward conservative Cauchy problem). Let ,u? C Mj,c(R). Then 
there exists a unique ,u C SM duality solution to (1.1), such that ,u(O,.) = ,u?. This 
solution satisfies for any x1 < X2 and t C [0, T] 

(2.7) J bu(t,dx)I < J -LO (dx) 
[X1,x21 [xl -IIaIct, x2+IIaII,ct] 

Moreover, t t- j l,u(t, dx) is nonincreasing on [0, T]. 

Once again, the similar notion of duality solution for the transport equation (1.3) 
follows by analogy to the conservative case. 

Definition 2.10 (Nonconservative duality solutions). We say that u C SBV is a 
duality solution to (1.3) if for any 0 < r < T, and any reversible solution 7r to 
(2.1) with compact support in x, the function t ?-+ fR 7r(t, x)u(t, x) dx is constant 
on [0, ]. 

Theorem 2.11 (Forward nonconservative Cauchy problem). Given uo C BV(R), 
there exists a unique u C SBV duality solution to (1.3), such that u(O,.) = u?. This 
solution satisfies for any x1 < X2 and t C [0, T] 

(2.8) TVI(u(t, .)) < TVj(u 0), 

(2.9) ] XU(t)II || L?X(I) t< MIUOr uTL(J), 

withI=]Xl,X2[ and J=]xl-llall,,,,t,X2+llall,,,,t[. Moreover, u C- Lip([0,T]7LIo (JR)). 
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Notice that the formal result which allows formally to pass from the conservative 
equation (1.1) to the nonconservative one (1.3) by integration holds true in the 
duality sense. More precisely, we have the following proposition, which will be 
useful in the sequel of this paper. 

Proposition 2.12. 

(i) Let u C SBV be a duality solution to atU + aa,u = 0. Then ,u = a3xu C SM is 
a duality solution to atlL + a,(aa) = 0. 

(ii) Let , C SM be a duality solution to atbL + a,(aa) = 0. Then there exists 
U C SBV duality solution to atu + aaxu = 0, such that ,u = axu. Moreover, u 
is unique up to an additive constant. 

Up to now, the major drawback of duality solutions is that they are not defined 
as distributional solutions, since the product a,u or aaxu is not defined. The purpose 
of the next section is to give some indications about that, and to state a stability 
result with respect to perturbations of a and initial data, which is an important 
feature of duality solutions. 

2.3. Definition of the (a,u) product and stability. First we have to introduce 
a notion of flux, which defines the product a,u in a rather simple way, through the 
equation. 

Definition 2.13 (Generalized flux). Let ,a C SM be a duality solution to (1.1). 
We define the flux corresponding to ,a by 

(2.10) a A I =-atU7 

where ,a = axu and u E SBV is a duality solution to the nonconservative problem 
(see Proposition 2.12(ii)). Therefore we have 

(2.11) at? + aX(a A II) = 0 in D'(Q). 

The application ,a t a A ,u is of course linear, and since u E Lip([0, T], L' c(R)), 
one can prove that a A ,u E L??(]O, T[, Mloc(R))X and for any xl < x2, 

Ila A /IILOO(]O,T[,M(]x1iX2[)) < Ilalloo J ,u(O, dx)I. 

]xi- IaII.T,x2+IIaII.T[ 

The following stability theorem is a consequence of Proposition 2.12 and Theorem 
2.4. 

Theorem 2.14 (Weak stability). Let (an) be a bounded sequence in L?(]0, T[xR), 
with an -- a in L (]0,T[xxR) - w*. Assume axan < an (t), where (an) is bounded 
in L1(]0,T[), axa < a E L1(]O,T[). Consider a sequence (An) E SM of duality 
solutions to 

at n + ax(anin) = 0 in Q, 

such that Anu(0.) is bounded in Mloc(R), and un(0,.) - U E Mloc(R). Then 
-n , a in SM, where ,a E SM is the duality solution to 

atUL + ax (ap) = 0 in Q, -L(0, *) =,- 

Moreover, an A -n ' a A ,u weakly in Mloc(Q). 
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As it stands, the definition of the flux depends on the solution we consider, and 
thus is not completely satisfactory. We have actually the following result, which is 
proved through the study of the backward flow associated to (1.1). The proof is 
much more delicate than the previous result, in particular for the last assertion of 
the theorem. 

Theorem 2.15 (Universal representative). There exists a bounded Borel function 
a :]O, T[xR -- R such that for any conservative duality solution ,u, one has 

(2.12) a A Lu = a,u. 

We call such a function a universal representative of a. 
Moreover, one can choose a such that 

(2.13) a. e. t C]O,T[, Vx C R, a(t,x) C [a(t,x+),a(t,x-)]. 

In particular, we have 

(2.14) a(t, x) = a(t, x) = a(t, x+) = a(t, x-) a.e. in ]O, T[xIR. 

3. NUMERICAL APPROXIMATION 

3.1. Some conservative linear numerical schemes. Starting from here, we 
introduce a uniform grid defined by the two parameters Ax and A\t denoting the 
mesh-size and the time-step, respectively. As usual, the parameter A will refer 
to A\t/zAx, and we shall write for short A -O 0 when A\t, A\x -+ 0 with a fixed A. 
Moreover, the following notations will be of constant use in the sequel of this paper: 

V3 c\ 2, 7 = j [(j 2)XX(j+I2X[(x)bLo(dX). 

The aim of this work is to derive numerical algorithms able to compute a sequence 
_,,n).El of approximations of local averages: 

V(j, n) E (Z x N*) 7> p 
n x 1 [(j 2)Ax (j+ )Ax[(x)/_(nAxtdx)- 

We will also frequently use the vectors + and A n 1 in ]R2K introduced in (1.9). 
In the whole section, the notation ain will stand for an approximation of the coeffi- 
cient a which can vary from one scheme to another. The letter N will also stand for 
the quantity T/z\t. We give at once several examples directly inspired by standard 
algorithms used in the context of scalar conservation laws. 

Lax-F;riedrichs type schemes. A sequence of nonnegative viscosity coefficients n+ 
being given, this class of schemes writes 

n+1 = n- A[(ai +niiA+n -an1 An 1) 

(3.1) 
[n 1(Aln 1 -Ljn) - ,n_ l (,Uj -An1] 

In this case, we have 
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The classical LxF scheme corresponds to the constant value E' l -1. For the case 

where E' we get the modified "a la Tadmor" version [27]. Notice that, for 

this kind of scheme, we have K = 1, but more than three points may be involved 
through the viscosity coefficients Erj+ l 

Upwind type schemes. We first define for each z E R its positive and negative parts: 

z+ = max(O, z), z- = min(z, 0). 

We introduce the following discretization: 

(3.2) 

pfL+1 = ,u1 -A [[(ai+ )+, -(a? ) b1Q] + [(a1+ 24)8+i - (a _)4Ln ]1. 

In this case, we have 

A+ =(a )+, (a 

We will present in Section 4 some possible choices for the values an+i. 

Notice that we can rewrite the scheme (3.2) in the following form: 

I-L - Ag >(a+ 8+ H + (a+ 2)( -J1) + (aS+ -a _ H ,n 

which appears as a natural upwind discretization of 

at[L+ aa,,[ + a,a - 8 O. 

Remark 3.1. We would like to emphasize that the approximation of a (namely, the 
choice of the vector An ) may not be totally arbitrary. For instance, concerning 

the linearized equation (1.5), it depends on the approximation used for (1.4). In 
the geometrical optics setting, (1.6), it is given by a discretization of xfo, which is 
definitely not straightforward to choose. 

3.2. Working out the associated dual scheme. An important tool for the 
study of the numerical schemes for (1.1) is the dual algorithm. 

Definition 3.2. For every direct scheme (1.9) operating on n ? 
" 

N, we define 

the dual scheme as the relation operating on the real-valued sequence (p^.)j- 
- 

and satisfying the formal equality 

(3.3) V 1 < n < N, nAn n-1pn-i 
jcz j7z 

This equality is of course the discrete analogue of (1.8) which characterizes the 
duality solutions of (1.1). Now, we detail the structure of this dual scheme: by its 
definition, we have 

(3.4) 
[n-1 n (An-1 n-1 2 K _(n 1 nX- -jn-1 ) )pn n-1jP 

Z K jn - A ((A 7 R2K - (A _L )R2KP P. ] =0. 

jc7z 
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A summation by parts gives therefore 
K 

E pA(A^+j,/7+1472K =z: p a+ 2kb+k 
jEiZ jE.7 k=-K+1 

n(A n-1, -n- 1 nan-1 ,n-1 Pi j+ lljZ R2Kpij~k3+I,kbj3k 

jEZ k=-K+1 

so that, for 1 <r nK N, we get 

(3.5) 5/ni 5 p J a_ + Ik(pJ-k-pLk+l)PJ] =0. 
jEZ [ k=-K+1 1~ 

That gives the expression of the dual scheme: 
K 

(3.6) pn-1 =pn -A 5 a._k+l k( P,Lpn-1>,n-k+l). 

k=-K+ 1 

Expressions (3.4) and (3.5) imply respectively the two discrete weak formulations 
N-1 

5ot+h [ n+l I/n+A((An < +O) -N(A, w 1 )g2K)] 
n=l jE7 

+ 5Pj?g = 0, 
jE7Z 

and 
N-i1K K 

E7E7un pn1_npn+l + A 5 ak+ nk(PJk 

n=Ojz k=-K+1 

At this point, it is convenient to introduce some other notation. We first rewrite 
the scheme (3.6) in order to emphasize boundedness and monotonicity. Let us 
introduce the following coefficients: 

Bjn,k = Av(a>n_k-! k+l - af jk+l,k)' k n {-K,O,K}, 
B7, K = Aa^+- K1 

(37 Bn~ = -Aa>nK+I K, 

We notice that by construction 
K 

(3.8) V(j,rn) c 2 x N, 5 B7nk = 1, 
k=-K 

and that (3.6) is equivalent to 

K 

(3.9)~~~~p- = 5 B>nk-pL,n._ 
N-K 

Next, to study the TVD and monotonicity preservation properties of the scheme, 
we introduce 

+ = pn -p 
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and another set of coefficients, namely 

j,k j= A(ak+ ,k+l -k+!,k), k {-K,0,K}, 
n = Aai n 1Kl (3.10) C;_j,K -Aa+K+*-K+1 

j,K j-K+',K7 

C n, = 1 + A(a 
n -a n 

for which we have 

K 

(3.11) V(j,rn) C Z x N, S 7+k,k = 1. 
k=-K 

Notice that the coefficients B7k and C7k satisfy 

0,k =B`k+ (ak+n +-a>kk+) for -K<k<K-1, Cj k 3,jk + A\(a j-k+ 1,k+ 1 aJ_k- 1.k+ 1) (3.12) 2K=BK 

j,K -j,K' 

Writing (3.6) for the indexes j and j + 1, and making the difference, we obtain 

K 

(3.13) LApin.j1 = 5 C77j,k p.k+ 1 
k=-K 

Coefficients B7jk and C7k characterize various stability properties for the adjoint 
scheme (3.6), which are given in the following two lemmas. 

Lemma 3.3. Assume that the coefficients a 1 ,k introduced in (1.9) are uniformly 

bounded, and that 

(3.14) V(j, n) C Z x N, B> > 0. 

Then the following estimates hold for all n C {0,... ,N -1: 

(3.15) sup ? sup pNf; 
j7z jEZ3 

(3-16) V J > 0, Ipjn1 _ pjnl < CA > Ipn P_ p . 
Ij1<J IjI<J 

Moreover, the scheme (3.6) is monotone. 

Proof. Because of the formulation (3.9), the uniform bound on the size of the pjn 

is a straightforward consequence of relation (3.8) and the sign requirement (3.14). 
Now, for the equicontinuity in time, we notice that 

K Kn( Bn 1 n K 

IPJ PJ I| k BJk PS-k B>,1kpL k-p13 
k=-K k=-K k=-K 

We use now the standard triangular inequalities: 

k >0: IPjn-k -pjnl< 
? 

_1= 
+ 
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We plug this in the time variation expression and switch the j and 1 indices to get 

Ep pn-1 - WpnI 
il'J~~~~~x 

-1 k-1 K k 

< Z Z Z B74l klpn - I + E Z B lnkIP1+l 
p 

1. 
k=-K 1=0 IjI<J k=1 1=1 IjI<J 

We now move the sum over the j's 

-K+1 -1 K K 

Z f pn-1 npn < n(Z Z BI1 kn+ZZBJ+I1kJ IPn+i PJI 

IiI<J IjI<J 1=0 k=-K 1=1 k=1 
-K+1 K \ 

< A a - Ipn _ -7. 
Ijl<-J 1=0 1=1 

Finally, this gives 

S gp>n1 - p- n < 2KA sup Ian,+ lS n 1P_+i Pj I 
II?<J k,j,n 

3 jkI iJ 

Concerning monotonicity, we introduce the operator H : j2K -+ R1 such that 

= H(p KK,pK+1, -.,P3+K). 

Then, the partial derivatives of H are just given by the B7 k coefficients. Con- 
sequently, H is a monotone increasing function of each of its arguments under 
requirement (3.14). a 

Lemma 3.4. Assume that the coefficients an 1 k are uniformly bounded and that 

(3.17) V(j,rn) E Z x N, Bnk ? 0, Qk ? 0 

Then in addition to properties of Lemma 3.3, the dual scheme (3.6) satisfies the 
backward TVD estimate 

(3.18) Ep I+1 Pi Ij < E I N+ 
N 

i, 
jcz jcz 

and preserves monotonicity. 

Proof. The TVD property follows easily from the formulation (3.13), (3.11) and 
the sign requirement (3.17). Moreover, if we assume that each Apin+i > 0, then 

the formulation (3.13) implies that Apjn-1 > 0 as a convex combination of some 

positive quantities. This proves the two announced statements. 

Remark 3.5. All the properties in Lemmas 3.3 and 3.4 are discrete analogues of 
those of reversible solutions. Schemes satisfying only (3.14) do not enjoy all the 
properties, in particular they lack the monotonicity preservation. 
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3.3. Notion of consistency and convergence. We turn now to the definition 
of a notion of consistency for our schemes. Let us denote by ,uA, p' the piecewise 
constant functions defined for all (t, x) by pjn, and pjn, respectively, on each cell 

T7 - [nAt, (n + 1)At[x [(j)- 2)Zx, (j + -)Ax[. 

We define also the following vector-valued function: 

(A = 
(ak)k=-K+1,..,K: [0,T] x R R 22K 

(3.19) ~~~~~~~(t, x) A.+1 for (t, x) e Tjn, 

and we assume that, for a given pT e Lip(R), the discretization (pNj)3Ez satisfies 

(3.20) sup 1Ap.N1 iI < Ax Lip(pT). 
jE7Z 2+ 

This is achieved for instance by taking the local averages of pT on cells. Finally, 
we shall need the functions aA and bA defined for (x, t) e Tjn by 

(3.21) 
K 

a (t, x) = aA (t, x) 
k=-K+1 

b'A(t, x) E - K (t, x + (k 
- 

) Ax)-aA (t, 
x + (k-2) Ax)] - 

k=-K+l 

We can now state the most important definition. 

Definition 3.6. The scheme (1.9) is said to be weakly consistent with the contin- 
uous equation (1.1) if the coefficients a n,k are uniformly bounded and 

(i) a - a in L??-w* as A -0; 
(ii) for each A, there exists ca e L1(]O,T[), with IlaAll, < C uniformly in A, 

such that b'(t,.) < a'(t) for a.e. t E]0, T[. 

These assumptions are the discrete analogues of those in the stability result 
for reversible solutions (Theorem 2.4). FRom assertion (i) it follows by an easy 
computation that bA -* aOa in the sense of distributions. Assumption (ii) allows 
us to make this convergence precisely: provided a satisfies (1.2), we have actually 
b-* Oaa for the weak topology of measures. This leads to the weak consistency 
for the backward problem and therefore to the following result. 

Theorem 3.7. Let pT be a Lipschitz continuous function with Lipschitz constant 
Lip(pT). Assume that the adjoint scheme is consistent and satisfies the positivity 
requirements (3.17). Then the sequence (pA) converges as A 0 in the strong 
topology of L'J(Q) and almost everywhere toward the reversible solution of the 
problem (1.7). 

Proof. We begin by a discrete analogue of the Lipschitz estimate (2.6). FRom (3.13) 
and the nonnegativity of the Cj-'s, it follows 

K K 

Apn-1Z1 < E C71 IPk+|<n MK n C7,1 
k=-K k=-K 
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where for q e N, Mqc SUP-q<k<qjzpJ-+1. Using now (3.12) and (3.14), we 
have 

AP)+ 1?1 < 1+ Z (aj-k+,k+1 - 
aj-k- ,k+1)) MK. 

Going back to the definitions of a and bA, the preceding inequality rewrites 

n-1 
21 

< 
(I1+ /\ t RbA(tx ) l]xj lxj+ l[ (x)dx dt) MK. 

Assumption (ii) in Definition 3.6 gives therefore after an immediate induction 

2+2 ( J~~~tn-) 

N tq\ 

< J1 I + j a&(t)dt) M5Nzn+l)K. 

But Hq=n-1 i+ ft$q l ((t)dt < ef?ci ( ec by the consistency assump- 
tion (ii). Thus we obtain the desired estimate: if Q > 0 is a given integer, 

Q<2J < Qu X 2 _Q-(N-n+1) K<e<Q+(N-n+1)K-1 Ax 

Letting A -* 0, N -* +oo and limn lq (I + tqf aA(t)dt) = ef (t)dt so that 

we recover at the limit an analogue of (2.6). Thus, provided the sequence (pn) 

converges, its limit is Lipschitz continuous. 
We turn now to relative compactness. The former estimate readily gives, for any 

given a < b, 

IIPA (t- p' (t,* + AX)ILl (]aab[) < Ax(b - a)ec Lip(pT). 

In the same way, we get from (3.16) 

IIPA (t- p (t + At, .)IIL1(]a,b[) < AxAt(b - a)ec Lip(pT). 

Thus the sequence (p') is relatively compact in L1Oc(Q), so we have convergence, 
up to a subsequence, to some p which is Lipschitz continuous. 

Next, p solves the backward equation. Indeed, if 

Pt = for (t, x) e Tj, A\t 

it follows from the definition of the adjoint scheme and (3.22) that pA is bounded 
in L?, so PA -\ atP in L? - w*. Then, we have 

(3.23) 
K P~~~' n K a~n-i an-i -1 P P>k K 

jak+ Ik j-kaJ k1k 
Kan-1l 3 P-k Pj-k-1 ank ik2 .pn1 

Z ajyk+!1k Pj-kl1 
k=-K+1 k=-K+ 

K K 

Z an,-1 kpk-n anI-1 nk J a_k+ 1 ,kPi-k j -k-2 ,kPi-k-1 
k=-K+1 k=-K+1 x 
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Setting (ap)' = E j n EkK + aJn+l 1pT,n-, we rewrite the second term in Settng (p)~ /~k=- K+l ajk+1, 3kFj~k3 2' 

the right-hand side of (3.23) as [(ap)' (t, x) - (ap)' (t, x-,Ax)]/ Ax, which converges 
to D3,(ap) provided (ap)' - ap. But 

K K 

(ap) (t,x)= an-%+ 1,kPn k k an +l k(pnk -pr') for (t,x) e Tj. 
k=-K+1 k=-K+1 

The first term tends to ap in D' by the consistency assumption on a' and the 
bounds on p' , the second tends to O because of the Lipschitz estimate 

(3.24) Ipn _pjnl < KZxeCLip(pT), 

and the boundedness of an+_k-1 The same trick allows us to rewrite the first 

term in (3.23) as 

K n-1 n-1 
ajrk+ lk -aj -k-Ik 

(bOp')(t,x) + 2Z 2 (P' k -P) 

k=-K+l 

Assumption (ii) in Definition 3.6 leads to bA -* aDa in the weak sense of measures, 
and p is a uniformly bounded Borel function, so bApA -* D.a . p in the sense of 
distributions. The second term is handled in the same way, since (3.24) holds for 
any (t, x) and the remaining coefficient is a bounded measure. 

So far, we proved that, up to a subsequence, (pn )j,n converges strongly to a 
Lipschitz continuous solution to (1.7). To prove that p is reversible, which will 
lead by uniqueness to the convergence of the whole sequence, we remark that by 
construction the adjoint scheme preserves monotonicity (Lemma 3.4). Thus, if we 
split pT = PT p_, with aXPpT > 0, and denote pA the discrete solution computed 
by (1.9), then 

(i) P/ pi Lipschitz solution to (1.7); 
(ii) axpA > 0 by Lemma 3.4, so that a,pPi > 0; 
(iii) =i = -P -P P = Pi - P2 by linearity. 

So p is reversible by the second characterization of Theorem 2.3. D 

Remark 3.8. Theorem 3.7 actually gives an alternative proof for the existence of 
reversible solutions to (1.7). 

Theorem 3.9. Assume that the adjoint scheme is consistent and satisfies the pos- 
itivity requirements (3.17). Then the sequence (fr\) converges as A 0 in the 
weak topology of M(Q) toward the duality solution of the problem (1.1) . 

Proof. By its formulation, the scheme (1.9) is conservative and consequently ,A is 
endowed with a uniform bound in M(Q). So, up to a subsequence, we have 

( PA ,u in the weak * topology of M(Q), 

dt PA (t, x) 
A 
(t,dx) = 0, 

which means that ,u converges toward the unique duality solution of (1.1). By the 
classical uniqueness argument, the whole sequence is convergent. DZ 
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3.4. Convergence for the associated transport equation. This subsection is 
devoted to the study of some numerical schemes for the transport equation (1.3). 
We introduce some schemes which are in a way "integrated versions" of the con- 
servative schemes (1.9), and prove the convergence to the duality solution to (1.3). 
As a corollary, we shall recover some convergence results of the "discrete product" 
of a by , toward the product a,u. 

Concerning the proofs, we shall limit ourselves to the nice case where the coef- 
ficients CXn defined by (3.10) are nonnegative. The Lax-Friedrichs type schemes 
do not fall in this category, but for the sake of brevity, and in view of their poor 
numerical behaviour, we do not wish to state the proofs here. Let us now be more 
specific. 

We consider the following scheme 

(3.25) ujn+1 =(uX+k - uA(A+n1) AuK)K 

tuX = U7+k 7+k-lk=-K+1,...,K 

and denote by uA the corresponding constant by cell function. We first notice that, 
setting 

(3.26) n +1-3 
3 L\x 

a simple computation shows that pu1 is given by the conservative scheme (1.9). 
This is the discrete analogue of Proposition 2.12. Thus, formally, we pass from 
nonconservative to conservative by discrete differentiation, and interpret puX as a 
numerical approximation of (u+1 - j, which is related to A. 

Theorem 3.10. Assume that the positivity and the consistency requirements of 
Lemma 3.4 and Definition 3.6 are met, then the sequence (us) converges as A 0 O 
toward the unique duality solution of the equation (1.3) in the strong topology of 
Lloc(Q). 

Proof. We merely give a sketch of the proof, since the arguments used here are very 
similar to those in the proof of Theorems 3.7 and 3.9. 

First, the scheme (3.25) is by construction endowed with a uniform BV bound, 
so that the function uA belongs to L? (0, T; BV(R)) as soon as we assume the initial 
sequence (uq)jEz to be bounded in total variation. We immediately deduce that the 
family (uA)A,o is relatively compact in the strong topology of Ll,,(]O, T[xR) and 
almost everywhere convergent up to the extraction of a subsequence. Therefore, 
we are done as soon as we prove that t e f u7rdx is constant for any reversible 
compactly supported 7r. 

Therefore, as for the conservative case, we introduce the adjoint scheme by im- 
posing 

(3.27) V 1 <n<N, 7rUA=Z 7r7lun-. 
iEZ jEZ 
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A straightforward computation leads to the following scheme: 

K K-1 
n-1 n-1 n n-1 n 

3 j-k- 1,kW3-k S j-k- 1,k+1i~ 
k=-K+ 1 k=-K 

K 
n-1 n 

= Z_ Cj_1,k7ri-k- 
k=-K 

Under the boundedness and nonnegativity requirements on Cn-1 this scheme 
j-i ,k' 

is clearly bounded in L? and preserves nonnegativity. Since the corresponding 
constant by cell function 7r` is L? bounded, up to a subsequence, 7r` converges to 
some 7r in L? - w*. The consistency requirements imply that 7r solves the backward 
equation (2.1), as in the proof of Theorem 3.7. Finally, 7r is reversible, since the 
positivity is preserved, and using the third characterization in Theorem 2.6. 

Passing to the limit in (3.27), we obtain that uA converges to the duality solution. 

Corollary 3.11. Set (a,u)A(t,x) = E n(AJn.+ AZu+ )R2K lTn(t,x). Then, under 
the assumptions of Theorem 3.10, 

(a,l)A aat ,u=&a, in DI'(Q). 

Proof. First notice that u' Z (un+l - U0)/AxlTTh converges in D'(Q) to axu, 
and that, by Proposition 2.12, o9xu solves (1.1) in the sense of duality. On the 
other hand, by construction, ,AN defined by (1.9) tends to ,u, which is also a duality 
solution to (1.1). Since, at t = 0, ,u(0, ) = axu(0, .), we have by uniqueness ,u = axu. 
This justifies the "discrete differentiation" of the-scheme. 

Finally, we notice that ut Z-Ejn(u+i 3-u)/ t1tm converges in D'(Q) to atu. 
But, on the one hand, by definition of the flux,. atU = -a A , = a,u, and on the 
other hand, uf' = -(a,u)' by construction of the scheme. Thus we are done. D 

4. SOME CLASSICAL EXAMPLES 

The aim of this section is to illustrate the preceding results on a few examples 
from the usual literature. Obviously, we do not pretend to exhaustivity. In the 
following, we choose for 0 

(4.1) aIn = A tj a(t,x)lTndxdt. 

This is justified and natural since the only assumption on a is an L? bound. 

Remark 4.1. Notice that for the function dA (t, x) = Ej,na3lTm (t,x) converges 
a.e. to a and is bounded in L?, so that dA - a in LI - w*. Moreover, since for 
a.e. t, axa(t,.) is a locally bounded measure, we have for a.e. x 

a(t, x) - a(t, x -Ax) = o i xa(t, d<) < A\x ca(t). 
3- 

Thus V j e Z and a.e. t E]tn,tn+1[, ajn-a> 1 < A\xca(t), and also (ajn-a>ail)+ < 
A\x a(t)(ax in (1.2) can always be chosen nonnegative). 
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4.1. Lax-Friedrichs type schemes. The most encountered first-order discretiza- 
tions belonging to this family correspond to constant values for the viscosity coeffi- 
cient CA 1. We first give a general consistency result. We recall from the preceding 
section that we have 

An. 1= _ (an+ c;;,an+1 - )2_). 

This choice leads to the following coefficients: 

37i1 =cy, 2 (ai++ 2 ++) 

B70 =1-c7 +C7n 1 , 

C!0 = 1 + 2 (a7j+1 -a ) -c>, 

Bn =Cn - (an 62-- 

Lemma 4.2. The Lax-Friedrichs type schemes (3.1) are weakly consistent in the 
sense of Definition 3.6 under the condition 
(4.2) 

3M > O, V O<n<N, jeZ, -n + 2,n 1 _ n 3 < M\X. 

Proof. We have, for (t,x) e Tjn, a'(t,x) = 2(a> an 1), which tends to a in L?w* 
by construction of the a:'s, so that the first requirement of Definition 3.6 is met. 
Next, for (t, x) E Tjn, a simple computation gives 

bA (t,x) 2Zx [(a)+- al) + (aX - a1) + (-j+ + 2Ej 1 -j 3a)] 

From condition (4.2) and Remark 4.1, we obtain that bA satisfies the second re- 

quirement of Definition 3.6, with aA = ca + M/(2A). This concludes the proof. O 

We are going to state two convergence theorems. The first one is a direct con- 

sequence of the general results of the previous section, but needs a restrictive CFL 

condition. In order to relax this assumption, we have to strengthen the constraints 

on En 1 . We present the proofs of these results for the sake of completeness, but 

we do not wish to search for optimal conditions, since there is a numerical evidence 
of the bad quality achieved by Lax-FRiedrichs type schemes in this context (see 

Section 5). 

Proposition 4.3. The scheme (3.1) converges toward the duality solution of (1.1) 
as A\-* 0, under the consistency condition (4.2), provided (4.1) is chosen and the 
following conditions are met: 

(4-3) V(j,n) e x , N Aa?jI < ?nc? < 1, A(adn-a 
n 

1)/2< 1-< . 

Proof. The proof is an immediate consequence of Theorem 3.9, since the conditions 

in (4.3) exactly imply the positivity requirements on the coefficients Bjk and Ckn 

The second requirement of (4.3) cannot be met if, for instance, j+> 1 and 

x ~-* a(x, t) is a decreasing function. To fix this drawback, we also propose an 

alternative result: 
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Proposition 4.4. The scheme (3.1) converges toward the duality solution of (1.1) 
as A 0, under the consistency condition (4.2), provided (4.1) is chosen and the 
following conditions are met: 

(4-4) Vl(j,n) e Z x N, I anj| < ?ni < 1, 
n 

n2 

Proof. First we notice that (4.4) implies B1nk > 0, so that Lemma 3.3 applies. 
However, as noticed before, we do not have Cjn7 > 0. We have therefore to prove first 
that the discrete Lipschitz estimate holds, then that we can recover monotonicity 
preservation. 

Concerning the Lipschitz estimate, we have from (3.13) that 

n-p72= > (an-1 + 2 ) _ 
+ _+ A 

3 

pn n) ) n1 ] n n 

- a(jn1 + -2 3 na 

Using the first requirement in (4.4), we can write 2 2 2j 3 j\n|+| >(nl a ?+ 2|| + 2 

n-1 2 Apn 

Using the foaionsto reuieorenti 34.47. We cave foria.e. 

J'AP n-l- I < _ ajni =+2n-i3n-i 
n- (an1 )+ < n n 

I 12 2 +._ 2 ?+ 2 

n-1 3i2 n-i 

(4.5) ~ ~ a 

2 3 -2~~~~~~~~~~~~ 

K~~~~~~~~~~~~~~~~- n-1 

We can e as i te p+ro(af o+l -aT 3.7 E+1) iforall - 

becaushe knota- 0.of Theosecond ci hhave therefo adWe npobtintee fnlesiaedxcl as in the proof of Theorem 3.7.i o l 

(1.7).y Nowmwetantiton prove that phis ith revesible solu ftion siqunce th coscheme 
decase not 0 prsev mnthseonict aonpriori,nw have toldbe ae bitmoe caereful. 

We have y (3.13)APnd (312) + a t t l 
(4.5) ~ ~ ~ j+ 

an w Kbti K-iia simt xcl sntepofofTerm37 

k=K K=-1 
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First consider (4.5) for n = N. Assuming zp7+1 > 0 for all j's (which is achieved 

by a suitable discretization if 9,pT > 0), since BNk-i > 0, we have ilk - 

(4.6 ) AP N-1 > \ (aN-l k+1 -aJ N -1 . 1)PN- 

But, by (3.20), supj IAp = O(Ax), and, on the other hand, la?N-k+1 

a N-kl1 k+1 l < C since the coefficients are bounded. This implies that the right- 
hand side of (4.5) is larger than a O(.\x). 

We proceed now by induction, and assume that for some n < N, infj L\pA+1 > 

O(Ax). The first term in the right-hand side of (4.5) is larger than a O(Ax) since 
Bn-1 > 0 and Zk B7n1 = 1. The second term is treated exactly as above, since 
the Lipschitz estimate gives for all n's 

sup Ipn> l | < SUp Ip lN = O(AX). 
jE7Z 2+2-jE 

We can conclude now, because if we set for (t, x) e Tjn, p' -=Apj3 - /Ax, then, 
up to a subsequence, pA _- axP in L? - w* as A -* 0, so that the limit p of p A 

satisfies axP > 0. 

4.2. Upwind schemes. From the expression (3.2), one sees that the keypoint is in 
the determination of the vector A>n , once the ar's are fixed. The simplest choice 
is as follows: 

(4.7) Ani = ((an)+, (a +n)-) 

This scheme can be interpreted as an adaptation of the classical Engquist-Osher 
scheme [13] to the linear case. One notices that the corresponding scheme is not 
consistent with the continuous problem in the usual sense of Taylor expansions as 
soon as the coefficient a encounters a change of its sign. Anyway, we have the 
following consequence of Theorem 3.9. 

Proposition 4.5. The upwind discretization given by (3.2), (4.7) is consistent with 
the continuous equation (1.1) provided (4.1) is chosen. Moreover, it converges 
toward its unique duality solution as i\ goes to zero under the CFL condition: 

(4.8) V(j,n) E Z x N7 Ala.n 

Proof. We check the sign of the following coefficients: 

Bj,_1 = Cj?, l = A(ajn)+ > 0, 

n 
B>- ) = (ajn)+] 

07jo = I+A( 
] j o = I + A[(a i+ 1) - (an)] 

B 3j = Cjn 1=-A (an). > 0. 

The second and third expressions are positive under the restriction (4.8). On the 
other hand, the consistency requirements of Definition 3.6 are met with for instance 
aA = 2a. D 
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According to [11, 12], another possibility is to use the following average values 
which correspond to Vol'pert's superposition product [30] (or the straight lines 
regularization in [9]): 

(4.9) A+ = ( (a + an+D ) (aJ + anl ) - 

We shall consider more general upwind schemes defined by, for any given number 
Oe [0,1], 

(4.10) A = (((1 - O)an + Oa+n1)+, ((1 - O)aL + Oanj+1). 

This definition has to be compared with the last assertion of Theorem 2.15. The 
definition of the scheme defines in some way the value of a everywhere, and for 
0 E [0,1] this is coherent with (2.13). 

Proposition 4.6. The upwind discretizations given by (3.2), (4.10) are consistent 
with the continuous equation (1.1) provided (4.1) is chosen. Moreover, they con- 
verge toward its unique duality solution as i\ goes to zero under the CFL condition 

nj<1 (4.11) V(j,n)EZx N, Ala 

Proof. In this case, we have the following quantities: 

B,_1 = C,_1 = A((1-O)aj + Oa +1) > 0 

nB7 = 1+A[((1-O)a7 +0a7) -((1-O)az + Oa7+1)+], 
0 Io = 1-AlOan 1 + (1 -O)a7n1, 

Bj7 = Cjn =-A((1-O)ajn_1 + Oajn)- > 0. 

The second and third expressions are positive under the restriction (4.11). The two 
consistency requirements of Definition 3.6 are again met for a\ = 2a. O 

We mention a variant of the preceding schemes, which is used by Olazabal [24] 
and Godlewski et al. in [15]. They consider the convex nonlinear equation (1.4) with 
an entropy initial datum, for which a Roe type scheme is used. In this context, 
it is well-known that the scheme converges almost everywhere toward the entropy 
solution of the problem; moreover it satisfies a uniform discrete one-sided Lipschitz 
condition (see [7]). Next, they linearize this equation, obtaining (1.5), and propose 
the following "linearized Roe scheme" to solve it. Let us denote by a a Roe linearized 
of f, and set aj = -(uaj 3u>j+). Then the scheme is exactly the preceding one, 

with d-n. , playing the same role as an . Thus 

(4.12) A 1 = a j j+ )+ a(Un Un 

The stability analysis (nonnegativity of Bj, k CjQk) follows exactly as before. Con- 
cerning the consistency, the strong convergence of u0 implies the convergence of 
at, and the one-sided Lipschitz property provides the required bound on bA. 
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5. NUMERICAL RESULTS 

In this section we illustrate the behaviour of the four schemes studied in Section 
3 on five test cases. For three of them (subsections 5.1, 5.2 and 5.3), uniqueness 
is ensured, and all the schemes converge toward the duality solut;ion. Then, con- 
sidering the associated transport equation, one can compute explicitly the exact 
solution. In the last two cases (subsections 5.4 and 5.5), uniqueness does not hold, 
and it is clearly evidenced that each scheme chooses its own solution. 

All the computations have been performed using a CFL conditioni of I except 2' p 
the last case, where other values are interesting to consider. In all the figures, we 
shall have the following conventions. 

upw upwind scheme (3.2) 
EFO modified upwind scheme (4.9) 
LxF standard Lax-Friedrichs scheme (?" 1) 

Tad modified Lax-Friedrichs scheme (T1+ 2 

Finally, the numerical approximation of a Dirac mass has been chosen as 1/Ax on 
the appropriate cell. 

5.1. Approximation of a Dirac mass in the compressive case. We consider 
here a(t, x) -sgn(x- ) for all t. The initial datum is At(o(x) 1, . In this case, 

the exact solution is I16 . We choose Ax = 0.002. The approximate solutions 
-22 

are displayed in Figure 1 and we also present the numerical primitives in Figure 2 
in order to show that the weight of the Dirac mass is correctly comlputed. 

250 ' ' ! 
upw 

'.LxF" 
"Tad" 

"EFO" 

200 

150 

100 

50 

0 1 
0.44 0.46 0.48 0.5 0.52 0.54 0.56 

FIGURE 1. Numerical solutions in the case a(t, x) - sgn(x -) 
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0.5 - --- --T 

'prim upw 
prim LxF" 

0.45 prim_Tad 
prim EFO . 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52 

FiGURE 2. Numerical primitives in the case a(t, x)=- sgn(x - ) 

1 
'EFOQ 

1upw coarse" 
9 ,. .upwmedium .... 
09 upW_thin..........upw_ 
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0.2 _ l I l - l 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

FIGURE 3. Upwind schemes in the case a(t, x) x - 2 for Ax = 0.02,0.002,0.0005 2 L\O02O02O00 
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5.2. Lipschitz expansive coefficient and smooth initial datum. We turn 
now to a smooth coefficient a(t, x) = x - 2 for all t, and tLo(x) = sin(1rx)1XE[O,l]. 2 
The exact solution is given by 

(5.1) tL(t,x)= /l(X? t) 

This example clearly evidences the lack of "strong" consistency in this theory. In- 
deed the Engquist-Osher upwind scheme (4.7) exhibits a spurious spike at the point 
where a changes sign. This spike is concentrated on one cell, and is of bounded 
amplitude. Thus we clearly have only a weak convergence. A similar phenome- 
non was observed by Engquist and Runborg in the simulation of two-dimensional 
geometrical optics (see [14]). The modified version proposed in [12, 11] is better 
suited in this case. The Lax-Friedrichs type schemes behave in the same way as 
the scheme (4.9), so that we only display the results for the upwind type schemes. 
The solution is given at time T = 3 in Figure 3. 

5.3. Lipschitz expansive coefficient and Riemann initial datum. We keep 
on using a smooth coefficient a(t, x) = x-2 for all t, but we consider now a Riemann 
initial datum tto(x) = 1x< 1. The exact solution is again given by (5.1). We display 
the results obtained by both upwind schemes (4.7) and (4.9) with A?x = 0.002 
in Figure 4. The solution is given at time T = 3 and is free from any spurious 
oscillation or numerical diffusion. 

However, considering the results obtained by the LxF schemes displayed in Figure 
5, one notices an excessive numerical dissipation creating an artificial profile which 
length shrinks to zero as Ax 0. Moreover, the approximate solution generated 

0.25 .---I 

0.2 

0.15 

0.1 

0.05 

0 0.2 0.4 0.6 0.8 1 

FiGURE 4. Numerical solutions with upwind schemes in the case 
a(t, x) = x - 
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0.25 _ .,,I"X 

\LxF ...thin' 
T7ad" 

"Tad thin. 

0.2 

0.15 

0.1 

0.05 

o 0 
0 0.2 0.4 0.6 0.8 1 

FIGURE 5. Numerical solutions with LxF schemes in the case 
a(t, x) = x - 2 and A\x = 0.002, 0.0005 

by the LxF scheme is endowed with oscillations whose amplitudes decrease also to 
zero as we refine the grid. 

5.4. Spreading of a Dirac mass by a rarefaction. We turn now to the nonuni- 
queness cases starting with the conservative version of the first example presented 
in [2, Section 3.1]. This corresponds to the following problem: 

-1 if x -2 < -ti 
1 1 

if -it < xf - 

0 if x-2 >0, X 2 - 

with the initial datum po (x) = For any p E BV(] - 1, 0[) we define for t > 0 

-1 if X- < -t, 

u(t,x)= { p( 2) if - t < x - < 0) 

t 0 if x > 0. 

Then ,u = a,u belongs to SM for any T > 0 and solves (1.1) in ]0, oo[xIx . 
Two computations are displayed here at time T = 0.1, the first on a medium 

mesh (ZAx = 0.002), the second on a refined mesh (ZAx = 0.0005). The first remark 
is that the solution generated by the standard Lax-Friedrichs scheme is highly 
oscillating, while Tadmor's modification behaves nicely (see Figure 6). The Dirac 
mass is spread in a more or less symmetric way. The upwind type schemes are not 
displayed here: they give a good approximation of a solution which is the Dirac 
mass at x= 2 
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FIGURE 6. Numerical solutions for a rarefaction, LxF schemes, 
Ax = 0.002 
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FIGURE 7. Numerical primitives for a rarefaction with Ax =0.002,0.0005 
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It is more interesting to show the primitives of the solutions, especially to un- 
derstand the behaviour of the schemes when we refine the mesh (see Figure 7). 
It becomes clear that, on the medium grid, the most important phenomenon for 
Lax-Friedrichs type schemes is the numerical diffusion. Indeed, since the velocity 
on the right is zero, no information should be present for x > 2' and the profiles 
are symmetrical. When refining the mesh, this phenomenon disappears, but it is 
not clear at all that the schemes converge to the Dirac mass at x = 2; it is not even 
clear that they converge to the same solution. 

5.5. Spreading of a Dirac mass by a wildly expansive coefficient. By a 
wildly expansive coefficient, we mean a discontinuous coefficient which does not 
satisfy the OSLC condition (1.2). A typical example is 

a(t, x) = sgn(x - 
2 

and we take for initial datum pL0 = 6x=l . First we present a set of numerical 
solutions with A\x = 0.0025, and A\t = 0.001 in Figure 8. When refining the grid, 
the oscillations in Lax-Friedrichs remain as it might be expected considering the 
proof of Proposition 2, where the role of the OSLC condition is crucial. 

Next, we play with the value of the Courant number for the modified Tadmor 
scheme [27]. It turns out that each CFL number determines a spreading of the 
Dirac mass, which clearly illustrates the lack of uniqueness in this problem (see 
Figure 9). 

35 

"Tad" 

30: . "EFO" . 

25 

20 

15 

10 

o L I A j1''11',''1l''L , I~~~~I I'I: 
0 0.2 0.4 0.6 0.8 1 

FIGURE 8. Numerical solutions with a(t, x) = sgn(x- ) and Ax = 0.0025 
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prim-upw 06" 
prim-TadO06" 
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FIGURE 9. Numerical primitives with a(t, x) sgn(x - 2) and 
AX = 0.002,0.004,0.006 
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