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NEWTON'S METHOD FOR OVERDETERMINED 
SYSTEMS OF EQUATIONS 

J. P. DEDIEU AND M. SHUB 

ABSTRACT. Complexity theoretic aspects of continuation methods for the so- 
lution of square or underdetermined systems of polynomial equations have 
been studied by various authors. In this paper we consider overdetermined 
systems where there are more equations than unknowns. We study Newton's 
method for such a system. 

I. INTRODUCTION 

Complexity theoretic aspects of continuation methods for the solution of systems 
of polynomial equations have been studied by Renegar [11], Smale [20]-[22], Shub 
and Smale [15]-[19], and Dedieu and Shub [4]. These papers have considered square 
or underdetermined systems. In this paper we consider overdetermined systems, 
where there are more equations than unknowns. We study Newton's method for 
such a system and then apply it to the elements of a path in the space of problems 
to produce a path of solutions. This is the approach of Renegar, Smale, Shub-Smale 
and Dedieu-Shub referred to above. 

A) Newton's method: The affine case. We study here Newton's method to 
find the zeros of an analytic function 

f: E - IF 

with E and F two real or complex Hilbert spaces. In fact the domain of f may be 
an open set in E but, with abuse of notation, we continue to write f : E IF. 

For a continuous linear operator A: E -> F with closed image, the Moore-Penrose 
inverse of A is the composition of two maps 

At: IF -> F, At = i7i 

where 7r is the orthogonal projection onto im A and i, defined on im A, is the right 
inverse of A whose image is the orthogonal complement of ker A in E. When A 
is injective with closed image,1 then At = (A*A)-lA* with A* the adjoint of A. 
When A is surjective, then At = A*(AA*)-1. 

Newton's method is defined, when Df(x) has closed image, by 

Nf (x) = x - Df (x)tf (x), 
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and Newton's sequence starting at x is given by xk = Nf (x). In the rest of this 
section we suppose that Df(x) is injective and has a closed image or, at least, lies 
in the considered domain. 

When Newton's sequence converges to ( e E, then ( satisfies the three following 
properties (which are clearly equivalent): 

1. Df (()tf (() = o, 
2. f (() Eim D f(()-LI 
3. ( is a stationary point of the gradient of F(x) = lIf(x)fl2, i.e., gradilf(()fl2 = 

0, but f(() is not necessarily equal to zero. 

The stationary points of grad F(x) are related to the nonlinear least squares 
problem 

min 11 f (x) 11 2, 
X~E 

so that Newton's method provides a way to compute its solutions. Notice that this 
iteration doesn't require the computation of the second derivative D2f(x). 

This method to solve the nonlinear least squares problem was originally intro- 
duced by Gauss in 1809 is called the Gauss-Newton method in the literature: see 
Seber-Wild [13] and Dennis-Schnabel [5]. 

The convergence properties of Newton's sequence have been studied in two differ- 
ent contexts: Kantorovich-style theorems (see for example Ostrowski [10], Ortega- 
Rheinboldt [9]) using data in a neighborhood of a root, and Smale's a-theory using 
data at one point (Smale [22], Royden [13], Wang [25], and Shub-Smale [15, 18, 19] 
for the case n > m and Df(x) onto; see also Blum-Cucker-Shub-Smale [2]). We 
follow here the second point of view. Smale's a-theory involves three invariants, 
which are 

a(f,x) = i3(f,x)>y(f,x), 

,3(f,x) = IIDf(x)tf(x)II, 

'y(f, x) = sup IIDf(x)t Dkf(X) k-1. 
k>2M 

The convergence properties of the sequence Nk) (x), k > 0, can be described when 
Df(x) is surjective, in terms of these invariants. They need modification in the 
injective case since, via Df(x)t, we lose the information about the component of 
f (x) on im Df(x)L. For this reason we introduce 

a, (f, x) = 01 (f, x)^yj (f, x), 

,31(f,x) = flDf(x)tflhI(f(x)) I, 

'yj(f,x) = sup (lDf(x)tfl IIDkf(X)II k-1 

The main and well-known properties of Newton's method in the case of surjective 
derivative are 

1. fixed points correspond to zeros of f, and 
2. convergence to fixed points is quadratic. 

We have seen that in the case of injective derivatives Newton's method may have 
fixed points which are not zeros. Convergence to these fixed points may fail to be 
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quadratic, as the following simple example shows. We consider 

f (x) (2 +a) 

where a E R is given. Here x = 0 is a stationary point of 

F(x) =9 2 + (X2 + a)2 = X4 + (2a + 1)X2 + a2. 

When a = 0 then x = 0 is a zero of f; when a 7& 0 then f (0) 7& 0. Newton's iterate 
is given by 

_ 2x3 + (2a + 1)x 
Nf (x) = cv 1+4x2 

so that DNf (O) = -2a. The conclusion is clear: when a = 0 then DNf (O) = 0 and 
Newton's sequence converges quadratically to x = 0. When a 7& 0 and Ial < 1, then 

Nfk(x) converges linearly to x =0; when lal >1 then x = 0 is a repulsive point 
for Newton's iteration. At a = 2 DNf (0) =-1 and Nf goes through a period 
doubling bifurcation. There is now a period two attracting orbit for Nf near 0, 
so Newton's method fails to converge to a fixed point near 0. For a equal 6, Nf 
appears by computer experiment to have gone through a whole period doubling 
cascade. Another remarkable fact is the following. Since 

D2F(x) = 12x2 + 2(2a + 1), 

x = 0, as a stationary point of F, is a strict local minimum when lal < 1. In 
Theorem 4 below we prove a generalization of this fact. 

Our main results on Newton's method are of two types, gamma theorems and 
alpha theorems. Gamma theorems give an estimate of the size of a disc of con- 
vergence of Newton's method about a zero. Alpha theorems give a criteria for 
convergence of Newton's method at a point from the value of alpha at that point. 
Theorem 1 and 2 are gamma theorems and Theorem 3 is an alpha theorem. Let 
us denote +(v) = 1 - 4v + 2v2. This function decreases from 1 to 0 on the interval 

[0,1- _2]. 

Theorem 1. Let x and C e E be such that f(C) = 0, Df(C) is injective with closed 
image, and 

v = llx - (Ihn(f, ()<2 2 

Then Newton's sequence Xk = Nk(X) satisfies 

|lXk - (1 < -2 l|x - (1. 

Theorem 2. Let x and C e E satisfy Df(()tf(() = 0, Df(,) injective with closed 
image and 

v= llx - Ohn (f,) < 1 ' d. 
2 

If 

A (V )+ 2(2-v)al(f, < 1, 
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then Newton's sequence satisfies 

||Xk - (11 < AkI |X (11_ 

Remark 1. Since v -* 0 when x -> (, the condition A < 1 is satisfied when 

a, < 
~1 

for any x e E in a ball around (. 
For any real k > 1 we now define 

m(k, A) = A?(A)2 - 4A3 - 4kA2(A - 1) 
= )(A)2+ 4A(A-1) 

M(k) = max m(k, A), 
0<A<1- X 

m(k, Aopt(k)) = M(k). 

We have the following. 

Theorem 3. For any x e E, let us define Aopt = Aopt(IIDf(x)HIIIDf(x)tfl). If 
Df(x) is injective with closed image and al(f,x) < M(IIDf(x)IIIIDf(x)tII), then 

1) Nf maps B(x, 7,Pt) ) into itself, 

2) Nf is a contraction in that ball with contraction constant 1- A(fx) < 1, 
3) there is a unique ( e E such that Df( )tf(() = 0 and 

II( - xll < Aopt 

Our last local result about Newton's method is, the following: 

Theorem 4. Let ( e E be such that Df(() is injective, Df( )tf(() = 0 and 
2ail(f,() <1. Then 

1) ( is an attractive fixed point for Newton's method, 
2) ( is a strict local minimum for 

F(x) = Ilf (x)112 

We do not know if attracting fixed points for Newton's method are always local 
minima of II f 112. 

We may use Theorem 1 to give a complexity upper bound estimate for continu- 
ation methods. We state our result in greater generality. 

First we recall that, given an analytic function f: E -> F and points x, 4e E 
with f(C) = 0 and IIN(x) -11 < 21-2k I-X 11 for all k > 1, then x is called an 
approximate zero of f and ( its associated zero. Now suppose we are given a family 
of analytic functions ft: E -> F for t e [0,1] and (t e E depending differentiably 
on t such that ft(t) = 0 and Dft((t) is injective with closed image for all t e [0,1]. 
Let L( be the length of the curve (t for t e [0, 1]. Let yi = suptE[o0 ij1 ̂ (ft,I(t). 

We associate to a subdivision 0 = to < t1 < ... < tp = 1 a sequence xi for 
i = 0,.. . ,p by xo = (o and xi+1 = Nft,+. (xi). 

Theorem 5. There is a partition 0 = to < ti < ... < tp = 1 such that xi is defined 
for all 0 < i < p, xp is an approximate zero for fi with associated zero (1, and 

p=F3 -yLj. 
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Now we state a version of Theorem 5 in terms of the path ft. In order to do so 
we require that ft be differentiable as a function of t. For simplicity we restrict our 
attention to ft C P(d), the space of polynomial systems f = (fl,. .. ., fm) where, for 
each 1 < i < m, fi is a polynomial in n variables of degree di and (d) = (d1,. * , dm). 

Since ft((t) = 0 we have Dft((t)(it) + It((t) = 0. Since Dft((t) is injective it 
follows that 4t =-Dft@((t)(f((t)). For f e P(d) and ( e Cn+l, let K(f,() be the 
linear operator mapping P(d) to Cn defined by K(f, ()(g) = -Df(()t(g(()) and 
,u(f,() = flK(f,I() . Finally, let ,u = supt u(ft,(t) and let Lf be the length of the 
path ft C P(d)* 

Theorem 6. There is a partition 0 = to < t1 < ...< tp = 1 such that xi is defined 
for all 0 < i < p, xp is an approximate zero for f, with associated zero (1, and 

[4Y~l uLf1 
P 3 -; vf. 

Here P(d) and Cn have Hermitian products which make them Hilbert spaces, and 
,u, L(, Lf are all defined with respect to the induced norms. 

For estimates of ,u see [3]. References [2], [3] and [18] have versions of Theorems 
5 and 6 when Df is an isomorphism. 

B) Newton's method: the multihomogeneous case. Let El,... , Ek be com- 
plex or real vector spaces and F = Cm or Rm. Let E = El x ... X Ek and 
((d)) = ((di),.. ,(dk)),(di) = (di,i... ,dki) for i = 1,... ,m. Then f: E -> F is 
multihomogeneous of degree ((d)) if and only if the ith coordinate function satisfies 

k 

fi(Aixii * I * AkXk)= fJ dji fi CX . ,Xk) 
j=l 

for (x1,... ,Xk) e E and (A1,... ,Ak) a k-tuple of scalars, i.e., (A1,. Ak) e G = 

Ck or Rk as the case may be. 
We assume throughout that f is analytic. The domain of f may be an open 

subset of E, but with abuse of notation we continue to write f: E -> F. 
The multihomogeneous projective Newton iteration was introduced by Dedieu 

and Shub [4] in the case of underdetermined systems. We will use here the results 
of that paper. The iteration is defined on E but is invariant under the natural 
identifications which define the product of the projective spaces P(E1l) x * * x P(Ek). 
Indeed this is much of our motivation in defining Newton's iteration as we do, but 
it is important to keep in mind that implementations of the method reside in E 
itself! 

For the rest of this section we will assume that E, F and G are complex and finite 
dimensional vector spaces and that Ei has an Hermitian product (,)i. For the case 
where E, F and G are real we would replace the Hermitian product by an inner 
product. Also, we denote 

E* = (El\{O}) x ... x (Ek\{0}). 

If A = (A, ,k) E G we define 

xA : E ->+ E 

by 

xAx (Alxl,... ,AkXk)- 
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For xe E, x = (x1,... ,Xk), we let x-l be the Hermitian complement of xi in Ei, 
k 

X1 = xl c E and Vx = (x') c E. 
i=l1 

Notice that Vx is also the subspace of E spanned by the vectors (O,.. .,xi,... , 0), i = 

1, ... , k. The dimension of Vx is k, since x e E*. 
We now define an Hermitian structure on E, and hence on xl, depending on x, 

by 

(VIW)x = E (vo,wi 
i=1(xIxi 

for x e E* , v, w e E. If A e G*, then xA maps xl onto (xAx)' and 

(*) ( x Av, xAw)(x Ax) = (v,w)x. 

Condition (*) says that xA is an isometry from xl to (xAx)' as well as from E to 
E with their given Hermitian products. 

We are now ready to define the multihomogeneous projective Newton iteration 
for f. We denote this map as Nf: Hi Ei *-, 

Nf (x) = x - (Df (x) lx i)tf (x). 

As for the affine versions of Newton's method, define 

al (f,x) = max(l sup | (Df (x) x i )t Dkllx f!(x) 
k-1 

,31 (f, x) = || (Df(x) lx )t KlJxf(x) J, 
ai(f,x) = 013(f,x)yi,(f,x). 

In the definition of y, (f, x), I IIx is the operator norm with respect to ( x 
These invariants satisfy the following: 

*1 (f, x Ax) = *1 (f, x) 

for any x e E*, A E G*. We recall that for 1 < i < k the Riemannian distance in 
P(Ei) is given by 

dR (xi, Yi) = arccos I ( I 
' ) 

and in P(E1) x ... x P(Ek) by 

dR(x, y) = dR(Xi, y,) 
2 

where x = (x1,... ,xk) and y = (Yi,l- ,Yk) e E *. In fact we will use here the 
distances defined in P(Ei) by 

dp(xi, yi) = sin dR(Xi, Yi), 

and in P(E1) x ... x P(Ek) by 

d k ( 1/2 

dp (XI y) =(Edp (xi, Y,) 
2 
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Our main theorem in this section is the following: 

Theorem 7. There is a universal constant -y > 0, approximately equal to .15872, 
with the following properties: Let C e E* be a zero of f, with Df( )Ki injective 
and x e E*, such that 

dp (x, ,) (f , .)< O 

Then the multihomogeneous Newton sequence xo = x, Xk+1 = Nf(Xk), converges 
to C and, for each k > 1, 

d p((C,Xk ) < (-) d p ((, x). 

Theorems 5 and 6 now have their multihomogeneous analogues, which follow 
from Theorem 7 instead of Theorem 1. We don't bother to state them. 

I I. THE PROOFS OF THEOREMS 1-6 

Our proofs of Theorems 1-4 proceed by a series of lemmas. The proofs of Theo- 
rems 1-3 are analogues of the proofs of the alpha and gamma theorems in [22] and 
[2]. 

We frequently use the notation lrG to denote orthogonal projection on G. 

Lemma 1. When Df (x) is injective and 

u = lix - Ylhy (f, x)<1- 2 

then: 

1. Df (y) and 7Fim Df (x) Df (y) are injective; 
2. Df (x)tDf (y) is nonsingular, and its inverse is equal to 

(7iim Df (x) D f (y)) t D f (x); 

3. JJ (D f(x)tDfT(yp)) - 1 J < (1 _U) 2 

Proof. We have 

Df (x)t(Df (x) - Df (y)) =-Df (x)t Z k f!(X) (y - x)k-1, 
k>2 

so that 

IlDf (x)t(Df (x) - Df (y))II < E kIlDf (x)tlI k! ) IY- Xlk1 
k>2 

< ? k^y,(f, X)ky1I xll = _ )2 k1 < 
k>2 (-) 11 

since u < 1- 2X. By a classical argument idE - Df(x)t(Df(x) - Df(y)) 
Df(x)tDf(y) is invertible, and its inverse is bounded in norm by 

|I(Df(x)tDf(y),-lJJ < 1 1A - ) .- ) 
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Moreover we have 

(7rim Df (x) Df(y)) t Df(x)(Df(x) t Df(y)) 

= (rim Df (x) Df(y)) t o (7im Df (x) Df(y)) = idE 

and this proves 2. Df(y) is injective because lrim Df(x)Df(y) is also injective. O 

Below we will use the following lemmas. Let A, B: E -> F be two injective linear 
bounded operators with closed range. Let us define 

1A = inf flAx 1. 
HiX11= 1 

Lemma 2. 1) j1At 11 =,pf1, 2) IJA - IIBI < jA - B. 

Proof. The proof is easy, and is left to the reader. O 

Lemma 3 (Wedin Theorem). 

1At - BtII < v'11At 111Bt 1A - BII. 

A proof of this lemma is given in Stewart-Sun [24] for m x n matrices with m > n 
and rank A = rank B = n. In fact this proof is valid in the more general context 
we deal with here. 

Lemma 4. If Df(x) is injective and 

U= lIx-yHlhn (f,x) < 1- 2 

then 

jjDf(y)tjj < lDf(x)tll( /J)2 

Proof. We have 

Df(y) = Df(x) + E kD f()(y - X)k-1l 

k>2 

so that 

IlDf(y) - Df(x)j < IlDf(x)tl ((1 x u)2 

By Lemma 1 Df(x) and Df(y) are both injective, so that, by Lemma 2, 
IUx - uy I < I IDf(y) - Df(x)I 1. Moreover, 

[-1 = IIDf(y)tj, [-1 = IlDf(x)tll, 

I-LY > pX - 11 D f (Y) - Df (x) lI > I-tx (2-( U)2 ) ? ( 

because u < 1- 2X. Thus 

IlDf(y)tj =1 1 = HZ1 ([_ZL ) 1))I(1 U)2 = Df()t 1 U) y x y x (u) (u) 
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Lemma 5. Let , e E with Df(()tf(,) = 0 and Df(() injective. For any x E E 
such that 

v= II(-x xlh(f,() < 1- 

we have 

IIDf(x)Jf(()Il < - 
( ) pi(f 

Proof. By Lemma 3 we have 

IlDf(x)tf(() 1 = 1l(Df(x)t - Df(()t)f(()l 

< V'-flDf(x)t l flDf(()tl llDf(x) - Df(()fl lf(()fl. 

We now use Lemma 4 to bound IIDf(x)tI . As in the proof of Lemma 3 we get 

flDf(x) - Df (() 11 < flDf(()t 11((1 i - ) 

so that 

jjDf (x)tf(() 11 < V'-jDf((()t 11 - 11 Df(()t 
C(v) 

x IlDf(()tll (-1 i - 1) ( 

and we are done. 

Lemma 6. Under the hypothesis of Lemma 5 we have 

v 2v - v 2 

JINf (x) - (1 < llx - 11+ )~ +,2 Oi t() (f O) 

Proof. We have 

Nf (x)-= x -QDf (x)tf (x) 

=Df(x)t((Df(x)(x - -f(x) + f)) -Df(x)tf()). 

Thus 

IINf(x) - fl < IIDf(x)tIIIIDf(x)(x -0 + f(' -f(x)lI + IIDf(x)tf(I fl. 

Moreover, 

Df(x)(x-'0-f(x)+f( E=Z(k-1)D kf (()(z k 
k>l 

so that 

IlDf(x)(x - -f(x) + f (()Il < flDf(()tll lix - 1 (I v- 

By Lemmas 4 and 5 we get 

(I1_V)2 v 2v -v 2 
JINf (x) - (11 < ( lIix -(1( _ + )2 +1 X(f , v) 

(v) (I - 
V)2 Cv) 
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Proof of Theorem 1. We have 

JINf (x) - 11 < v( llx - 11. 

When v < 47 then v < 1, and by induction 

f N ( ) 
- 

11 < 
O( V ) 

11 
- 

11. 

When v < 3 then v < 1/2, and we are done. 
- 2 ~ (v) dwaeoe 

Proof of Theorem 2. We have 

JINf (x) - v11 < 
v 

llx --11 + X 
2v - v 2 

~(v) 'O(v) 
1,( ) 

or, equivalently, 

JINf (x) - 11 < O(v() + XfV2 a(f,()) Jjx-(jj 

When 2vaI (f, ) < 1 and v is small enough we have 

v 2- v 
A 

v + -V al(, (f < 1 

so that 

JINf (x) - 1 < Allx - 11. 

An induction finishes the proof. 

Lemma 7. The derivative of the Moore-Penrose inverse of A, when A is an injec- 
tive bounded linear operator with closed image, is given by 

DAt(E) =-AtEAt + (A*A)-<E*lr(im A)' 

Proof. Since At = (A*A)-lA*, the lemma follows by straightforward differentia- 
tion. 

We deduce from this result an expression for the derivative of Nf (x): 

Lemma 8. When Df(x) is injective, then 

DNf (x)x = Df (x)t (D2f (x)x)Df (x)tf (x) 

- (Df (x)*Df (x))- -(D2f (X))*7rim Df (x) f (x) 

The proof uses both the chain rule and Lemma 7. 

Lemma 9. When Df(x) is injective, then 

11 DNf (x) 11 < 4a, (f, x). 

Proof. By Lemma 8 and the fact that for any linear map A, IIAH = A* 

||DNf (x) 11 < 21HDf (x)t 11 JID2f (x) 11 IIDf (x)t I IIf (x) 

< 4yi (f, x)/31 (f, x) = 4a I(f, x). 
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Lemma 10. When Df(x) is injective and u = - y -yj(f,x) < 1 - , we have 

1. 13 (f, Y) < (u) (/1(f,x) + IuuIlY - x|| + 11Df (x) IIJDf (x)t 11y - xlI), 
2. yi(f,Y) < (Iu (flu) 

3. a (f, y) < -u(a, (f, x) + luu+ 1? Df (x) 11 11 Df (x) t lu). 

Proof. 3) is a consequence of 1) and 2). 1) goes as follows: 

f(y) = f(x) + Df(x)(y - x) + S kf(X) (y - x)k, 
k>2 

so that 

Ilf(y)II < Ilf(x)II + HlDf(x) |ly - xl + IlDf(x)tll-ly - xll U 

and we conclude by Lemma 4. To prove 2) we start from 

Dkf(y) 0 Dk+ef(x) ( e 
Z k!e (y- X)" 

* e= 
so that 

Dkf (y) ?< (k ? Dk+ef (X) 1yx 
k! f (e)e(k + e)! 

, (k ?e) (k?! I- k)Hef IDf(x) 

< k1 _ ,t -1j Df(X 11 y-x IlDfx)t1 k-i 

IlDf(x)tKll. 
(1-U)k+l 

By Lemma 4 we obtain 

IIf(ItlD kf(y) <1 (1 U;()2 kltt-I 

Thus 

-n (f , Y) < (f - x)atu (1U)4'(u) 

Proof of Theorem 3. We have, by Lemmas 9 and 10, 

DNf (y)H < 4 
o(U)2 (a1 (f, x) + u + IlDf (x)IIJIDf (x)tllu) 

with u = - yjjVYj (f, x) < 1-. By the mean value theorem this gives 

JINf (y)-xll < HINf (y)-Nf (x)H ll lx-yll + HINf (x)-xil 

<1 -u U2 
< 4 O()2 (a,(f,x) + -+ KU)|x|- y? +/31 1 

with r = IlDf (x)I IDf (x)t 11. Suppose now that llx-yyi-^I(f, x) < A < 1- ; then 

lNf (y) - xl<K4g 2 1- 1 U 2 A a, 
-0 ~(U)21 1 -u yi 'Y 
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This quantity will be < > when the following estimate is satisfied: 

1u2 
4 

?,( )2 (a, + 1 + ?ru)A + ? < ?A 

given by 

A4O(A)2 - 4A 3 - 4r~A2(1 - A) 
a,< 

g()-S 4i ()> = m(r,, A). 
'O(A)2?+4A(l1-A) =mr,) 

The best possible A is A0pt(ri) satisfying 

m (E, Aopt) = max m(r,, A). 
0<A <1-X 

In that case Nf sends the ball centered at x with radius A into itself. Moreover, 
Nf is a contraction with contraction constant 

A=1 -A((A A2 
< a 

A = 4 ,X)(a,(f, x) + 1 \ + IlDf (x) 1IllDf (x)tl I) < -X1< 1, 

and we are done. O 

Proof of Theorem 4. With F(x) = Ilf 12 we have 'DF(x) = Df(x)*f(x) and 

2D2F(x) = Df (x)*Df (x) + D2f(x)*f(x). 
2 

Moreover, when Df( )tf(() = 0, i.e., f(() E im Df(()', the derivative of Nf is 
equal to 

DNf () (Df Df -(D2f (())*f 

Let us denote ,u = inf1 x1=1 IIDf(()x I, so that IIDf(()tII = /i- 1 We want to prove 
that 'D2F(()(x,x) > 0 when llxll = 1. We have 

1 
- D2F(() (x, x) = IDf(()x 2-(f((), D2f(()(x, x)) 
2 

> /I- lf(() 11 1HD2f (()(x, x) 11 

= 2(1-ID() 11211f(()Il II2f()xxl) 

> 4(1 -2a(f,())>O. 

Moreover, 

IDNf (()Il < jj(Df(()*Df(())-'jjjj II2f() Ilif(() 1 

A -2 t D2f(() 11H1 f(() 11 < 2a,(f, ) < 1 

so that ( is an attractive point for Newton's method, and we are done. O 

Proof of Theorem 5. Choose 0 = to < t ... < tp = 1 such that H(ti -(ti+1 11 < 

34- ̀;-. This is possible since p = FL(/3Ij1. Now we claim by induction that 

A) lxi -(t 11 < 
4-Yl 

and 

B) ||Xi-(ti+ll1 < 271 

For i = 0, llxi - (t 1 = 0. From A) for i, B) follows for i since 11(t -(ti+1 1 < 4^fl 

Now A) follows for i+1 from B) for i by Theorem 1. Moreover, for each i = 1, . . . ,p, 
xi is an approximate zero with associated zero (i for ft, by Theorem 1. O 
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Proof of Theorem 6. Theorem 6 follows from 5. We need only see that the length 
Lc of the curve (t is less than or equal to the length Lf, of the curve ft, times [, 
which is proven in the next lemma. O 

Lemma 11. Lc < ,ULf. 

Proof. We have 

L(= 11tlldtLf l=jtlldt 

and k1itHl <? (ft,(0ftt <? ,11ftfl by the definition of tl(ft,(t) and i. O 

III. THE PROOF OF THEOREM 7 

Proof of Theorem 7. It will be shown in Lemma 18 that 

dp (Nf (x) ,) < dp(x, )2yi(f, ) 

when f(() = 0, Df(,)Ki is injective and 

V = dp(x, ()Y,(f,4) ? YU = 15872. 

The proof follows easily by induction. O 

Remarks. 1. The quantities Nf (x) and dp appearing in Theorem 7 satisfy the 
following invariance properties: for any A E G* and x E E*, Nf (x Ax) = x ANf (x) 
([4], Proposition 1) and dp(x Ax,() = dp(x, (). For this reason we can substitute 
for x the quantity xAx, so that xAx - ( E xl. This is accomplished with 

A ((i, Ixi) i 
- 

(Xi, xi),i 

This quantity cannot be equal to zero because, in such a case, dp((i, xi) = 1 and 
consequently dp((, x) > 1, contrary to the hypothesis v < .15872. For this reason 
we suppose in the following that 

x - x E 

In this case 

dp(x, ) = - 11(. 

2. We also use here the concept of distance between two vector subspaces in E. 
If V and W are two such subspaces, this distance is the maximum of the sine of 
a given u E V with its orthogonal projection in W. This distance is denoted here 
by d((V, W) because it is related to the Hermitian structure ( , )(. Various results 
concerning the distance between two vector subspaces are proved in [4], section 2.1. 

Lemma 12. d((V VC) = d((V(, V.) < v. 

Proof. See [4], Proposition 4.1 and Lemma 4.a. 0l 

Lemma 13. When f(() = 0 and Df(() Z' is irnjective, then 
1) kerDf() =V, 
2) imDf (() = imDf (()KI. 
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Proof. By Euler's formula 
k 

D fi (() ( x AO) = fi ()E dji Aj = ?, 
j=l 

so that V( C kerDf ((). Since Df(()I, is injective we have (' n kerDf(() = {O}, 
so that ( " = V = kerDf ((). O 

Lemma 14. If v < 1, f() = 0 and Df (()I i is injective, then Df (() I. is injec- 
tive and 

imDf(() imDf (() I= imDf ((I) x. 

Proof. Since v < 1, by Lemma 12 we have d((Vx,VC) = d(V(,Vx) < 1, so that, 
by [4], Proposition 4.3, Vx n ( = {0} and the orthogonal projection r: xl- ( 
is an isomorphism. Thus, for any u E xI we have Df(()u = Df(()iru, so that 
imDf(() xi = imDf(() 1i, and the conclusion holds. O 

Lemma 15. If v < 1, f(() = 0 and Df (()I(, is injective, then: 

1) IlDf(()I' -Df(()I'1 I II' < Df(()III II. 

2) IlDf (()lt 1 I < (1 + v/ IlDf (()I', II( 

Proof. By Lemma 14, for any y E imDf (() we can find a preimage a E (' and 
another preimage b E x1. In other words, a = Df (4jt 1y, b = Df ( 1t y and 
b-a E kerDf(() = VC. Since 

d((xl 41) = d((V(, Vx) 

(see [4], section 2.1), and a = 7rvcb, b e x1, we get 

Ia - S < tan arcsin d((V(, Vx). 

But tan arcsinx = x / 1l- x2 and, by Lemma 12, d((V(, Vx) < v < 1, so that 

Ilal - bI 1- d((V(, Vx) v 

We now notice that 

IlDf (()It IKI = max 

and 

IlDf(()It- Df(()It = max Ia - 

to complete the proof. O 

Lemma 16. If v < .25 , f(() = 0 and Df(()i .-is injective, then 
1) Df(x)x i is injective, 

2) <V 2 

1 __2)(1lV)2 
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Proof. By Taylor's formula 

Df (x) = Df ()+ + f((X- 

k>l k>1 k x~ 

so that 

Df(() 
' 

(Df(() I - Df(x) I = -Df()) It kD kf (x -()k-Ix 

k>2 

Since Df (() I is inj ective (Lemma 14), we have Df (() I ,Df (C)~ I x idxi Thus 

Ild Df (()It Df (x)lx~ K ?I 5 kHlDf(()It I KI ID kf (4)11 KI Hx - 

k>2 

and by Lemma 15 

< (1 + ' )klDf (()It I1 II ID kf(()11( IX _(Ilk-I )Z Df42 Dkf(I 
<(1? 1-v2k>2 K k 

v 1 
< (1+ )((1 )2 1). 

This last quantity is < 1 because v < .25. By a classical linear algebra argument, 

Df(()It1Df(x)lxi is invertible and its inverse satisfies 

(Df (()I It Df (x) Ix i)-1 < V x v 1~~~~~~~~~~ 
~~V22 1-v(1+ 2/) (1- v)2-1 

Let us write 

rimDf(()flI, Df(x)|xi = Df(()|x1 (Df(()t1 Df(x)Ixl), 

the composition of an injective and an invertible map. We obtain that 7rDf (x) I 

is injective, so that Df(x) Ix is itself injective. Moreover, 

Df(x) t1 = (Df(()t I1 Df(x)x-L) -<(Df(() ItI Df(x) xi )Df(x) It 

(Df(() ItI Df(x) |xi)x-Df(()ItilTimDf(x)I I 

so that, by Lemma 15, 

11 Df (x) Itl _L- 

1 
V)( < 

1 
) (1 + ) ]IDf (()t- II(ll , 

x v 1~~~~~~~ ~V2 
(~t 

1+ 
j- v2 (1v2 

and we are done. E 

Lemma 17. If v < .25 , f()=0 and Df(4) is injective, then 

(+ 
flNf(x) - 11 < (1 <v)2 vllx-11 

1-v 
- (1- V)2 
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Proof. Since we have supposed that x - E xl and because Df(x)I, is injective, 
we have 

Nf (x)- = Df (x)Kt_ i(Df (x)(x - -f (x)) 

and by Taylor's formula for both Df and f at ( 

=Df (x) it (k k-1) D 
xDkf( ) k 

k>2 

so that 

JINf (x) - (11( < IHDf(x)ltK ZL (k -1) kID 
k 

(()!1 IIX (Ilk 
k>2 

and by Lemma 16 

1 + 
1 - 1 (k - 1)HIx - (1Kk1 

l 
1 

1 - (1-+ 1) k>2 
F1- v 2 (1-V)2 

This completes the proof. O 

Lemma 18. When f(() = 0, Df( )Ki is injective and v = dp(x,Qy (f,() < 
.=.15872, then 

dp(Nf (x) ,) < -dp(x, ()2y _(f, ) 

Proof. This is an easy consequence of Lemma 17; .15872... is the smallest positive 
root of the equation 

(1 + 1 
-(1+X 2(1V )2 1 

1 (1 
V 1 2 

1 
V2 (1 V)2 
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