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EVALUATING HIGHER DERIVATIVE TENSORS 
BY FORWARD PROPAGATION 

OF UNIVARIATE TAYLOR SERIES 

ANDREAS GRIEWANK, JEAN UTKE, AND ANDREA WALTHER 

ABSTRACT. This article considers the problem of evaluating all pure and mixed 
partial derivatives of some vector function defined by an evaluation procedure. 
The natural approach to evaluating derivative tensors might appear to be their 
recursive calculation in the usual forward mode of computational differentia- 
tion. However, with the approach presented in this article, much simpler data 
access patterns and similar or lower computational counts can be achieved 
through propagating a family of univariate Taylor series of a suitable degree. 
It is applicable for arbitrary orders of derivatives. Also it is possible to cal- 
culate derivatives only in some directions instead of the full derivative tensor. 
Explicit formulas for all tensor entries as well as estimates for the correspond- 
ing computational complexities are given. 

1. INTRODUCTION 

Many applications in scientific computing require second- and higher-order der- 
ivatives. Therefore, this article deals with the problem of calculating derivative 
tensors of some vector function 

y = f(x) with f: D cjR~ l i,-Rm 

that is the composition of (at least locally) smooth elementary functions. Assume 
that f is given by an evaluation procedure in C or some other programming lan- 
guage. Then f can be differentiated automatically [6]. The Jacobian matrix of first 
partial derivatives can be computed by the forward or reverse mode of the chain- 
rule based technique known commonly as computational differentiation (CD). CD 
also yields second derivatives that are needed in optimization [8] and even higher 
derivatives that are called for in numerical bifurcation, beam dynamics [2] and other 
nonlinear calculations. 

Even though the reverse mode of CD may be more efficient when the number of 
dependent variables is small compared to the number of independents [6], only the 
forward mode will be considered here. The mechanics of this direct application of 
the chain rule are completely independent of the number of dependent variables, so 
it is possible to restrict the analysis to a scalar-valued function 

y = f (x) with f :D C Ri-n * R. 
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In other words, formulas for one component f(x) of the original vector function 
f(x) are derived. This greatly simplifies the notation, and the full tensors can then 
easily be obtained by an outer loop over the component index. 

The natural approach to evaluating derivative tensors seems to be their recursive 
calculation using the usual forward mode of CD. This technique has been imple- 
mented by Berz [3], Neidinger [10], and others. The only complication here is the 
need to utilize the symmetry in the higher derivative tensors, which leads to fairly 
complex addressing schemes. As has been mentioned in [7] and [1], much simpler 
data access patterns and similar or lower computational counts can be achieved 
through propagating a family of univariate Taylor series of an arbitrary degree. At 
the end, their values are interpolated to yield the tensor coefficients. 

The paper is organized as follows. Section 2 introduces the notations that are 
used and makes some general observations. In Section 3 the complexity of storing 
and propagating multivariate and univariate Taylor polynomials is examined, and 
the advantages of the univariate Taylor series are shown. Section 4 derives formulas 
for the calculation of all mixed partial derivatives up to degree d from a family of 
univariate Taylor polynomials of degree d. Some run-time results are presented in 
Section 5. Finally, Section 6 outlines some conclusions. 

2. NOTATIONS AND BASIC OBSERVATIONS 

In many applications, one does not require full derivative tensors but only the 
derivatives in n < n directions si E Rn. Therefore suppose a collection of n < -n 
directions si E RW is given, and that they form a matrix 

S = [S1, S2, ... , Sn] E IRi 

One possible choice is S = I with n = ft. Here, I denotes the identity matrix 
in Rfxf. Of particular interest is the case n = 1, where only derivatives in one 
direction are calculated. 

With a coefficient vector z E R n one may wish to calculate the derivative tensors 

f (X + SZ) = (f"(X)Sj)j=,...,n E 

(Z2 f(x S) (f ,(X) Si Sj)j=l,...,n E Rnxn 

and so on. The last equation is already an abuse of the usual matrix-vector notation. 
Here, the abbreviation 

s f (x) E Rnk 

will be used in order to denote the k-th derivative tensor of f (x + Sz) with respect 
to z at z = 0. 

The use of the seed matrix S allows us to restrict our considerations to a subspace 
spanned by the columns si along which the properties of f might be particularly in- 
teresting. This situation arises for example in optimization and bifurcation theory, 
where the range of S might be the tangent space of the active constraints or the 
nullspace of a degenerate Jacobian. Especially, when n <K n it is obviously prefer- 
able to calculate the restricted tensors V7S f (x) directly, rather than first evaluating 
the full tensors 

Vkf(x) - V./f(x) E Rk 
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and then contracting them by multiplications with the directions si. 
One way to evaluate the desired tensors vS f (x) is to recursively calculate for all 

intermediate quantities w the corresponding restricted tensors Vsw, VS2W, ... etc. 
The process would be started with the initialization Vsx = S and with V7x = 0 
for k > 1. For all subsequent intermediates, the derivative tensors are defined by 
the usual differentiation rules. For example, in the case w = u * v there are the well 
known differentiation rules 

Vsw = u Vsv + v Vsu 

and 

VsW = U VsV + VSU(VSv)T + VsV(Vsu)T + V VCu. 

For the third derivative tensor, the matrix-vector notation is no longer sufficient, 
but the following observation is generally applicable. 

To calculate vs w, each element of Vsu with 0 < j < k has to be considered 
and then multiplied with all elements of vk-jV. The result is then multiplied by 
a binomial coefficient given by Leibniz' theorem, and finally incremented to the 
appropriate element of W. 

The next section studies the complexity of storing and propagating multivariate 
and univariate Taylor polynomials. Taylor coefficients are used since they are some- 
what better scaled than the corresponding derivatives and satisfy slightly simpler 
recurrences. 

3. THE COMPLEXITY OF PROPAGATING UNIVARIATE TAYLOR SERIES 

If the k-th tensor were stored and manipulated as a full nk array, the corre- 
sponding loops could be quite simple to code, but the memory requirement and 
operations count would be unnecessary high. In the case k = 2, ignoring the sym- 
metry of Hessians would almost double the storage per intermediate (from 2 (n+ 1 )n 

to n2) and increase the operations count for a multiplication by about fifty percent. 
This price may be worth paying in return for the resulting sequential or at least 
constant stride data access. However, by standard combinatorial arguments 

Vsf(x) ER 

has exactly 

n(1)k - i n. (n+- 1) ... (n + k 1) k 

(1) (n?~~k-1 1 .2 ...k k! 

distinct elements. Hence, the symmetry reduces the number of distinct elements in 
V7sw almost by the factor k!. Therefore in the case k = 3 the number of distinct 
elements is reduced almost by six and in the case k = 4 the storage ratio becomes 
almost 24. Since higher order tensors have very many entries, one has to utilize 
symmetric storage modes. 

The drawback of symmetric storage modes is that the access of individual ele- 
ments is somewhat complicated, requiring for example three integer operations for 
address computations in the implementation of Berz [3]. Moreover, the resulting 
memory locations may be far apart with irregular spacing, so that significant pag- 
ing overhead may be incurred. None of these difficulties arises when n = 1. Then 
for any intermediate value w the directional derivatives w, V8w, V2w,... , Vdw can 
be stored and manipulated as a contiguous array of (d + 1) scalars. Here d denotes 
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the highest degree that is desired. It will be shown in Section 4 that to reconstruct 
the full tensors V7sf(x) for k = O,... , d, exactly as many univariate Taylor series 
are needed as the highest tensor V7Vf (x) has distinct elements. As we will see, that 
entails a slight increase in storage, but a very significant gain in code simplicity and 
efficiency. After this outlook, the manipulation of Taylor polynomials is considered. 
The collection of Taylor coefficients that constitute the tensors 

Vsk f (x)) kI ,. ,d 

represents a general polynomial of degree d in n variables. As can be concluded 
from (1), N7kf(x) contains 

(2) (r+d) = k k 

distinct monomials. The truncated Taylor polynomials of all intermediate scalar 
quantities w have exactly the same structure. Considering again a product w = u*v, 
for the computation of V7sw each element of VSu, 0 < j < k, has to be multiplied 
with all elements of v. It follows that 

t2n+k1 _ n+j j-I tn +k- j - i 

multiplications are necessary because of (1). Hence, the total count of multiplica- 
tions for computing Vs W is 

(2n + d) 2n + k -) 

When n > 1 there are also a significant number of additions and other overhead 
for each multiplication. Nevertheless it is possible to consider the number 

d dj(2n+' if d < n 

as a reasonable approximation for the factor by which the cost to evaluate f grows 
when the calculation is performed in Taylor arithmetic of degree d and order n. 
Here, we have tacitly used the fact that propagating Taylor polynomials through 
nonlinear functions such as the exponential, logarithm, and trigonometric functions 
is about as costly as the convolution for the product discussed above. All linear 
operations are cheaper, of course, since for them the effort is roughly (nd ) and 
thus about the same as the number of data entries that need to be fetched and 
stored from and into memory. 

Provided there is a significant fraction of nonlinear elementary functions in the 
overall calculation, one may consider 

(2n+d) (n+d) d 

as an approximate computation/communication ratio for propagating Taylor poly- 
nomials. Consequently, even on a modern super-scalar processor with compara- 
tively slow memory access, communication should not be the bottleneck. 

Now suppose that instead of propagating one Taylor polynomial in n variables 
and degree d one propagates (n+ -d) univariate Taylor polynomials of the same 
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degree d. Since the common constant term needs to be stored only once, the 
amount of data per intermediate becomes 

(3) 1+ (n+d )d = 1+ dn ( ) 

By inspection of the right-hand side we see this is at most d times that for the 
standard case (see (2)). Furthermore, 

(d + 2)(d + 1) d + 2 

2. = dJ 

multiplications are needed to propagate one univariate Taylor polynomial of degree 
d through an elementary multiplication. Hence, the total amount of the computa- 
tional effort for propagating (n?dj1) univariate Taylor polynomials of degree d is 
essentially given by 

(4) (n?+d -)(d +2) = (d, n)(2fl j d) 
( d )(d )(d) 

where 

q (d, n) =_(d + 2)(d + 1) (n+d-1) ... (n) 
2 (2n+d)(2n+d-1) ... (2n+ 1) 

It is easy to check through induction that q is never greater than 3 and that 2 

q(d) lim q(d,n) = (d 2)(d 1) 
n-* 00 2d? 1 

One has in particular q(O, n) = 1 and 

q(1, n) = 2 -4n+2 = 

q(2,'n) = 2 - 4n+2 = -0( )' 
q (2,n) 3 (?3)(3n+1) = 

q(34 n) 5n(n+2) = (9n 

q (4, n) = 4(2n+()(n)+3) = 15 _ 
0( 1)7 4(2n+3)(2n+l) 1 

q(5, n) = 21n(n+3)(n+4) 21 - 0( 1 
4(2n+5)(2n+3)(2n+l) 32 n 

as well as, for all higher derivatives d > 6, 

q(d,n) = (d +2)(d++) +o(i) 

In other words, the computational effort is dramatically reduced when the degree 
d is quite large. This fact can also be seen in Figure 1, which displays the function 
q(d, n). For the probably more important moderate values of d < 5 the complexity 
ratio is surprisingly close to one. The computations/communications ratio is about 
d/2, almost independently of n (see (3) and (4)). For d < 4 that ratio might 
appear rather small. However, the memory access is now strictly sequential, and 
no addressing calculations are needed. 

In this section, we have demonstrated that for moderate values of d the propaga- 
tion of (n+ d) univariate Taylor series has essentially the same operations count as 
multivariate derivative propagation. We found also that for higher degree deriva- 
tives, one needs considerable fewer operations using univariate Taylor series instead 
of the multivariate one. In the next section, an efficient scheme for interpolating 
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FIGURE 1. q(d,:n) for n = 4,. . . ,100, d =0O,.. . ,10 

all partial derivatives up to degree d from these (fl?d-1) univariate Taylor series is 
developed. 

4. INTERPOLATION WITH UNIVARIATE TAYLOR SERIES 

For each direction s e 1ln- one can obtain the Taylor expansion 

(5 (x ts) =f(x) ? f(1)(x; s)t ? f(2)(x; s)t2 -1-* + f(d(x; s)td + (9(d 1) 

The notation f(m) (x; s) will be used throughout to denote the m-th homogeneous 
polynomial in s in the Taylor expansion of f at x. Hence, x is considered constant 
and s E lRn variable with the homogeneity property 

(6) f(n) (x; ts) - tmf(m) (x; s) for t E III. 

Since only the last coefficient f (d) (X; s) contains any information about the highest 
tensor \>df(x) with its (n?d1l) distinct elements, it is clear that one needs to 
evaluate at least that many univariate expansions. We will see that this number is 
sufficient. 

L,et i = (i1... ,in) e N0 with ij E N0 (j = 1,... ,.) be a multi-index. The 
norm of i is defined by 

n 

IiI=z Eij. 
j=l 

Consider the matrix S throughout this section as fixed. Now choose the directions 

Si VicENU withliI = d. 
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After selecting a particular d, Taylor coefficients are propagated along these (n?d 1) 

necessary directions only. In other words, for each multi-index i z Nn with jil = d, 
we consider the Taylor series for the univariate function 

pi : R |- 'R fj(t) =_ f(x+ tSi), 

and evaluate the Taylor coefficients of ; up to the degree d. The dependence of 
the ; on S is not denoted explicitly, because S is considered as fixed. 

Note that there is no propagation along the directions Si with Iij < d. However, 
we will see that it is still possible to obtain all lower order derivative information 
that is necessary to compute the tensors Vsmf with m < d. 

Interpolating second derivatives. To illustrate our approach, let us first con- 
sider the computation of the Hessian V7s f with S = I when the maximal degree d 
equals 2. Denote the i-th unit vector in Rn by ei. Then, the restricted gradient 
components of Vsf(x) are obtained immediately as 

(7) Vsf(x)e2 =p() = IVf(x)Si with i E Nn ik 
2 k-t 

2 2 Vk)l0, k#i 

Similarly, the pure second derivatives can be obtained from 

eT'V7 f(x)ei = 4s"(0) = !(Si)TV2f X)Si 
4 ~~4 

with the same multi-index i as in (7). However, the mixed second derivatives 
e[TVs2f(x)ej, i =A j, are not directly available. To get them, one has to consider the 
diagonal direction SI defined by the multi-index 

1 Nn with'k = {1 if k ior k j, 
0 k 

0Oif k=Ai.and k#=j. 

Because of 1II = 2 the second order Taylor coefficient of pj is known: 

p '(0) = (ei + ej )TVs f (x) (ei + ej) 

= ei Vs2f (x)e2 + eTVs2f (x)ej + 2e[Vsf(x)e3. 

This identity yields the interpolation formula 

ei[Vsf (x)e = - [(ei + ej) V f (x)(ei + ej) - ei[S f (x)ei - ejTV f (x)ej] 
(8) 1 1 

= -29'(0) - 8-p''(0) - 8 fj (0) 2 8 

with the multi-indices i,j, 1 Nn and 

(9) ik {2 if k ik {2 if k-j, 1 .1 if k-l or k =j, 

When d = 3 this scheme is not directly applicable because I1I < 3. Therefore 1 does 
not aim at a derivative of the highest order, and one does not propagate a Taylor 
series along the direction SI. Hence, 9ol'(0) is unknown. To handle that situation 
and generally the higher order cases, one needs a systematic way of generating 
formula of the form (8) for mixed partials. 
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Computing mixed partials from grid values. For any polynomial P of degree 
n or less, it can be checked that 

0Thnp(SZ) 1 1 

(10) Z1Z2 ... aZn = ... P(iS1 + + inSn)+(_l)n-(il++in) 
il=O i =0 

through integration of the constant function on the left side over the unit cube 
in n dimensions. The important observation here is that one only has to know 
the value of the polynomial at the corners of the parallelepiped {Sz: 0 i zi < 1} 
in order to compute the mixed derivative with respect to all zi. Naturally, one 
does not want to assume that f itself is a polynomial. However, one can use 
the m-th coefficients of the univariate Taylor expansions to compute values of the 
homogeneous approximating polynomials f(m) (x; s), 1 < m < d, satisfying (5) 
and (6). For example, it follows immediately for the second mixed partials with 
P(Sz) = f(2)(x; Sz) and 1 < j <i < n: 

(11) 02f(2)(x; Sz) f ( X; S(ei+e j)) - f(2) (x; Sei) - f (2) (x; Sej) + f(2) (x; 0) 

= 1 ()=8 9i/ (? = 1 </ (?) 

with the multi-indices i,j, and 1 defined as in (9). Through the homogeneity prop- 
erty (6) one obtains that 

(12) f(m)(x;0) = 0, Vm > 0, 

so that the last term in (11) drops out and one gets 

092f(2) (X; SZ) -92f (X + SZ) 

OZiOZj oZiZo9 z=O 

because of the previous formula (8). For fixed S and given d, the real numbers 
f(iI) (x; Si) with IiI < d will be referred to as the grid values. 

By considering seed matrices S E Xn d with repeated columns, one can derive 
from (10), for any polynomial P of degree up to d, its generalization 

OIiIP(Sz) il i2 (n i)i2)(in)(1) kl(k 

1 2 n ki =0 k2 =0 kn- (=0 () 

where now S E Wll Xf and i may be any multi-index with Jil = deg(P). Applying this 
identity to the homogeneous components f(II) (x; s) of f at x and using binomial 
coefficient notation for multi-indices, one obtains, with (12) and the zero vector 
o E NUn 

(13) fl(X) -a (x+ i z)| = z (k)(l)ji-kjfai (x;Sk). 
010Z2 n. OZ~=0 O<k<i 

We conclude this subsection with a geometric illustration of the situation. Suppose 
one wishes to obtain the partials f; for all i with 1 < Kil < d. The functions 
f (m) (x; s), s E IR, denote the m-th homogeneous polynomial at x as in equation 
(5). Through formula (13) it is possible to calculate f (x) from the grid values 
f(1iI)(x;Sk) for all k < i. However, the propagation of univariate Taylor series 
only yields some of the grid values directly. The others must be calculated in a 
second interpolation step. The values f(m)(x;Si) are known for all jil = d and 
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FIGURE 2. Grid values and ray values for n =2 and d =4 

for all 0 < m < d. They will be referred to as ray values. Figure 2 illustrates 
this situation for n = 2 and d = 4. The thin lines represent the directions of the 
propagated Taylor series including the el- and the e2-axes. The grid points whose 
values can be obtained by scaling of the ray values f (m)(x; Si) with IjiI = d and 
o < m K d are marked by unfilled circles. The-black circles denote the values 
that are desired because they arise on the right hand side of (13) but are as yet 
unknown. The grey shaded circles mark points that do not belong to the grid but 
whose values can be obtained by scaling. 

The following section describes the way to compute the unknown grid values 
from the known ray values. 

Computing grid values from ray values. For all multi-indices k with lkl < d, 
the fact that f (m) (x; s) is homogeneous of degree m implies 

(14) f (m) (x; Sk) = (Ikl /d)mf (m) (x; S(dk/ Jkl)). 

The ray values are placed at equal distances, and the polynomial (z) f (m) (x; Sj) in 
z is nonzero for only one ray point. Hence, an interpolation process similar to the 
one dimensional Lagrange interpolation formula yields the equation 

(15) ~~~f (m) (x; Sz) = j f (m) (x; Sj) 
ljl=d 

for z = dk/lkl or any other vector z C R' with value lzl = d. Therefore the ray 
values f (m) (x; S(dk/lkl)) can be computed for any k with JkJ < d. Substituting 
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(15) into (14), one obtains 

(16) f(m)(x;Sk)= d (lkl) (dk/fk )f(m)( Sj) 

Direct computation of mixed partials from ray values. Now the main result 
of this article can be established, namely an efficient scheme for calculating all 
mixed partial derivatives up to degree d from the known ray values. The following 
proposition contains the explicit formula and an estimation of the complexity of 
the interpolation procedure. 

Proposition 4.1. Let f be at least d-times continuously differentiable at some 
point x E Wn Then for any i E Nn with 1 < jil < d the partial derivative fi(x) 
defined in (13) is given by the formula 

(17) f;(x) = ( f 1)(x; Sj) l (-1) (kQ) (kIk) ( k)| 
Ijl=d O<k<i \k) j/kd 

ci,j 

The number of nonvanishing coefficients 

(18) 0 7 cij for i,j E Nn, 1 < jil < d, ji =d, 

is less than or equal to 

p(d,n) 
El (m) (m) d ) 

which bounds the number of operations needed to calculate all partial derivatives 
from the univariate Taylor series. 

Proof. Combining (13) and (16), one obtains the identity (17), which can be written 
in a simpler form as 

(19) fi(x) = Ej cf,if( ')(x; Sj). 
Iil =d 

Define the sign function for multi-indices componentwise as follows: 

sign(i) _ (sign(ii),... ,sign(in)) Vi E Nn. 

For two multi-indices i and j with 1 < jil < d and ljl = d, the coefficient c,j can 
only be nonzero if 

(20) sign(j) < sign(i), 

since otherwise the second binomial coefficient in (17) must vanish for all 0 < k < i. 
Now, consider an arbitrary m E N with 1 < m < d. A multi-index i with Isign(i) I = 
m has m nonvanishing components. Therefore the inequality m < jil < d must 
hold for all i with Isign(i)l = m. The number of distinct possibilities for choosing 
m positive integers so that their sum is no greater than d is given by (d). 

It follows that the total number of multi-indices i with 1 < Iil < d and Isign(i)l = 

m is equal to (n) (d). For each of these multi-indices the coefficient cij can be 
greater than zero only if j satisfies the necessary condition (20). This implies that 

Isign(j)l < m. 
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FIGURE 3. r(d,n)forn=1,.. .,100, d=O, .. ,1O 

Therefore, one has that for each multi-index i with 1 < II <. d and gsign(i)l = m 
the number of multi-indices j with sign(j) < sign(i) is given by (m+d-~1). Hence 
we conclude that the function 

denotes an upper bound for the number of nonvanishing coefficients ci One can 
derive from (19) that (21) is also an upper bound for the total number of multipli- 
cations of the interpolation procedure. E1 

It follows from the tables at the end of this section that for d = 2, 3 and any 
n E N, the function p(d, n) gives the exact number of nonvanishing coefficients ci,. 
Therefore it may be conjectured that p(d, n) corresponds exactly to the number of 
nonvanishing factors cU,, but so far there is no proof of this. Define 

r(d, n) _p(d,' ) = 1 (2d- 1) \( (Cd\) 

0- - ~ ~ 2+d 2 ~ I kW 

as the ratio of the upper bound p(d, n) and the complexity (2nd+d) of propagating 
multivariate Taylor series through a single multiplication operation. Hence, one 
obtains for large d 

r(d, n) r e) ( n ) - 
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TABLE 1. Nonvanishing coefficients for d = 2 

Multi-indices c;j 

iEM1 jEM2 iTj it 2 
iEM2 jEM2 i7 'j7tO 2 

iEM3 jEM2 i7'jt?O 14 

i E M3 j E M3 i7Tj = 2 1 

As can be seen in Figure 3 the ratio r(d, n) is quite small for the more important 
moderate values d < 5. It follows in particular that 

r(1,n) = -4n+2 

r(2,n) = n(1+3n) = 3 
2(2n+l)(n+l) 4 + 0(,) 

r (3, n) = n(1+3n+5n2) = O5 
(2n+3)(2n+l)(n+1) 4 + 0(n) 

as well as 

r(4,n) = +e() 2 + 0( 

r(5, n) = + e( 4 + 0(n 

r (6, n) = 23 +0(n) 7 + 0(l), 

r(7, n) = 29 + (n)L 13 + ?O(). 

To apply the formula (19) at various points x E Rn it makes sense to precompute 
the rational coefficients (18). So far a simple, explicit formula for them has not 
been found, but it is possible to further reduce the computation by grouping the 
additive terms together. A listing is given for d = 2 and d = 3. 

When d = 2 one has to consider the following four groups of multi-indices: 

M(N = {OENNn}, 

(22) 1 = {iNUHil=1}, 
(M2 = {iENn ji= 2 and sign(i)j=1}, 

M3 = {i E N i = 2 and ;sign(i)j = 2}. 

Then, the coefficient c,j has to be calculated for each i E M(N U M1 U M2 U M3 and 

each j E M2 U M3. Table 1 lists the nonvanishing cij. For d = 3 there are three 

groups of multi-indices besides those of (22): 

MN4 = {i E N' I jil = 3 and Isign(i) I = 11, 
M5 = {i E Nn I jil = 3 and Isign(i)I = 21, 
M6 = {i E Nn I jil = 3 and Isign(i)I = 3}. 

Now, for each i E M(N U ... U M6 and each j E MN4 U M5 U M6 the coefficients (18) 
must be considered. The nonvanishing cij are given by Table 2. As one can see, 
all coefficients c,j for IdI < 3 are of moderate size and most are positive. It should 

also be noted that the interpolation procedure does not involve any divisions, so it 

does not expand errors occurred by propagating the univariate Taylor series. 
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TABLE 2. Nonvanishing coefficients for d = 3 

Multi-indices c;j Multi-indices c,j 

i E M1 j E M4s iT;0 +O 3 i E M5 j E M4 ij = 3 27 
i E Ml i e Ma4 iTj 7+ O 25 i Tj 7iT 
i E M2 j E M4 iTj $ 0 

2 i E M5 j E M5 iTj = 4 2 
9 ~~~~~~~~~~~~3 

i EM3 ijEM4 iTj$7~0 36 i3M E 5 T4 

i E M3 j E M5 iTj = 3 1 i E M6 j E M4 iTj 0 O 2% 
i E M4s j E M4s jTJ$+ 0 . 2 i e M6 j E M5 iTj = 3 -1 i E 4 i M4iTi 

~ 
0 9 6 

i E M5 j E M4 iTj = 6 - i E M6 j E M6 iTj = 3 1 

5. SOME RUN TIME RESULTS 

This section presents some run time results for computing higher derivative ten- 
sors using the interpolation with univariate Taylor expansions described above. 

To optimize bevel gears, exact knowledge of the geometric properties of bevel gear 
tooth flanks is necessary (see e.g. [9]). Arbitrary points on a given grid on the tooth 
flank can be calculated with machine accuracy by an analytical characterization [5] 
and computational differentiation. To that end one needs to compute the higher 
derivative tensors of a vector function f IWR3 -) R3 describing a family of surfaces. 
A corresponding evaluation code consisting of approximately 160 C statements was 
differentiated using ADOL-C [4] and a special driver for the calculation of higher 
derivative tensors by forward propagation of univariate Taylor series. 

The run times observed on a Sun Sparc 10, always normalized by time for eval- 
uating f without derivatives, are listed in Table 3. The third column states the 
theoretical run time ratios given by (d + 2)2(d + 1)2/4 (see equation (4) in Sec- 
tion 3). The next column contains the ratios of the complete calculation of Vkf(x), 
k = 0, ... , d, using ADOL-C and the special driver mentioned above. As can be 
seen, the total ratio is about 50 % - 70 % of the theoretical estimate. The ratio 
of the run time of the interpolation process only and the run time of the function 
evaluation is contained in the fourth column. In agreement with the asymptotic 
expansion for r(d, n), one observes a doubling of the ratio with each increment of 
d by 1. Nevertheless, one finds on this example for d < 9 that no more than five 
percent of the run time for the derivative calculation is needed to interpolate the 
coefficients of the derivative tensors from the univariate Taylor series. 

TABLE 3. Run-time ratios for derivative tensor evaluations 

distinct elements in theoretical ratio for evaluating ratio for the 
d Vkf (x), k = 0, ... , d run time ratio Vkf(x), k = 0, ... , d interpolation 

2 10 36 16.2 0.6 
3 20 100 45.0 1.9 
4 35 225 93.3 4.0 
5 56 441 184.7 8.5 
6 84 672 356.0 15.1 
7 120 1290 655.3 26.3 
8 165 2025 1174.0 44.4 
9 220 3025 2040.7 81.0 
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6. CONCLUSIONS 

Many applications in scientific computation require higher order derivatives. 
This article described a promising approach to compute higher order derivatives 
by using univariate Taylor series. The main result is equation (17), which repre- 
sents general partial derivatives in terms of univariate Taylor coefficients. 

It was found that the post-processing effort for the interpolation given by the 
function p(d, n) in Section 4 is very small, especially for the more important mod- 
erate values of d. Also, for these d the complexity ratio q(d, n) analyzed in Section 
3 between the new univariate Taylor approach and a more conventional multivari- 
ate Taylor approach is essentially 1. In addition, the data structures and memory 
access pattern are much simpler and more regular, so that actual run-times should 
be significantly reduced. 
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