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OPTIMAL APPROXIMATION 
OF STOCHASTIC DIFFERENTIAL EQUATIONS 

BY ADAPTIVE STEP-SIZE CONTROL 

NORBERT HOFMANN, THOMAS MULLER-GRONBACH, AND KLAUS RITTER 

ABSTRACT. We study the pathwise (strong) approximation of scalar stochastic 
differential equations with respect to the global error in the L2-norm. For 
equations with additive noise we establish a sharp lower error bound in the class 
of arbitrary methods that use a fixed number of observations of the driving 
Brownian motion. As a consequence, higher order methods do not exist if the 
global error is analyzed. We introduce an adaptive step-size control for the 
Euler scheme which performs asymptotically optimally. In particular, the new 
method is more efficient than an equidistant discretization. This superiority is 
confirmed in simulation experiments for equations with additive noise, as well 
as for general scalar equations. 

1. INTRODUCTION 

We consider pathwise approximation for scalar stochastic differential equations 

(1) dX(t) = a(t, X(t)) dt + a(t, X(t)) dW(t), t E T, 

on the unit interval T = [0,1] with a one-dimensional Brownian motion W. We 
study methods that yield processes X whose paths are close to the respective paths 
of the strong solution X of (1). 

Different notions of errors for pathwise approximation are studied in the liter- 
ature. The majority of results deals with mean square errors E(X(Tk) - X(Tk))2 

at discrete points Tk E T. See Kloeden and Platen [6], Milstein [9], and Talay [17] 
for results and references. In this paper the pathwise distance between X and X is 
analyzed globally on T in the L2-norm 11 112, and the error of X is defined by 

e(X) = (E(IXX - 112))1/2 

See Talay [17] for a deterministic notion of error, which can be used for a worst 
case analysis with respect to the Brownian paths. 

We wish to determine (asymptotically) optimal approximation methods. To this 
end we consider arbitrary methods X, that use the values of a path of W at n 
points. These points may be selected sequentially, where the only restriction is 
measurability of the respective selection functions. Moreover, a finite number of 
function values (or derivative values) of the drift a and the diffusion coefficient a 

Received by the editor August 24, 1998. 
1991 Mathematics Subject Classification. Primary 65U05; Secondary 60H10. 
Key words and phrases. Stochastic differential equations, pathwise approximation, adaption, 

step-size control, asymptotic optimality. 
The first author's work was supported by the DFG:GR 876/9-2. 

?2000 American Mathematical Society 

1017 



1018 N. HOFMANN, T. MULLER-GRONBACH, AND K. RITTER 

may be used. The number infX e(X,) is the minimal error that can be achieved 
by methods of the above type. We wish to find sharp upper and lower bounds 
for the minimal error. Upper bounds may be derived by the analysis of a specific 
method, while lower bounds must hold for every method X,. 

We show that infX e(X,) is of order 

1/? Il* ll, * n-li 

if a is independent of the state variable. The corresponding equations are some- 
times called equations with additive noise. We emphasize that the above result 
provides for the first time a lower bound for arbitrary methods which use discrete 
observations of a Brownian path. In particular, higher order methods do not exist 
if the global error on T is analyzed. See Section 4 for further discussion. For equa- 
tions with additive noise the optimal order is achieved by an Euler scheme with 
adaptive step-size control. We take the step-size proportionally to the inverse of 
the current value of a. Numerical experiments indicate that it is reasonable to use 
this method also for the general equation (1). We add that the computation time of 
our method is bounded by c rn with a small constant c, and memory requirements 
are negligible. 

It is common to take equidistant discretizations for the numerical solution of 
a stochastic differential equation. For the error of an Euler approximation with 
constant step-size 1/n we obtain in the additive noise case the order 

1/06- 110rJ12 * n- /, 

which shows that it is not efficient to discretize equidistantly. 
Only a few papers deal with adaptive step-size control; a partial list includes 

Newton [11], Cambanis and Hu [2], Gaines and Lyons [5], and Mauthner [8]. How- 
ever, optimality in the class of all methods X, has not been addressed so far. 
Cambanis and Hu [2] have shown that an adaptive step-size control is superior to 
fixed (equidistant) step-sizes with respect to the mean square error at the point 
t = 1. 

2. EULER APPROXIMATION WITH ADAPTIVE STEP-SIZE CONTROL 

Consider a discretization 

(2) 0 = To < < Tn=1 

of the unit interval. The corresponding Euler scheme X for equation (1) with initial 
value X(0) is defined by 

X (To) = X (0) 

and 

X(Tk+1) = X(Tk) + a(Tk, X(Tk)) * (Tk+l -Tk) + o(Tk, X(Tk)) * (W(Tk+l) - W(Tk)), 

where k = O, . . . , n - 1. The global approximation X for X on T is defined by 
piecewise linear interpolation of the data (Tk, X(Tk)) with k = O,... , n. 

It is reasonable to select a discretization that reflects the local properties of the 
differential equation. We choose a basic step-size 

h > 0 
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and define the adaptive step-size control for the Euler method Xh X X by To = 0 
and 

(3) Tk+l = Tk + h/o((Tk, Xh(Tk)) 

as long as the right-hand side does not exceed one. Otherwise we put Tk+l = 1. 
We perform an asymptotic analysis of the error e(Xh) with h tending to zero for 

equations 

(4) dX(t) = a(t, X(t)) dt + a(t) dW(t) 

with additive noise. In this case Tk = Tk(h, a), and we use n(h, a) to denote the 
total number of steps, i.e., 

n(h, ) = min{k E N: Tk(h, a) = 1}. 

We assume that the drift a: T x 1R -- 1R and the diffusion coefficient a: T R? 

have the following properties: 
(A) There exist constants K1, K2, K3 > 0 such that 

o9a 
(t, x)| < K1, |,?2a(t, x)| < K2, 

and 

ja(t,x) - a(s,x)I < K3 * (1 + IxI) -S 

for all s, t E T and x E R. 
(B) The function a is continuously differentiable and satisfies 

a(t) > 0 

for all t E T. 
Furthermore we assume that the initial value X(0) satisfies 

(C) X(0) is independent of W and 

EIX(0)12 < K4 

for some constant K4 > 0. 

These conditions are standard assumptions when analyzing approximations for sto- 
chastic differential equations. The only exception is the positivity of a, which can 
be replaced by integrability of J- 1/2* The latter property holds, for instance, if 
u only has simple zeros. Given the above properties, a pathwise unique strong 
solution X(t), t E T, of the equation (4) with initial value X(0) exists. 

We use 11 IlP to denote the Lp-norm of real-valued functions on T. Furthermore 
we sometimes write e(X, a, a, X(0)) instead of e(X). 

Theorem 1. Assume that (A)-(C) hold for equation (4). Then 

lim n(h,)112 e(Xh, a, a, X(O)) = 1/06. Ilalli1 h--+O 

for the Euler approximation with discretization (3). The Euler approximation Xn 
with constant step-size 

(5) Tk+l -Tk = 1/n 

yields 
lim nl/2 n e(Xn, a, u, X(0)) = 1//6 * I"JU12. 

n,oo 
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Hence (5) is not efficient in general: taking (3) instead of (5) reduces the error 
roughly by the factor IHUJIl/111U2 for the same number of steps. This fact is already 
due to the choice of the discretization (5) and does not arise from choosing the 
Euler method. A proof is easily obtained from the estimates in Section 6. See 
Section 5 for simulation experiments. 

In fact a much stronger optimality property holds for the method from Theorem 
1. This method is asymptotically optimal for all equations with additive noise 
among all methods that use values of W at arbitrary points. See Section 3. 

We do not have asymptotic results for our step-size control in the case of arbitrary 
scalar equations (1). However, simulation experiments indicate that (3) is still 
superior to an equidistant discretization, see Section 5. 

Remark 1. For small values of ao(Tk) the equation (4) locally almost becomes an 
ordinary differential equation. Still a reasonably small step-size is needed to get a 
good approximation. Therefore we modify (3) according to 

(6) Tk+1 =Tk + min (h 2/3, h/(Tk, Xh(Tk))). 

Due to (B) the asymptotic result from Theorem 1 also hold for the discretization (6). 
The particular choice h2/3 is motivated by error estimates on intervals [Tk, Tk+ 1], 

see Remark 3. The term h2/3 only matters if h > U3(Tk). It does not play any role 
asymptotically, since a is bounded away from zero. 

Remark 2. In Theorem 1, as well as in Theorem 2 below, we give error estimates 
that hold for individual equations. One can easily strengthen Theorem 1 so that 
the upper bound holds uniformly on the class of equations (4) that is defined by 
(A) and (C) and a quantitative version of (B). 

To this end let K = (K1,..., K7) with Ki > 0 and let F(K) denote the set of 
all (a, a, X(0)) such that (A) and (C) hold for a and X(0), respectively. For a we 
require 

(B*) Ilallo < K5, flo'jco < K6, infteT o(t) > K7. 

The maximal error of Xh on the class F(K) is defined by 

emax(h, K) = sup e(Xh, a, a X(0)) 
(a,a,X (0)) e F( K) 

and the maximal number of steps of this method is defined by 

nmax(h, K) sup nr(h, a). 
(a,a,X(0)) EF(K) 

We obtain 

(7) lim nmax(h) K) 1/2 emax(h, K) = 11/A K5 

as a straightforward consequence of (17) and Theorem 1. 
The estimate (7) is a worst case result on the class of equations corresponding 

to F(K). We see that for differential equatiohs with additive noise worst case 
results and results for individual equations do not differ essentially if the number of 
steps is large. For other problems of numerical analysis matters may be completely 
different, see, e.g., Traub, Wasilkowski, and Wozniakowski [18, Chapter 10] and 
Novak and Ritter [12]. 
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3. LOWER BOUNDS 

The Euler approximation with adaptive step-size control is based on a realization 
of the initial value X(O) and a realization of the Brownian motion, observed at a 
finite number of points. Moreover, it uses a finite number of values of the drift a 
and of the diffusion coefficient a. 

Now we present lower bounds that hold for every method of the above form. We 
even drop all restrictions on the available information about a and a, so that, in 
particular, partial derivatives of smooth functions a and a may be used. We fix a 
and a, and we consider the corresponding equation (4). An arbitrary method X, 
that is based on a realization of the initial value X(O) and on n observations of a 
trajectory of W is then defined by measurable mappings 

V)k : Rk- T 

for k= 1,.. . ,n and 

R : -n+1 L2(T). 

The mapping VPk determines the observation point in step k in terms of the previous 
evaluations. A pathwise approximation is computed according to 

Xn = On$(X(O)Yi ... Yn), 

where Y1 = W (P1(X(0))), and 

Yk = W(Ok (X(O),)Yl,. * * Yk-1 )) 

is the observation in step k > 2. Every such method is called an n-point method 
in the sequel. 

The quantity 

e(n, a, a, X(0)) = inf e(Xn, a, U, X(0)) 
Xn 

is the minimal error that can be obtained by n-point methods for the equation 
(4). Suppose that 01,. .. , n are fixed. Then e(Xn, a, a, X(0)) is minimized by the 
conditional mean of X given X(O) and W at the respective discretization. Hence 
the choice of the discretization is the main problem in a theoretical minimization 
of errors of n-point methods. 

Theorem 2. Assume that (A), (B), and (C) hold for equation (4). Then 

lim n1/2 . e(n, a, a, X(O)) = 1/v'*. IIali. 
n,oo 

Due to Theorems 1 and 2 the Euler approximation with adaptive step-size con- 
trol (3) is asymptotically optimal for every equation with additive noise. Theorem 
2 remains valid for a larger class of methods, where the number of observations 
depends on the trajectory of W. More precisely, after every evaluation a decision 
is permitted, whether to stop or to continue with further observations. Clearly n 
must be replaced by the expected number of observations. 

The number n is a crude measure of the cost of n-point methods, since any 
computational cost in addition to the evaluations of W is ignored. Observe, how- 
ever, that the Euler method with constant step-size has the least computational 
cost among all n-point methods that are used in practice. The adaptive step-size 
control (3) requires only a few additional operations per step. 
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4. DiscUSSION 

We relate our results to known error bounds for pathwise approximation meth- 
ods. Concerning the specific smoothness assumptions for a and a, we refer to the 
literature. We stress that some of the known results hold for systems of equations. 

4.1. Global error in Lp-norm. In our analysis of strong approximation meth- 
ods the pathwise error is defined globally on the interval T in the L2-norm. The 
following upper bounds are already known for general equations (1). The Euler 
approximation Xn with constant step-size 1/n satisfies 

(E(IX - X 11)) 
/ < c n-1/2 

see Milstein [9, Remark 1.2]. Moreover, this method also yields 

(E(lX-Xllq )ll < c -(inn)1/2 n- 1/2 

for every 1 < q < oo, see Faure [4] and Bouleau and Lepingle [1, Remark 5.B.1.5]. 
The constants c > 0 are unspecified in both cases. 

4.2. Pointwise error. Usually errors of strong approximations are defined dis- 
cretely at a finite number of points in T. Often these points coincide with the 
discretization of the given method. In this case it is not clear how to compare 
methods that are based on different discretizations. For simplicity we consider the 
error only at the right endpoint of T. 

The Euler approximation X, with step-size 1/n yields 

(E(X(l) -Xn()) / < c - n-/ 

for general equations (1). A better upper bound is obtained by the Milstein method 
Xn with step-size 1/n. This n-point method satisfies 

(E(X(1) - Xn(1))2) l/2 ? C n 

with an unspecified constant c > 0, see Milstein [9, eq. (2.32)]. The Milstein 
method coincides with the Euler method for equations (4). Shoji [15] proposes a 
local linearization method X, with step-size 1/n. For equations (1) with constant 
diffusion coefficient, he shows that 

(E(X(l) - -n(l))P 
/ 

< c n-1. 

We get sharp bounds for equation (4) with zero drift. In this case 

(8) lim n * inf (E(X(1) - Xn(1))2)l/2 - 1i/V (ja()2/3(t) dt) 
n--oo X, 

which follows from Sacks and Ylvisaker [14] and Traub, Wasilkowski, and Woz- 
niakowski [18, Chapter 6.5] because of (12). . 

Clark and Cameron [3] analyze n-point methods that are based on the equidistant 
discretization (5). For an autonomous equation dX(t) = a(X(t)) dt + dW(t) with 
additive noise they show that 

lim n r inf (E(X(1) - On(W(1/),.. ., W(1)))2)1/2 = c 
n-oo 400 
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with an explicit constant c, which is positive in most cases. Here q$n varies over 
all measurable mappings Rl -4 R. For an arbitrary autonomous equation they 
show that one cannot achieve errors of order n-1 - for any 6 > 0 using equidis- 
tant discretizations. See Newton [11] for another concept of asymptotic efficiency 
concerning the choice of q$n for a given discretization. 

Cambanis and Hu [2] analyze discretizations of the form 

Tk+1 = Tk + h/l({1k) 

where ( is a suitable continuous and positive function on [0,1], cf. (3). They study 
the Euler method as well as the conditional mean given X (0) and W at the dis- 
cretization points. For autonomous equations they characterize the asymptotically 
best choice of ( with respect to the mean square error at the endpoint t = 1. For 
the linear equation dX(t) = a* X(t) dt + b* X(t) dW(t), explicit formulas for the 
optimal functions ( are known. 

Sections 4.1 and 4.2 indicate significant differences between global and pointwise 
errors for stochastic differential equations. In contrast, this difference is not present 
for ordinary differential equations, due to the global smoothness of the solutions. 

4.3. Using additional information about W. From Theorem 2 and (8) we get 
(rather large) lower bounds for arbitrary n-point methods. Faster convergence of 
errors is sometimes possible for more general methods that use additional informa- 
tion about W. 

Instead of Dirac functionals one can apply arbitrary bounded linear functionals 
on C(T) to the trajectories of the Brownian motion. This happens, for instance, 
in the order 3/2 strong Taylor scheme of Wagner and Platen [19], see also Kloeden 
and Platen [6, Section 10.4]. In addition to the values W(ri) this method uses the 
integrals f7+1 W(s) ds. A constant step-size 1/n yields errors of order n-3/2 at 
the right endpoint of T. We see that bounded linear functionals are more powerful 
than Dirac functionals, if the pointwise error is studied. 

Even more general methods are derived, for instance, from the stochastic Tay- 
lor formula by including higher order multiple stochastic integrals. In principle, 
pointwise errors of order n-7 for arbitrary large -y can be achieved. However, the 
simulation of multiple integrals is a nontrivial task; sometimes these integrals are 
approximated by bounded linear functionals, applied to W. See Milstein [9] and 
Kloeden and Platen [6]. Similar statements are not true for the global error in 
the L2-norm. All known methods of higher order in the pointwise sense only use 
bounded linear functionals, if they are applied to equations (4) with zero drift. For 
these equations the following lower bound is easily derived from the Karhunen-Loeve 
expansion of the Brownian motion. If a method uses n bounded linear functionals, 
which may be selected sequentially as in Section 3, then its error is bounded from 
below by c. n-1/2. Here c > 0 does only depend on a and X(0). 

Moreover, we can apply Maiorov's result on average n-widths of the Wiener 
space, see Maiorov [7]. Here even complete knowledge of the trajectory of W is 
allowed. As long as all pathwise approximations are taken from an n-dimensional 
subspace of C(T), we have a lower bound c* n- 1/2. Note that this result applies in 
particular to all methods that first compute approximate solutions at fixed points 
Ti ...... * i and then apply a linear algorithm to these data, no matter how these 
pointwise approximations are obtained. 



1024 N. HOFMANN, T. MULLER-GRONBACH, AND K. RITTER 

Complete knowledge of the trajectory of W is a reasonable assumption in the 
search for lower bounds or from the point of view of approximation theory. However, 
it does not lead to implementable numerical schemes. 

5. SIMULATION EXPERIMENTS 

We compare errors of the Euler method Xh with adaptive step-size control and 
of the Euler method Xn with equidistant discretization. 

5.1. Two equations with additive noise. First we consider the equation 

(9) dX(t) =-2dt + (20 exp(-(lOt- 1)2) -t) dW(t), X(O) = 1. 

The assumptions (A) and (C) are trivially satisfied and the diffusion coefficient is 
smooth with only a simple zero. The solution of (9) is not known explicitly. Instead 
of X we therefore use an M-point Euler approximation XM with M sufficiently 
large. We simulate K = 5000 trajectories of the driving Brownian motion and use 

E (X ) = (-K EIV M ( )-X( ) ) 1/2 

as an estimator for e(X). This quantity is easy to evaluate for X = Xn or X = X 
since Xh, Xn, and XM yield piecewise linear functions. 

The number n(h, a) of steps of Xh is deterministic for equation (9). Hence we 
express the efficiency of the adaptive Euler approximation by the ratio 

eff(h) X (^ ) 

where n = n(h, a). From Theorem 1 we know that eff(h) is approximately 

lKUr 1/KlHll2= 0.525... 

for sufficiently large K and small h. For every trajectory of W a certain number of 
steps of Xh have length h2/3, and we call these cases exceptions. We also show the 
mean ratio ex(h) between exceptions and the total number of knots in Table 1. 

We see the superiority of the adaptive step-size control already for small numbers 
n(h, a) of steps, and not only in an asymptotic sense. Moreover, the efficiency eff(h) 
is close to the asymptotic value 0.525. 

Next we consider the same scenario as above for the equation 

(10) dX(t) = (t-0.5)(5-X(t)) dt+(1.001 -t)4 dW (t), X(0) = 1. 

TABLE 1. Simulation for (9) with different basic step-sizes h 

h 6(Xh) n(h, cr) c(Xn) eff(h) ex(h) 
I * 10- 0.551628 38 1.050418 0.53 0.0263 
1* 10-2 0.107464 368 0.17.3890 0.62 0.0027 
5 10-3 0.069409 734 0.112526 0.61 0.0013 
2 10-3 0.039607 1832 0.067495 0.58 0.0005 
1. 10-3 0.026602 3662 0.046838 0.56 0.0005 
1* 10-4 0.007783 36601 0.014526 0.53 0.0000 
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TABLE 2. Simulation for (10) with different basic step-sizes h 

h |(Xh) n(h,cr) |(Xn) eff(h) ex(h) 
I T -o2 0.048146 33 0.050019 0.96 0.45 
1 *10-T7 0.009217 248 0.010322 0.89 0.23 
5. 10-4 0.005796 471 0.006852 0.85 0.18 
2 10-4 0.003225 1122 0.004168 0.77 0.13 
1 10-4 0.002112 2184 0.002926 0.72 0.10 
1 *10-5 0.000592 20761 0.000927 0.64 0.04 

The assumptions (A)-(C) are obviously satisfied, and eff(h) is approximately 

ITUrI11/1Hr2 = 0.60... 

for sufficiently large K and small h (see Table 2). 
In Table 2 the numbers ex(h) are large, since a gets small as time approaches 

one. In fact, this is important to obtain a good performance of Xh for equation 
(10); see Remark 1. For the same reason eff(h) tends to its limit 0.60... rather 
slowly. 

5.2. An equation with multiplicative noise. Now we consider the equation 

(11) dX(t) = 2X(t) dW(t), X(0) = 1. 

Its solution is given by 
X(t) = exp(-2t+2W(t)). 

We use a sufficiently accurate piecewise linear interpolation X of X in our simula- 
tion experiments and take 

1 K \1/2 

6(X) H E Ti(Pi) -X(Wi)112) 

as an estimator for e(X) as before. 
Due to large fluctuations of the sample paths of X, the empirical variance of the 

errors lX(wi) - Xh(W,) 1 is much larger than the corresponding quantity for (9) or 
(10). Taking this into account, we simulate K = 600 000 trajectories of the driving 
Brownian motion to calculate e(Xh) 

The number of steps of Xh is now a random variable, and we use n(h, a, wi) 
to denote its counterparts in the simulation. The efficiency of the adaptive Euler 
approximation is again given by the ratio 

eff(h) (Xh)/ (X) 

where 

n = n(h,a)= a) f n(h, a, Wi) 

For the constant step-size methods the empirical variances of the errors are even 
larger. Therefore we use K = 2 500 000 and K = 7 500 000 trajectories to calculate 
e(Xn) for n = 2009 and n = 204, respectively. Again we observe superiority of the 
adaptive step-size control (see Table 3). 
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TABLE 3. Simulation for (11) with different basic step-sizes h 

h E(Xh) n(h, a) E(Xn) eff(h) ex(h) 
1. 10-2 0.359392 204 0.626733 0.57 0.085 
1 10- 0.112864 2009 0.192832 0.59 0.026 

For the particular equation (11) we were able to analyze the asymptotic behavior 
of the error e(Xn) in the case of constant step-size 1/n. We have 

lim n 1/2. e (Xn) = 1A/- (5 e4 + 1)1/2 = 9 56.. 
n--oo 

which yields approximate values 0.66 and 0.21 for e(X204) and e(X2009), respec- 
tively. This is in good accordance with the simulated errors above. 

For the equation (11) the empirical standard deviation of n(h, a,.) is huge, 
namely 469 for h = 10-2 and 4909 for h = 10-3. 'Hard' trajectories are detected 
automatically, and accordingly a large number of knots is chosen. For instance, if 
h = 10-2 then the number of knots ranges between 24 and 123 162 for the 600 000 
trajectories simulated. 

6. PROOFS 

For the solution X of equation (4) with additive noise we have 

(12) X(t) = X(0) + V(t) + Y(t) - Z(t) 

with 
V(t) = c(t) * W(t), 

Y(t) = (s, X(s)) ds, 

and 
t 

Z(t) = 0'(s) W(s) ds. 

For every discretization (2) the Euler approximation X to X may be written as 

X(7k) = 
X(O) + V(7k) + Y(Tk) - Z(Tk) 

with 
V(Tk) = U(Tk) * W(7k), 

k 

( 1.3 ) Y (Tk ) = Z a (Ti-1, X(Ti-1) )* (i - i-1), 
i=l1 

and 
k 

(14) Z(Tk) = (ao(Ti) - a(,Ti1)) * W(Ti). 

i=l1 

Piecewise linear interpolation yields processes V, Y, and Z over T. 
An outline of the proofs reads as follows. Under the assumptions (A)-(C) the 

processes Y and Z are smooth compared to the process V. Therefore the error 
of the Euler approximation is essentially determined by V - V. Moreover, the 
following holds for an arbitrary method that is based on n observations of W. Its 
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error is roughly as large as the error of the best method for approximation of V on 
the basis of n observations of V. 

The latter problem deals with approximation of a stochastic process using ob- 
servations of the same process on a finite number of points. Problems of this kind 
are well studied; see, e.g., Ritter [13] for results and references. In particular, n ob- 
servations of V at suitably chosen points and piecewise linear interpolation roughly 
yield the error 

1/4* I'J 11 n1/2 

and this is best possible, see Su and Cambanis [16] and Miiller-Gronbach [10]. 

6.1. Preliminary estimates. In the sequel we use c to denote unspecified positive 
constants, which depend only on the constants Ki from conditions (A), (B*), and 
(C). First we determine the smoothness of V, Y, and Z. 

Lemma 1. Let 
r = E((V(t2) - V(tl)) * (V(t4) - V(t3))) 

and 
= max(t2 - tl,t4 - W, 

where t, < t2 and t3 < t4. Then 

Irl < C * A\2 

if t2 < t3, and 
J-r2(t2) ._ 02 < C. ?2 

if t = t3 and t2 = t4. 

Proof. We use 

V(t) - V(s) = a(t) * (W(t) - W(s)) + (U(t) - U(s)) * W(s) 

as well as property (B*) of a. If t2 < t3, then 

r = (U(t4) - U(t3)) * 0(t2) * (t2 - tl) + (U(t4) - U(t3)) ((t2) - U(ti)) * ti, 

which implies Irl < c /\2. If t1 = t3 and t2 = t4, then 

r = u2(t2) (t2 - tl) + (07(t2) - 07(tl))2 tl, 

which implies jr- a2(t2) * (t2 -tl)) cI 2. 0 

Lemma 2. Let s, t E T. Then 

E(Y'(t) - Y'(s))2 < C. It-SI 

and 
E(Z(t)-Z(S))2 < c (t-S)2. 

Proof. The process Y is differentiable with probability one, and its derivative is 
given by 

Y'(t) = a(t, X(t)) 

Property (B*) implies 

IY'(s) - Y'(t)I < c (IX(s) - X(t)I + (1 + IX(t)I) * Is - tl). 

From (A)-(C) we get 

E(X(s) - X(t))2 < c* Is -t 
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and 
E(X(t)2) < C, 

see Bouleau and Lepingle [1, p. 274]. Hence the first statement follows. 
Clearly 

E(Z(t) - Z(S))= jj cr'(u) cr'(v) min(u, v) du dv. 

Together with (B*) this implies the second statement. O 

Now we analyze linear interpolation of the processes V, Y, and Z on (small) 
subintervals of T. We consider a fixed discretization (2) and we put 

Ai = -T Ti-1- 

Moreover, we use X to denote the corresponding piecewise linear interpolation of 
an arbitrary process X. Thus, if t E [Tii1,Ti], then 

X(t) = ((t-Ti-1) * X(Ti) + (Ti - t) * X(i_1))/Ai 

Note that V = V. 

Lemma 3. We have 

| E(V(t)-V(t)) 2dt -1/6 * 0J2(,T,_1) (,21 < c-/\3. 

Moreover, 

E(Y(t) _ Y(t))2 dt < C. *4 
Ti-1~~~~~~~~~~~~~~~ 

and 

E(Z(t) _ Z(t))2 dt < C.?2 

Proof. Let t e [ i 1, Ti] and put 

A(t) = E(V(t) -Vt)-r(i)*(T-t) * (t -Ti-1)/Ai 

Observe that 

A(t) = (t - T ii)2/t * (E(V(t) - V(T_)) -c o(T,i) . (,Ti - t)) 

+ (T, - t)2/A2. (E(V(t) - V(T_1))2 - U2(Ti1) . (t -T,_)) 

+ 2 . (Ti - t) . (t -_,T,_)/ZA2 * E((V(t) - V(Ti)) * (V(t) - V 

Lemma 1 and the Lipschitz continuity of au2 imply 

JA(t) I <ci2. 

Hereby we obtain the first estimate: 

J| E(V(t)V(t))2dt-1/6 *J2(TiT1_)* = j2 A(t) dt < c. i. 

The estimates for the processes Y and Z are well known consequences of Lemma 2, 
see Ritter [13]. O 

Next we compare piecewise linear interpolation with Euler approximation for 
the processes Y and Z. 
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Lemma 4. We have 

JT E (Z(t) -Z(t)) dt < c * Ai * A3 
j=1 

and 

E Y(t - () dt < 
', 

' 3 

fori= 1,... ,n. 

Proof. Clearly 

E (Z(T) - (Ti)) = E (? j u'(t)* (W(t) - W(Tj)) dt) 

= : , U'(s) *u'(t)* (-rj -max(s, t)) ds dt 
j=l j-lT 

(15) < K62 . 
j=1 

Hence 
~~~ ~2 

E (Z(t) - Z(t)) 

<?2 ((Ti t) 2E (Z(Ti) - Z(Ti2)) + (t - - 1)2E (Z(T2)-Z(Ti))) 

2< E E Z Z3'i 

j=l 

and the first estimate follows. 
By Theorem 3 we have 

j=l 

Hence 

E (Y(Ti) -Y(Ti)) = E (X(Ti) + Z(Ti) -X(Ti) - Z(Ti)) ? 
c. 

z /\ 

j=1~ ~ ~ ~ ~~~~~~~~~~= 

by (15), and the second estimate follows as above. . 

6.2. Proof of the upper bound in Theorem 1. For every discretization (2) the 
corresponding Euler approximation X satisfies 

1/ 

e(X) ? (j - E(V(t)- V(t)) dt) +A, 

where 

A = (j E(Y(t)- Y(t))2 d ,Tt1+ (j 1(t)/-Z(t)2 dt) 
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Combining Lemmas 3 and 4, we get 
1/2 ~~~~1/2 

(16) A < C ( A3 + 'i . E 3 < C 

Together with the first estimate from Lemma 3, this implies that 

n ~ A'\1/2 n 1/2 

(17) e(X) < (S1/6. J2(rT_,) + c- _A3 

Now we consider the particular discretization (3), and we put Tk = Tk (h,u). 
Since a is bounded away from zero according to (B), we have 

Ai(h, ) = ri(h,o) - T-i-(h,t7) = h/o(i_,(h,a)) 

and 
n(h,c)-1 

n(h,o)-h = A ti(h,o) o(Ti_(h,o)) + h. 
i=l1 

Hence 
lim max Ai(h,c) = O 
h- 0 i=1.n(h,) 

and 
lim n(h,ua) h = I|a|il. 

Moreover, 
n(h,c) 

n(h,a). A3(h,a) < n(h, u)2. * max (h,a) 

yields 
n(h,c) 

limr n(h,ua) 5 (h,a)= O 

Summarizing, we obtain 

lim sup n(h, )1!2 *e(xh) 

1 ~~~n(h,a) \1/2 
< lim sup 1/6.n(h,a). * 2 (,Til( ) Ai2(h,a) 

= limsup(1/6 * n(h,a)2 .h2)12 = /V/f6 Haoi 

Remark 3. For every discretization (2) the contribution of a subinterval [Ti- 1, Ti] 
to the error e(X)2 is given by 

= 1/6- o2(T,T-) L2 +a. A3- 

Here c only depends on K1,..., K6. Clearly Ei is of order h2 for the step-size 
Ai = h/lo(Ti-). We get the uniform estimate 

Ei < (1/6 + -) *h2 

without any lower bound for o, if the step-size is defined by (6). 



ADAPTIVE STEP-SIZE CONTROL FOR SDE'S 1031 

6.3. Proof of the lower bound in Theorem 1. In addition to (17) we also have 

/n 1 /2 /n 1 /2 

e(X) > 1/6 .o2( Ti_l). )12 -c * E A31 
i=l i=l 

The above arguments yield 

liminf n(h,C)1/2 e(X') = 1/\/6. flo 

for the discretization (3). 

6.4. Proof of the lower bound in Theorem 2. Note that the upper bound in 
Theorem 2 follows from Theorem 1. 

Consider an arbitrary sequence of methods Xn that uses n observations of the 
Brownian motion W. It remains to show that 

lim inf n 1/2. e (Xn) >_ 1/* . Ir(J 
n--oo 

Choose 1/2 < -y < 1 and put 

(18) Tkn = k/[n^fl 

for k = 0,..., [nrf). Let Yn and Zn be given by (13) and (14), respectively, for the 
equidistant discretization (18). Define a method VnI by 

Vn' Xn -X(O) - Yn + Zn- 

Clearly 

e(Xn) > ( E (V(t) - Vt(t))2 dt) - Bn 

with 

Bn = (j E (Y(t) - Yn(t)) dt) + ( E (Z(t) - Z(t) dt 1/2 

Employing Lemmas 3 and 4, we have 

([nr1 1/2 

Bn ?< Cc | 
yn -3 

< C/nl, 

\j=l 

see (16). Since 'y > 1/2 we obtain 

1 ~~~~~~1/2 
1/2 /2 ~~~~~~Vt (t))2 t liminf n1/2 e(Xn) > liminf n1/2 *(l E (V(t) - dt 

n--o.o n--oo 

We claim that 
1 ~~~~~~1/2 

(19) liminf n1/2 ( E (V(t) - Vt(t))2 dt) > 1/V'6. 115oj1 

which is sufficient to establish the lower bound in Theorem 2. 
Note that Vt uses at most m(n) = n + [nFy observations of W, an observation 

of the initial value X(O) and a finite number of 'values of a and oc. Equivalently, Vt 
uses at most m(n) observations of V, the initial value, and values of a and oc. 

The process V is Gaussian, and approximating V in L2-norm from finitely many 
observations of V defines a linear problem with a Gaussian measure in the sense of 
Traub, Wasilkowski, and Wozniakowski [18, Chapter 6.5]. For problems of this kind 
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adaptive selection of the observation points does not help, see Traub, Wasilkowski 
and Wozniakowski [18, Theorem 6.5.6.1]. Hence we may assume that Vt is based 
on observations of V at a priori fixed points 

O =Sn < *n< S(n)l=1 

Recall that X(0) and W are independent by assumption (C). For every t E 
[sznU1, si] we have 

E (V(t) -Vt(t)) 2> E(V(t) - E(V(t) 
I 
V(sSnU1), V(sn), X(0))) 

=2(t). E((W(t) - E(V(t) I 
W(sSnU1), WV(sn)))2 

- 2(t). (sn - t) (t - Sn 1)/(S -_ Sn 1). 

Therefore 
m(n)+1 

1 E (V(t) -Vt (t))2 dt > 1/6. Z CJ2((in) (S -S 

? ~~~~~~~~~~~i=l1 

for some E [s1U 1, sin]. 
Observing that 

lim m(n)/n= 1 
n-oo0 

and 
lim max (si - snU1) < lim 1/[nfl - 0, 

n-oo 1 <i<m(n)+1 n-- oo 

we thus conclude that 

liminf nrj E (V(t)-Vnt)) dt 

m(n)+1 

* 1/6 liminf (m(n) + 1) Z E 2((n) a (sin - 

2=1 

m(n)+1 \ 2 

? 1/6 liminf E ((n) (sn -_ S 
i=l 

= 1/6. 1. 

Hence we have shown that (19) holds. 

APPENDIX A. AN UPPER BOUND FOR ONE-STEP METHODS 

WITH NONEQUIDISTANT DISCRETIZATION 

An upper bound for the pointwise error of one-step methods with equidistant 
discretization is formulated in Milstein [9, Theorem 1.1]. It is easy to generalize 
Milstein's proof to the case of nonequidistant discretizations. We use the same 
notation and assumptions concerning a and oa as in Milstein [9]. The assumptions 
are satisfied in particular for scalar equations (4) with additive noise, given the 
properties (A)-(C). We use subscripts t, x to indicate starting at x E JR at time t. 

Theorem 3. Suppose that a one-step approximation Xt,(t + h) satisfies 

IE(Xt,,(t + h) - Xt,x(t + h))| < K (1 + Ix12)1/2 * hP 
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and 

(ElXt,x(t + h) - Xt ,(t + h)I2)l/2 < K . (1 + Ix 2)1/2 . hq 
for arbitrary 0 < t < 1 - h. Moreover, assume that 

q > 1/2, p > q + 1/2. 
Then, for every discretization 

O = TO < < TN=l 

and every k = O,.. ., N, the following estimate holds: 
k 

E Xo,x(0)(Tk) - XoX(0)(Tk)l < K. (1 + E X(O)12)1/2 . (T )2q 
i=1 

Specifically, for the Euler scheme it is known that Theorem 3 may be applied 
with p = 2 and q = 1. However, for equations (4) with additive noise one may even 
take q = 3/2. See Milstein [9, p. 20]. 
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