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RANDOM FIBONACCI SEQUENCES 
AND THE NUMBER 1.13198824... 

DIVAKAR VISWANATH 

ABSTRACT. For the familiar Fibonacci sequence (defined by fl = f2 = 1 
and fn = fA-1 + fn-2 for n > 2), fn increases exponentially with n at a 
rate given by the golden ratio (1 + v"5)/2 = 1.61803398.... But for a simple 
modification with both additions and subtractions the random Fibonacci 
sequences defined by ti = t2 = 1, and for n > 2, t, = ?tnl + t,-2, where 
each + sign is independent and either + or - with probability 1/2 it is not 
even obvious if Itnl should increase with n. Our main result is that 

V jt_j -* 1.13198824... as n -+oo 

with probability 1. Finding the number 1.13198824... involves the theory 
of random matrix products, Stern-Brocot division of the real line, a fractal 
measure, a computer calculation, and a rounding error analysis to validate the 
computer calculation. 

1. INTRODUCTION 

The Fibonacci numbers defined by fi = f2 = 1 and fn = fn-l + fn-2 for 
n > 2 are widely known. It is equally well-known that Ifnl increases exponentially 
with n at the rate (1 + v5)/2. Consider random Fibonacci sequences defined 
by the random recurrence t1 = 1, t2 = 1, and for n > 2, tn = ?tn-1 ? tn_2, 
where each ? sign is independent and either + or - with probability 1/2. Do the 
random Fibonacci sequences level off because of the subtractions? Or do the random 
Fibonacci sequences increase exponentially with n like the Fibonacci sequence? If 
so, at what rate? The answer to these questions brings Stern-Brocot sequences, a 
beautiful way to divide the real number line that was first discovered in the 19th 
century, and fractals and random matrix products into play. The final answer is 
obtained from a computer calculation, raising questions about computer assisted 
theorems and proofs. 

Below are three possible runs of the random Fibonacci recurrence: 

1,1, -2, -3, -1, 4, -3,7, -4,11, -15,4, -19,23, -4, ... 

1,1,2,3,5,8,13,21,34,55,89,134,223,357,580,... 

1,1,-12,1,1,-)2,1,1,-)2,1,1,-2,1,1,-2,... 

The first of the runs above was randomly generated on a computer. The second run 
is the familiar Fibonacci sequence. The last of the three runs above is a sequence 
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FIGURE 1. (a) A semilog plot of It, I vs. n for a computer generated 
random Fibonacci sequence tn showing a clear exponential trend. 
The dashed line is 1.132n. (b) Plot of tiv vs. n. As n increases 

to a million, tI/ seems to settle down to a constant close to 
1.132. 

that remains bounded as n -- oo; but such runs with no exponential growth occur 
with probability 0. For longer, typical runs see Figure 1. Numerical experiments 
in Figure 1 illustrate our main result (Theorem 4.2), that 

tj- + 1.13198824... as n - oo 

with probability 1. Thus 1.13198824... gives the exponential rate of increase of 
Itnl with n for random Fibonacci sequences, just as the golden ratio (1 + x/-)/2 
gives the exponential rate of increase of the Fibonacci numbers. 

For the random Fibonacci recurrence tn = ?tni ? tn-2 as well as the recurrence 
tn = ?tn-1 + tn-2 with each ? independent and + or - with probability 1/2, Itnl 
is either Itn-1 I + Itn_21 or - Itn- 1-Itn_211 with probability 1/2. As our interest is in 

Itnl vs. n as n -- oo, we restrict focus to tn = ?tn-1 + tn-2 and call it the random 
Fibonacci recurrence. As a result, the presentation becomes briefer, especially in 
Section 3. 

The next step is to rewrite the random Fibonacci recurrence using matrices. In 
matrix form the random Fibonacci recurrence is (tyi) = ( ?) ( ),with one 
of the two matrices 

(I.1 A= (? 1) B= (? 1) 

picked independently with probability 1/2 at each step. Let ,Uf denote the distribu- 
tion that picks A or B with probability 1/2. Then the random matrix Mn chosen 
at the nth step is [if -distributed and independent of Mi for i =r n. Moreover, 

(tnt Mn_ 2 . .. 
Ml 

1 

where Mn-2 ... M1 is a product of independent, identically distributed random 
matrices. 
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Known results from the theory of random matrix products imply that 

(1.2) logIMn ..MII I Yf as n -oo 

(1.3) -*j t eaf as n -- oo, 

for a constant -yf with probability 1 [7, p. 11, p. 157]. About -yf itself known theory 
can only say that -If > 0 [7, p. 30]. Our aim is to determine -yf or eOf exactly. 
Theorem 4.2 realizes this aim by showing that eaf = 1.13198824.... The limit in 
(1.3) is the same -yf for any norm over 2-dimensional matrices, because all norms 
over a finite dimensional vector space are equivalent. In the rest of this paper, all 
norms are 2-norms, and all matrices and vectors are real and 2-dimensional except 
when stated otherwise. Thus, for a vector x, llxll is its Euclidean length in the real 
plane, and for a matrix M, JIMII = supxo&0 llmll 

The limit (1.2) for Mi independent but identically distributed over d-dimensional 
matrices has been a central concern of the theory of random matrix products. 
Furstenberg and Kesten [19, 1960] have shown that the limit (1.2) exists under 
very general conditions. When it exists, that limit is usually denoted by -y and 
called the upper Lyapunov exponent. Furstenberg [18, 1963] has shown that when 
the normalizing condition IdetMil = 1 holds, as it does for Itf, "usually" -y > 0. 
Furstenberg's theorem implies, for example, that -If > 0, and hence, that tn I 
increases exponentially with n with probability 1. 

In spite of the importance of the upper Lyapunov exponent y , -y is known exactly 
for very few examples. Kingman, one of the pioneers of subadditive ergodic theory, 
of which the theory of random matrix products is a special case, wrote [26, 1973]: 

Pride of place among the unsolved problems of subadditive ergodic the- 
ory must go to the calculation of the constant -y ( ... ). In none of the 
applications described here is there an obvious mechanism for obtaining 
an exact numerical value, and indeed this usually seems to be a problem 
of some depth. 

One of the applications Kingman refers to is the general problem of finding -y 
for random matrix products. For this and other applications, Kingman's problem 
is still unsolved. Bougerol [7, p. 33] and Lima and Rahibe [31] calculate -y for 
some examples. The work of Chassaing, Letac and Mora [11] is closer to our 
determination of -f. But in all their examples, matrices, unlike B in (1.1), have 
only non-negative entries. In our opinion, the random Fibonacci recurrence is 
more natural than these examples. In fact, the random Fibonacci recurrence in a 
more general form appears as a motivating example in the very first paragraph of 
Furstenberg's famous paper [18]. 

In Section 2, we present a formula for yf due to Purstenberg that forms the basis 
for this paper. The matrices A and B map a direction in the real plane of slope m 
to directions of slope 1 + 1/m and -1 + 1/m, respectively. Since /if picks A or B 
with probability 1/2, it induces the random walk which sends a direction of slope 
m to a direction of slope 1 + 1/m or -1 + 1/m with probability 1/2. The invariant 
probability measure for this random walk is central to Furstenberg's formula. 

In Section 3, we find that invariant probability measure, denoted by Vf, using 
the Stern-Brocot division of the real line. See Figures 3, 4. The measure Vf gives 
a probability measure over the real line R because the slope m can be any real 
number. Since the backward maps for the random walk are m 1/(?1 + m), the 
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invariance condition requires 

l/f([a2b]) = 1f ([l+ b' -I1+a1) + a 2f ([1 +b' 1 +a 

for any interval [a, b] with ? 1 5 (a, b). Since the slopes of the backward maps vary in 
magnitude from 0 to oo, not only is v/f self-similar [37], the self-similarity equation 
has multiple scales. Self-similar functions, especially ones with multiple scales, 
usually turn out to be fractals. For example, Weierstrass's nowhere-differentiable 
but continuous functions, which are commonly used examples of fractal graphs, 
satisfy f(x) = As-2 sin(At) + Af (At) with 1 < s < 2, A > 1, and A large enough 
[17]. Repetition of the same structure at finer scales and an irregular appearence 
in Figure 4 suggest that iJf too may be a type of fractal. 

In Section 4, we use Furstenberg's formula and the invariant measure iJf given in 
Section 3, and arrive at Theorem 4.2 (eOf = 1.13198824 ... ). The proof of Theorem 
4.2 depends on a computer calculation. Thus its correctness depends not only upon 
mathematical arguments that can be checked line by line, but upon a program that 
can also be checked line by line and the correct implementation of various software 
and hardware components of the computer system. The most famous of theorems 
whose proofs depend on computer calculations is the four color theorem. The first 
proof of the four color theorem (all planar graphs can be colored using only four 
colors so that no two adjacent vertices have the same color) by Appel, Haken and 
Koch caused controversy and aroused great interest because it relied on producing 
and checking 1834 graphs using 1200 hours of 1976 computer time [281, [21. In spite 
of improvements (for example, the number 1834 was brought down to 1482 soon 
afterwards by Appel and Haken themselves), all proofs of the four color theorem 
still rely on the computer. 

Computer assisted proofs are more common now. Our computation uses floating 
point arithmetic, which is inexact owing to rounding errors. Thus it becomes 
necessary to bound the effect of the rounding errors, which we do in the appendix. 
An early example of rigorous use of floating point arithmetic is due to Brent [9]. 
Lanford's proof of Feigenbaum's conjecture about the period doubling route to 
chaos used interval arithmetic [29]. The computer assisted proof of chaos in the 
Lorenz equations announced by Mischaikow and Mrozek [32] [33] is another notable 
example. We will discuss the use of floating point arithmetic and other issues related 
to our Theorem 4.2 in Section 4. 

Besides random matrix products, random Fibonacci sequences are connected to 
many areas of mathematics. For example, the invariant measure ivf is also the 
distribution of the continued fractions 

A1 + 

?1+ ?1+ 

with each ?1 independent and either +1 or -1 with probability 1/2. The matrices 
A and B in (1.1) can both be thought of as M6bius transformations of the complex 
plane; then the random matrix product and the exponential growth of Jt,J in (1.2) 
and (1.3) would correspond to the dynamics of complex numbers acted upon by a 
composition of the M6bius transformations A and B [7, p. 38]. Also, the random 
walk on slopes m -- ?1 + 1/rm can be thought of as a random dynamical system [3]. 
These different interpretations amount merely to a change of vocabulary as far as 
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the computation of yf is concerned; but each interpretation offers a different point 
of view. 

The study of random matrix products, initiated by Bellman [4, 1954], has led 
to many deep results and applications. Applications have been made to areas 
as diverse as Schr6dinger operators, image generation, and demography [14], [15], 
[40]. Furstenberg and Kesten [19, 1960], Furstenberg [18, 1963], Oseledec [34, 1968], 
Kingman [26, 1973], and Guivarc'h and Raugi [21, 1985] are some of the profound 
contributions to this area. We enthusiastically recommend the lucid, elegant and 
well-organized account by Bougerol [7]. For a more modern treatment, see [5]. For 
the basics of probability, our favorite is Breiman [8]. 

Our interest in random recurrences was aroused by their connection to random 
triangular matrices [42]. The asymptotic behaviour as n -- oo of the condition 
number of a triangular matrix of dimension n whose entries are independent, iden- 
tically distributed random variables can be deduced from the asymptotic behaviour 
of a random recurrence. In particular, let Ln be a lower triangular matrix of di- 
mension n whose diagonal entries are all 1 and whose subdiagonal entries are +1 
or -1 with probability 1/2. Consider the random recurrence 

r, = 1 

r2 = ?rl 

r3= ?rl ? r2 

rn=?rl?r2? .?rn-1, 

where each ? is independent, and + or - with probability 1/2. Unlike the random 
Fibonacci recurrence, this recurrence has infinite memory. The limits 

lim JJLnJJ2 IL- 11H2 and lim rrj 
n-*oo n-*oo 

are equal if either of the limits is a constant almost surely. Unable to find these 
limits, we considered random Fibonacci sequences as a simplification. But the limit 

lim JLnJJ2 HIL 11H2 
ni-oo 

is determined when entries of Ln are drawn from various other distributions, in- 
cluding normal and Cauchy distributions, in [42]. For a conjecture about random 
recurrences along the lines of Furstenberg's theorem, see [41]. 

2. FURSTENBERG'S FORMULA 

To determine -Yf, we use a formula from the theory of random matrix products 
that complements (1.2). Three things that will be defined below - the notation x 
for directions in the real plane R2, amp(x), which is a smooth function of x (the 
diagram just after (2.2)), and if (X) which is a probability measure over directions 
x (Figure 4) - combine to give a formula for yf 

(2.1) f= famp(Y)dvff(x). 

This formula, derived by Furstenberg [7, p. 77], is the basis of our determination 
of )'f. 
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1/(1 +m) 

FIGURE 2. By (2.2), vf (I) Vf (I1)/2 + Vf (I2)/2. 

Directions x can be parameterized using angles, x = ( g) with 0 C (-ir/2, ir/2], 
or using slopes, x = ( 1 ) with m E (-xc, xc]. Slopes m and angles 0 are related by 
m = tan 0 and 0 = arctan m. We use slopes in all places except Figure 4. In our 
notation, x is a vector in the direction x, and T is the direction of the vector x for 
x 7 0. 

To define vf, consider the t1+-induced random walk on directions that sends 
To to xi = Axo or to x1 = Bxo with probability 1/2, and then sends x1 to x2 
similarly, and so on. In terms of slopes, the slope m is mapped by the random walk 
to 1 + 1/m or to -1 + 1/m with probability 1/2. The measure vf is the unique 
invariant probability measure over x for this random walk, i.e., 

vf (S) = 2f (A-1S) + -vf (B-1S), 
2 ~~~2 

where S is any Borel measurable set of directions. We also say that Ivf is [ft- 

invariant. For the existence and uniqueness of Vf, see [7, p. 10, p. 32]. It is 
also known that vf must be continuous [7, p. 32], i.e., vfj({X}) = 0 for any fixed 
direction T. 

Since the bijections T -* A-1x and T -* B-1x (sometimes called backward 
maps) map the slope m to 1/(-1 + m) and to 1/(I + m), respectively, the condition 
for IIf -invariance in terms of slopes is 

(2.2) v a ] f[ - V ~ 
where v[a, [X b] i any interval in there2 a1 + bl w ? + ( [ 1 + b) ' S + aF 2. 
where [a, b] is any interval in the real line with ?E I (a, b).- See Figure 2. 
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The function amp(x) defined by 

amp(x) = - log Al 1 + 2 Blog 2 HlxH + og xll 

gives the average amplification in the direction x when x is multiplied by A or B 
with probability 1/2. Recall that was taken to be the 2-norm. In terms of 
slopes, 

( ) wl (m2+(_I+m)22(11 (m + M)2 
amp(m) = 1 o 1m2 lo 2 o 1 4m4 1 +mm m 

4 (I +m2)2) 

The figure below plots amp(m) vs m. 

log(4)/4 

amp(m)-*) 

1/2 0 1/2 
1 1 m 

Furstenberg's formula (2.1) can now be put in a concrete form using slopes to 
parameterize directions x: 

(2.3) Yf = j amp(m) dvfj(m) = - J log(4+ M2)2) dvf(m). 

If we were to use a norm other than the 2-norm for vectors in the real plane, amp(m) 
and amp(x) would be different functions. But Furstenberg's formula (2.1) holds for 
any norm, even though the measure vf is independent of the norm. Our choice of 
the 2-norm is one of many equally suitable alternatives. For the weighted 2-norm 

(a) + I + 
1 5b2 

b ~~~~2 

amp(m) > 0 for all m except m = ? (V-1)/2, and amp(m) = 0 at those two 
points. 

To illustrate how (2.3) is used, we verify quickly that -yf > 0. The invariance 
condition (2.2) applied to the set [-ox, -1] U [1, ox] implies vf (Iml > 1) > 1/2, 
because the image of [1, ox] under m -* 1/(-1 + m) and the image of [-ox, -1] 



1138 DIVAKAR VISWANATH 

under m 1/(1 + m) are [0, ox] and [-ox, 0], respectively. Now, 
00 

yf= j amp(m) dvf (m) 
-00 

> min amp(m) vf (Iml < 1) + min amp(m) vjf (Im > 1) 
ImI<l ImI>l 

-- log () vjf (ml < 1) + - log () vjf (ml > 1) 

> 0. 

The first inequality above is strict, because vf must be continuous and amp(m) 
is not a constant function. Minimizing amp(m) over Iml < 1 and Iml > 1 is 
basic calculus: the minima occur at the points m = ?1/2 and m = ?1. The 
final > is by vf (jml > 1) > 1/2. Actually, it will be shown in Section 3 that 

vyf (Iml >: 1) = (F5- 1)/2. 

3. THE STERN-BROCOT TREE 
AND CONSTRUCTION OF THE INVARIANT MEASURE ZJf 

Assuming ?1 ? (a, b) as before, we write down the invariance condition once 
more for easy reference: 

(3.1) vf ([a, b]) = Vf ([lbl+ ) (+ >vf( [l+bXl+ ) 

Our goal in this section is to find Jf, the unique probability measure on the real 
line R satisfying (3.1) for all intervals [a,b] not containing ?1. Since vf must be 
continuous, it does not matter whether we take the intervals in (3.1) to be open or 
closed or half-closed. 

The construction of vf is based on the Stern-Brocot tree shown in Figure 3. The 
Stern-Brocot tree is an infinite binary tree that divides R recursively. Represent ox 

[<~~~~~ 1 

0 \1 

[-l 0] [O j] [i {] [-l -2] [ 2j -1 [- -1]1 [- 0]? [? 1l 1 1] [i 21 [2 1] L 0 1 J L1 ? 1 J L1 . 2 J L2 '. 1J L11.2J L2 11 L11.1J L11. 

* r~~~~~~~~~~~~1 2] r2 11 

[3, 4] [4, 1 

FIGURE 3. The Stern-Brocot tree; its nodes are intervals of the 
real line R. The division of any interval [a, d], except the root, 
into two children is done by inserting the point b+d. 
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as I and 0 as ? , and write negative fractions with the numerator negative. Then 0 1 
the root of the Stern-Brocot tree is the real line [i!, 0]. Its left and right children 
are [i1, ?] and [?, 1], the positive and negative halves of R. The rest of the tree is 
defined by dividing any node [ a] other than the root into a left child [a, a+d] and 
a right child [ b+d' d]. For example, the root's left child [ 01, ? ] divides into [ 01, 1l ] 
and[-1, 0] 

The Stern-Brocot tree was discovered and reported independently by the math- 
ematician Moriz Stern in 1858 [36] and by the watchmaker Achille Brocot in 1860 
[10]. Unaware of its existence, we. found it again while trying to construct vf. We 
summarize some basic facts about it in Lemma 3.1. The Stern-Brocot tree and 
its connections with continued fractions are discussed in detail by Graham, Knuth, 
and Patashnik [20]. Their definition of the Stern-Brocot tree is slightly different 
from ours. We adopt their notation a I b to say that integers a and b are relatively 
prime. 

Lemma 3.1. (a) The Stern-Brocot tree is symmetric about 0 with its right half 
positive and its left half negative. 

(b) If [a, d] is a node in the positive half of the Stern-Brocot tree, then bc -ad = 

1, a I b, and c I d. 
(c) Conversely, if a/b and c/d are non-negative rational numbers with zero and 

infinity represented as ? and 1 respectively, and bc-ad = 1 then [a, d] occurs as 
a node in the Stern-Brocot tree. Consequently, every rational number a/b, a I b, 
appears as an endpoint of a Stern-Brocot interval of finite depth. 

Proof. (a) is obvious; see Figure 3. The proof of (b) is an easy induction on the 
depth of the tree. (c) is a little bit less easy. Its proof is related to Euclid's algorithm 
for computing the greatest common divisor of two integers. See [20]. O 

We adopt a labelling scheme for Stern-Brocot intervals (nodes of the Stern- 
Brocot tree) that differs only a bit from that in [20]. The root [ ii, 1] has the empty 
label. Its left and right children [ , ? ] and [ 0, 1] are labelled 1 and r respectively. 
The left child of 1, [ii, ji], is labelled 1L. The right child of 1L, [j1, 21], is labelled 
lLR, and so on. Only the first letter of a label is in lower case, because the division 
of the root is special. 

We use la or rc to denote the labels of Stern-Brocot intervals other than the 
root, with a being a possibly empty sequence of Ls and Rs. The sequence obtained 
by changing a's Ls to Rs and Rs to Ls is denoted ca. For example, the reflection 
of the positive interval rcx about 0 is the negative interval lIc. The length of a is 
denoted by lal. We take the depth of la or rcx to be 1 + lal. 

Lemmas 3.2 and 3.3 express the maps m -* 1/m and m -* ?1 + m succinctly for 
Stern-Brocot intervals. They allow us to reduce the invariance requirement (3.1) 
for Stern-Brocot intervals to an infinite system of linear equations (see (3.2)). That 
reduction is the first step in constructing vJf. 

Lemma 3.2. The image of the interval [a/b, c/d] under the map m -* 1/m 
which is [d/c, b/a] if 0 is not an interior point - is given by the following rules for 
Stern-Brocot intervals: 

Icx Icx, rc - rc. 

Proof. We give the proof for intervals of type rc using induction on the depth of 
rc in the Stern-Brocot tree. The proof for intervals lI is similar. 
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The base case r -* r is true because m E [0, ox] if and only if 1/m E [0, o]. 
For the inductive case, note that [I, a] its left child [a, a+d] and its right child 

[a++d X] are mapped by m -?1/m to [d, b], its right child [b++d b] , and its left child 
[, 

a+ respectively. Therefore, if ra rtx then r&L - rtxR and r&R rtxL. a 

Unlike the inversion operation m 1/m in the previous lemma, both the op- 
erations m -* ?1 + m in the following lemma change the depth of Stern-Brocot 
intervals. 

Lemma 3.3. The image of Stern-Brocot intervals under the map m -* -1 + m is 
given by the following rules: 

la * lLa, rLa -* lRa, rRa -* ra. 

Similarly, the image of Stern-Brocot intervals under the map m -* 1 + m is given 
by the following rules: 

lLa -* la, lRa -* rLa, ra -* rRa. 

Proof. Similar to the previous proof. We will outline the proof for m -* 1 + m only. 
The base cases, adding 1 to the intervals IL, IR and r, are easy to check. 
For the induction, we note that [Ia, d] is divided in the Stern-Brocot tree at the 

point a++X and its map under m -1 + m, [1 , 1+ 1], is divided in the Stern- 
Brocot tree at the point 1 + b++d. Thus [a, d], its left child, and its right child map 
to [1 + a, 1 + d] its left child, and its right child, respectively. a 

By Lemma 3.3, subtraction and addition of 1 to intervals in the Stern-Brocot 
tree correspond to left and right rotation of the tree. Iree rotations are used to 
implement balanced trees in computer science [13]. 

Thanks to Lemmas 3.2 and 3.3, the backward maps m -* 1/(?1 + m) can be 
performed on Stern-Brocot intervals easily. For example, 1/(1 + lLRL) = 1/lRL = 
lLR. The invariance requirement (3.1) for Stern-Brocot intervals becomes an infi- 
nite set of linear equations for vf (I), I being any Stern-Brocot interval: 

vJf (1) = 2 jvf (IR) + 2 (vf (I) + vJf (rR)), 

vf (r) = ?(vf (r) + Jf (lL)) + ?vf (rL), 

jf (lLa) = ? Vf (lLLa) + Ivf (ld), 

(3.2) 
2 2 

2 ~~~2 
ZJf(lR&) = ? -'vjLa 2^f(rLt),X 

vJf (rLa) = IZf (lRa) + 
I 

vf (rRLa), 

vJf (rRa) = I Vf (ri) + 
I 

Vf (rRRa). 

We guessed the solution of (3.2). Even though the linear system (3.2) has 
only rational coefficients, its solution involves 5, an irrational number! Let g = 

(1 + v"5)/2. Since vf is a probability measure, we require that vf ([-oo, ox]) = 1. 
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o 7r/2 0 irI2 
(a) (b) 

0.8- 

0.6- 

0.4 

0.2 

Io 
0 7U2 1.5 1 0.5 0 0.5 1 1.5 

(c) (d) 

FIGURE 4. (a), (b), (c) show the measure vf over directions in 
R2. In these figures, the interval [O,oo] is divided into 23, 25, 
and 28 Stern-Brocot intervals of the same depth, and then slopes 
are converted to angles in the interval [0, w/2]. The area above 
an interval gives its measure under vf. Because of symmetry, vf 

in the directions [-7r/2,0] can be obtained by reflecting (a), (b) 
and (c). Some of the spikes in (c) were cut off because they were 
too tall. (d) is the distribution function for vf with directions 
parameterized using angles. 

The solution is: 
Vf(r) = 1/2, 

If (raL) f |~9/ Vf (ra) if lal is even, 
() +9_Vf (ra) if lal is odd, 

f=/9 Vf (ra) if Ia I is even, 
(R +9 Vf (ra) if lal is odd, 

Vf (la) = Vf (r). 

For example, vf (r) = 1/2, vf (rL) = (1 + g)-1/2, vf (rLL) = g(1 + g)-2/2. Since 
vf (la) = vf (ra) by (3.3), the measure vf is symmetric about 0. The same features 
of vf repeat at finer and finer scales. See Figure 4. 

Theorem 3.4. The measure vf defined by (3.3) satisfies the invariance require- 
ment (3.1) for every Stern-Brocot interval. Further, with directions parameterized 
by slopes, vf defined by (3.3) gives the unique /itf -invariant probability measure over 
directions in the real plane R2. 
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Proof. To show that vf is ,uf-invariant, it is enough to show that vf satisfies the 
invariance conditions (3.2) for Stern-Brocot intervals. The reason is that vf is 
obviously a continuous measure, every rational appears in the Stern-Brocot tree at 
a finite depth by Lemma 3.1c, and the rationals are dense in R. For the uniqueness 
of vf, see [7, p. 31]. 

It is enough to prove the invariance condition for positive intervals ra. The 
validity of the invariance condition for negative Stern-Brocot intervals follows from 
symmetry. Assume the invariance condition for the interval rLa: 

Vf (rLa) = I 
Vf (IRa) + 

I 
Vf (rRLa). 

Then the invariance condition for rLaL, 

Vf (rLaL) = I 
Vf (lRaR) + Ivf (rRLaR), 

is also true, because the three fractions 

Vf (rLaL) vf (IRaR) vf (rRLaR) 
Vf (rLa) ' Vf (lRa) ' Vf (rRLa) 

are all either g/(I +g) or 1/(1 +g) according as lIa is even or odd. By a similar ar- 
gument, if the invariance condition (3.2) holds for all positive Stern-Brocot intervals 
at depth d > 2, then the invariance condition holds for all positive Stern-Brocot 
intervals at depth d + 1. 

Therefore, it suffices to verify (3.2) for r, rL, and rR. For r, (3.2) requires 

22 2 2(1 + g) 2 2(l + g) 

which is obviously true. For rL, (3.2) requires, 

1 g ,1 

2(1 + g) 4(1 + g) 4(1+ + g)2 

which is true because g = (1 + v5)/2. The invariance condition for rR can be 
verified similarly. Thus the invariance condition (3.2) holds for all Stern-Brocot 
intervals, and we can say that vf is the unique ,Uf -invariant probability measure. E 

Because of symmetry, the measure vf over slopes given by (3.3) is invariant 
even for the distribution that picks one of ( A) with probability 1/4. Moreover, 
F'urstenberg's integral for the Lyapunov exponent -y of this distribution is also given 
by (2.3). 

According to historical remarks in [11], measures similar to vf have been studied 
by Denjoy, Minkowski, and de Rham. But is vf a fractal? To make this precise, 
we need the definition 

dim(vf) = inf{dim(S) Ivf is supported on SI, 

where dim(S) is the Hausdorff dimension of S C R. To show that vf is a fractal, 
it is necessary to prove that 0 < dim(vf) < 1. It is known that 0 < dim(vf) [7, p. 
162]. David Allwright of Oxford University has shown us a short proof that vf is 
singular with respect to the Lebesgue measure; Allwright's proof relies on Theorems 
30 and 31 of Khintchine [25]. The Hausdorff dimensions of very similar measures 
have been determined by Kinney and Pitcher [27]. We also note that Ledrappier 
has conjectured a formula for dim(vf) [30] [7, p. 162]. 
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For some distributions supported on 2-dimensional matrices with non-negative 
entries, the infinite linear system analogous to (3.2) is triangular, or in other words, 
the invariance requirement for a Stern-Brocot interval involves only intervals at a 
lesser depth. For a typical example, choose ({ 1) with probability p, 0 < p < 1, and 
( ? ) with probability 1 - p. In this example, the invariant measure over directions 
parameterized by slopes is supported on [0, oo], the slope m is mapped to 1/(1 + m) 
and 1 + 1/m respectively, and the ranges of those two maps ([0,1] and [1, oo]) 
are disjoint. Chassaing, Letac and Mora [11] have found the invariant measure 
for several 2-dimensional random matrix products that fit into this framework. 
All their matrices have non-negative entries. Moreover, since the linear systems 
for finding the invariant measure are triangular for all the examples in [11], the 
solution can have irrational numbers only if the original problem does. 

The techniques described in this section can be used to find the invariant measure 
corresponding to the random recurrence t, = at,-1 + t-2 if a is distributed on the 
positive integers. But this situation was already covered in [11]. When the random 
variable a takes both positive and negative values, random Fibonacci recurrence 
is the only example we know where the technique of using Stern-Brocot intervals 
for finding the invariant measure can be made to work. Numerical results about a 
generalization of the random Fibonacci sequences where a takes both positive and 
negative values are given in [16]. 

4. eOf = 1.13198824... 

Furstenberg's integral for -yf (2.3) can be written as 

Yf = 2 j log((I + Z)2 )dvf(m) 

because both the integrand and Vf are symmetric about 0. In this section, we use 
this formula to compute yf with the help of a computer. Thus the determination of 
Of to be 1.13198824... is computer assisted. We will explain later why we report 
this result as a theorem (Theorem 4.2), even though it is computer assisted. 

Let I15, 1 < j < 2d, be the 2d positive Stern-Brocot intervals at depth d + 1. 
Then, 

2d 2d 

(4.1) Pd = 2 min amp(m) vf(15) < yf < qd = 2 max amp(m)Vf(I5'). 
j=1 mEI j=1 mE5 

The inequalities above are strict because amp(m) is not constant, and Vf is con- 
tinuous. Also, (4.1) defines Pd and qd. Since yf is trapped in the intervals (Pd, qd), 

and the interval length Iqd -PdI shrinks to 0 as d increases, we can find af to any 
desired accuracy by computing Pd and qd for large enough d. 

We computed Pd and qd with d = 28 on a computer using IEEE double precision 
arithmetic (the C program used is described in the appendix). Computations in 
floating point arithmetic are not exact, but when done carefully, give an answer that 
is close to the exact answer. If fl(e) denotes the number obtained by evaluating the 
expression e in floating point arithmetic, fl(e) depends both on the type of floating 
point arithmetic used and the algorithm used to evaluate e. Our computations using 
IEEE double precision arithmetic [24] and an algorithm described in the appendix 
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gave 

(4.2) fl(P28) = 0.1239755981508, fl(q28) = 0.1239755994406. 

In hexadecimal code, the 64 bits of fl(Pd) and fl(qd) in IEEE double precision format 
are 3fbfbcdd638f4d87 and 3fbfbcdd6919756d, respectively. The appendix will explain 
the way to reproduce our computation to get exactly these two numbers. We will 
now upper bound the errors Ifl(P28) - P281 and Ifl(q28) - q28I to realize our aim of 
obtaining bounds for -yf from (4.2). 

IEEE double precision arithmetic (defined by the standard IEEE-754 [24]) can 
represent all real numbers of binary form (-1)Sbo.b1 ... b52 2e- 1023 exactly. Here, 
bo = 1, the bits b1 to b52 can be 1 or 0, the sign bit s can be 1 or 0, and the 
biased exponent e can be any integer in the range 0 < e < 2047. The number 
0 can also be represented exactly. In fact, the values e = 0 and e = 2047 are 
used to implement special features that we do not describe. From here on, floating 
point arithmetic always refers to IEEE double precision arithmetic, and floating 
point number refers to a number in that arithmetic. Thus if a is a real number 
in the range [2-1022 (1 + 2-1 + ... + 2-52)21023], a can be represented such that 
fl(a) = a(1 + E) with the relative error E satisfying JEl < 2-52 [22, p. 42]. 

The IEEE standard treats +,-, x, ?, +/ as basic operations. The basic opera- 
tions cannot always be performed exactly. For example, the sum of two floating 
point numbers may not have an exact floating point representation. However, all 
these basic operations are performed as if an intermediate result correct to infi- 
nite precision is coerced into a representable number by rounding. We assume the 
"round to nearest" mode, which is the default type of rounding. Thus, if a and b 
are floating point numbers, 

fl(a+b) = (a+b)(I +E), 

fl(a-b) = (a-b)(I +-E), 

(4.3) fl(a/b) = (a/b) (1 + E), 

fl(a x b) = (a x b)(I + E), 

fl (Va) = (Va) (I + E)I 

where the relative error E may depend upon a, b, and the operation performed, 
but JEl < 2-52. For convenience, we denote 2-52 by u.1 For (4.3) to be valid, 
however, the operation should not overflow and produce a number that is too big 
to be represented, or underflow and produce a number that is too small to be 
represented. 

The C program we give in the appendix uses a function tlog(x) to compute 
logx. This becomes necessary because log is not a basic operation in the IEEE 
standard. However, tlog() is implemented so that 

(4.4) fl(log a) = log a(I + E) 

with JEl < u whenever a is a positive floating point number. For the clever ideas 
that go into tlog() and the error analysis, see the original paper by Tang [38]. 

The proof of the following lemma is given in the appendix. 

'The bounds on JEl can be taken as 2-53 [22, p. 42], but with the current choice the relative 
error of Tang's log function (see (4.4)) has the same bound as that of the basic operations. 



RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824 ... 1145 

Lemma 4.1. Assume that (4.3) and (4.4) hold with 0 < u < 1/10 for the floating 
point arithmetic used. Then for the algorithm to compute the sums Pd and qd 
described in the appendix, 

Ifl(Pd) -Pdl < log 4 (e u(d+l) -1) + 33 ue u(d+l) 4 4 

Ifl(qd) -qd < log4 (eu(d+l) -1) + 33ueu(d+l) 4 4 

It is easy, though a bit tedious, to show that the discretization error lPd-qd I is 
0(1/2d). By Lemma 4.1, the rounding errors in computing Pd and qd are roughly 
a small multiple of u. Thus to compute yf with an absolute error of 6, the depth of 
the calculation has to be about-log2 e and the unit roundoff of the floating point 
arithmetic has to be at least as small as e. 

In the theorem below, by 1.13198824... we mean a number in the interval 
[1.13198824,1.13198825). 

Theorem 4.2. (a) The constant yf lies in the interval 

(0.1239755980,0.1239755995). 

(b) eaf = 1.13198824.... 
(c) As n -* oo, 

VI tI- 1.13198824... 

with probability 1. 

Proof. In the computation leading to fl(P28) and fl(q28), there are no overflows 
or underflows, and hence (4.3) and (4.4) are always true. Therefore, we can use 
u = 2-52 and d = 28 in Lemma 4.1 to get 

Ifl(P28) - P281 < 10- 14, Ifl(q28) - q28s < 10- 14. 

Now the values of fl(P28) and fl(q28) in (4.2) imply (a). (b) is implied by (a). In 
fact, we can also say that the digit of eOf after the last 4 in (b) must be an 8 or a 
9. (c) follows from earlier remarks. 0 

Theorem 4.2 above is the main result of this paper. We arrived at Theorem 
4.2 using Lemma 4.1 and rounding error analysis. An alternative is to use interval 
arithmetic to validate the computation [1]. Instead of rounding the computations to 
the nearest floating point number, interval arithmetic carefully rounds the various 
stages of the computation either upwards or downwards to compute a lower bound 
for Pd and an upper bound for qd. As a result, were we to use interval arithmetic 
there would be no need for rounding error analysis. A disadvantage would be that 
the manipulation of rounding modes necessary for implementing interval arithmetic 
would make it significantly more expensive on most computers. Our approach 
exposes the ideas behind floating point arithmetic and shows that floating point 
arithmetic is rigorous too. Besides, the rounding error analysis as summarized by 
Lemma 4.1 gives a clear idea of the error due to rounding. This tells us, for example, 
that the rounding errors Ifl(P28) - P281 and Ifl(q28) - q28 , which are both less than 
10 4, are much smaller than the discretization error IP28 - q28 1, which is about 
1o-8. 
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FIGURE 5. The Lyapunov exponent -yf(p) vs. p. To obtain the 
curve above, -yf (p) was determined by numerically approximating 
the correct invariant distribution for 199 values of p, equally spaced 
in (0, 1). Each -yf (p) is accurate to 5 decimal digits. For a descrip- 
tion of the numerical method, sometimes called Ulam's method, 
see [16] or [23]. 

Since the proof of Theorem 4.2 relies on a computer calculation, the validity of 
the proof requires some comment. The construction of ZJf in Section 2, the program 
and the rounding error analysis given in the appendix can all be checked line by 
line. However, Theorem 4.2 still assumes the correct implementation of various 
software and hardware components including the standard IEEE-754. We did the 
computation on two entirely different systems -SUN's Sparc server 670 MP, and 
Intel's i686 with the Linux operating system. In both cases, the results were exactly 
the same as given in (4.2); the hex codes for fl(pd) and fl(qd) matched the hex codes 
given below (4.2). As it is very unlikely that two systems with such different 
architectures may have the same bug, we feel that the correctness of Theorem 4.2 
should, at worst, be doubted no more than that of tedious and intricate proofs that 
can be checked line by line. Though the use of floating point arithmetic to prove 
a theorem may be unusual, the proof of Theorem 4.2 is only as dependent on the 
correctness of the computer system as, say, the proof of the four-color theorem; in 
other words, assuming the implementation of IEEE arithmetic to be correct is just 
like assuming the implementation of a memory-to-register copy instruction to be 
correct. 

Besides, all components of a computer system, like mathematical proofs, can be 
checked in careful line by line detail, and this is done many times during and after 
their implementation. However, experience has shown that some bugs can defy even 
the most careful scrutiny. A great deal of research has gone into developing systems 
to verify that hardware and software implementations meet their specification [12]. 

In recent work, Tsitsiklis and Blondel [39] claim that the upper Lyapunov ex- 
ponent is not "algorithmically approximable." They prove that there can be no 
Turing machine which accepts a pair of matrices as input and returns an approxi- 
mation to the upper Lyapunov exponent with bounded error. The distribution can 
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be anything which picks both the input matrices with nonzero probability and no 
others. This uncomputability result holds when the dimension of the matrices is 
48 or greater. 

To interpret this result properly, we think that it must be compared with similar 
results for easier analytic problems like computing eigenvalues of matrices and zeros 
of polynomials. For literature on similar analytic problems, we refer to [6]; but the 
model of computation used in that book is not the Turing model. In another sense 
the result of Tsitsiklis and Blondel is limited. It applies only when the class of 
problems includes distributions with singular matrices. But most of the theory of 
random matrix products has been de'veloped for distributions supported on non- 
singular matrices. When the distribution is supported on nonsingular matrices, we 
give an algorithm for computing the top Lyapunov exponent with an arbitrarily 
small absolute error in [41]. For this algorithm to be effective, a mild irreducibility 
assumption about the support of the distribution has to hold. 

To conclude, we ask: Is there a short analytic description of ^yf? The fractal 
quality of ^q suggests no. But let af (p) be the Lyapunov exponent of the obvious 
generalization t1 = t2 = 1, and for n > 2, t, = ?t,1l ? t,-2 with each ? sign 
independent and either + with probability p or - with probability 1 - p. Unfortu- 
nately, the techniques described in this paper for af (1/2) do not seem to generalize 
easily to ^q (p), 0 < p < 1. A beautiful result of Peres [35] implies that af (p) is a 
real analytic function of p. See Figure 5. The analyticity of af (p) vs. p seems to 
increase the possibility that there might be a short analytic description of yf. 

APPENDIX. ROUNDING ERROR ANALYSIS 

The main steps in the computation of Pd and qd -re the computation of vf (I5P), 
where I5d, 1 < j < 2d, are the 2d positive Stern-Brocot intervals of depth d + 1; 
the minimization and maximization of amp(m) over I5d; and the summation over 
1 < j < 2d as in the defining equation (4.1). We describe some aspects of the 
computation and then give a rounding error analysis to prove Lemma 4.1. A C 
program for computing Pd and qd for d = 28 is given at the end of this section so 
that our computation can be reproduced; its perusal in not necessary for reading 
this section. 

Lemma 3.2 implies that the denominators of the 2d positive Stern-Brocot inter- 
vals of depth d + 1 occur in an order that is the reverse of the order of the nu- 
merators. For example, the positive Stern-Brocot intervals of depth 4 are defined 
by divisions at the points 0 1 1 2 1 3 2 3 '1 the numerators for that depth 
occur in the order 0, 1, 1, 2,1, 3, 2, 3, 1, and the denominators occur in the reverse 
order 1, 3, 2, 3, 1, 2, 1, 1, 0. We use this fact to avoid storing the denominators of the 
Stern-Brocot divisions. The numerators are stored in the array num [] by the C 
program. 

To compute Pd and qd, we use (4.1) in the following form: 

Pd mi lo I + 4m4 . f (1jd) 
Pd E mc (log (1 + m2)2 )2' 

(A.1) 
j=1 

I 

q E n1, o + 4m4 'I zJ(Ij 
qd = m log + M2)2 2 
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By (3.3), Zvf (Iq)/2 is one of the d + 1 numbers gdi( + 9)-d/4, 0 < i < d, where 
g = (1 + V'5)/2. The array table [] in the C program is initialized after precom- 
puting these d + 1 numbers to very high accuracy in the symbolic algebra system 
Mathematica so that table [i] = (gd-i(I + g)-d/4)(1 + E) with the relative error 
E satisfying JEJ < u. The index i into table [] for getting /f (I5)/2 is obtained 
by taking the binary representation of j, flipping all the odd bits if d is even and 
all the even bits if d is odd with the least significant bit taken as an even bit, and 
then counting the number of Is; correctness of this procedure can be proved easily 
using induction. 

The minimization and the maximization of 4 amp(m) over Id in (A.1) are easy 
to do. Since amp(m) has its only local minimum for m > 0 at m = 1/2 (see the 
figure just after (2.2)), both the minimum and the maximum are at the endpoints 
of Id. 

The summations in (A. 1) are performed pairwise, not left to right. The pairwise 
summation of 2d numbers is done by dividing the 2d numbers into 2d-1 pairs of 
adjacent numbers, adding each pair to get 2d- 1 numbers, and then reducing the 
2d- 1 numbers to 2d-2 numbers similarly, and so on until a single number is obtained. 
Rounding error analysis leads to smaller upper bounds on Ifl(Pd)-Pdl and Ifl(qd)-qdl 

for pairwise summation than for term-by-term left to right summation [22, p. 92]. 
The bounds for left to right summation are not small enough to give Of correctly 
to the 8 decimal digits shown in Theorem 4.2. 

Lemmas A.1 and A.2 help simplify the proof of Lemma 4.1. 

Lemma A.1. Assume O < fi(u) < 1 +el < gi(u) and O < f2(u) < 1 +e2 < 92(u)- 

(a) If a > 0, b > 0, and a(l+el)+b(l+e2) = (a+b) (1+E), then min(fi (u), f2(u)) 
< 1 + E < max(g, (u),92(u)). 

(b) If + E =(1 + el)(I + e2), then fi(u)f2(u) < 1 + E< gl(U)92(U)- 

(c) If + E =(1 + el)/( + e2), then fi(U)/92(U) < 1 + E < gl(u)/f2(u). 

Proof. To prove (a), note that 1 + E is the weighted mean of 1 + e1 and 1 + e2. (b) 
and (c) are trivial. 

Consider the computation fl(m2): 

fl(m2) = fl(m) fl(m)(1 + e') = m2(1 + e')(1 + e")2, 

where e".is the relative error in representing m, and e' is the relative error caused 
by rounding the multiplication. By (4.3) and remarks in the paragraph preceding 
it, 1 - u < 1 + e', 1 + e" < 1 + u. Lemma A.lb allows us to gather the factors 1 + e' 
and (1 + e//)2 together and write 

(A.2) fl(m2) = m2 (1 + eo), 

with (1-U)3 < 1 + E < (1 + U)3. 

Consider the computation fl(1 + m2): 

fl(1 + m2) = (1 + fl(m2))(1 + e"') = (1Y+ m2(1 + e')(1 + e")2)(1 + e"'), 

where e"' is the relative error in the addition 1 + m2, and e", e' are, as before, the 
relative errors in representing m and the multiplication m x m, respectively. As it 
was with 1 + e' and 1 + e", 1 - u < 1 + e"' <1 + u by (4.3), and we can use Lemma 
A.la to pull (1 + e')(1 + el,)2 out of the sum 1 + m2, and Lemma A.lb to multiply 
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(1 + e')(1 + e")2(1 + e"') to get 

(A.3) fl(1 + m2) = (1 + m2)(1 + es), 

with (1 -U)4 < 1 + el < (1 + U)4. 

Thus Lemma A. 1 allows us to pull factors like (1+ ei) out of sums (Lemma A. la), 
or to multiply them together (Lemma A. lb), or to divide between them (Lemma 
A.1c). Rounding error analyses of simple computations, like the analyses of fl(m2) 
and fl(1 + mi2) given above, feature three steps. First, relative errors ei caused 
by rounding are assigned to all the basic operations. Second, 1 + ei are bounded 
using (4.3) or (4.4). Third, factors like (1+ ei) are gathered together using Lemma 
A.1. In the proof of Lemma 4.1, we always spell out the first step in detail, but 
sometimes omit details for the second and third steps. 

The inequalities in Lemma A.2 below are used in the proof of Lemma 4.1. 

Lemma A.2. (a) If 0 < u < 1/4, then log 1+u < 3u. 
(b) (1 + ay)d < eod for a > 0 and d a positive integer. 

Proof. It is easy to prove (a) by expanding log((1 + u)/(1 - u)) in a series. (b) 
can be proved by comparing the binomial expansion of (1 + ay)d with the series 
expansion of eQd. D 

The summations in the proof below are all over 1 < j < 2 

Proof of Lemma 4.1. We will prove the upper bound only for fl(Pd) -Pd. The 
proof for Ifl(qd) -qd I is similar. 

First, consider the computation of 4 amp(m) = log (1+4 )2: 

l(l 1 + 4mo 
4 

lo ( 
(1 + 4m4(l1 + eo )2(l + el )(1 l+ e2) )( (1 + e3) ) e) ( + e6 ), 

where eo and e' are the relative errors in fl(m2) and fl(1 +m2) as in (A.2) and (A 3) 
respectively, el, e2 are the relative errors of the two multiplications (4 x mi2) x m2 
e3 of the addition 1 + 4m4, e4 of the multiplication (1 + mi2) x (1 + m2), e5 of the 
division (1 + 4m4)/(1 + M2)2, and e6 of taking the log. By assumptions (4.3) and 
(4.4), 1-u < 1 + ei < 1 + u for 1 < i < 6. Lemma A.1 gives 

(A.4) fl log ( log (1 + El) + E2) 
k(1+ M2)21 (1+ M2)2)( 1 

with 1 -u < 1 + El < 1 + u and I E21 < (1 + u) log((l + u) ?(0-u) -). A weaker, 
but simpler, bound is E21 < 10(1 + u) log((1 + u)/(l - u)). Now, the assumption 
u < 1/10 implies 10(1 + u) < 11, which, together with Lemma A.2b, gives the 
simple bound JE21 < 33u. 

Second, recall that vf (Iq)/2 is obtained by precomputing gd-i(1 + g)-d /4 to 
high precision. Therefore 

(A.5) fl(vf (Ij)/2) = 2 (1 + E3), 

with JE31 < u. 
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Finally, consider the pairwise summation to compute Pd Let mj be the endpoint 
of I5d where amp(m) is minimum. Then, 

fl~~~ (Pd lo 43_ (I1 + E3 ) + E2' 
3 f 3 

(I1 + E3 (I + E4 

where Ej and Ei are the relative errors in computing log((1 + 4m!)(1 + m?)2), 

and therefore are bounded like E1 and E2 in (A.4); E3 is the relative error in 
computing vf (Ijq)/2 and is bounded like E3 in (A.5); and the factors 1 + E4 take 
up the errors in the pairwise sumrmation. By Higham [22, p. 91], E4 can be chosen 
so that (1-u)d < 1 +E43 < ( + u)d. Lemma A.1 gives 

(A.6) fl(Pd) = 2 'log 1 
2Vf (14)(I + E + V jdId)E3 2 E (1 in3)2 2 %JJb 

with (1- u)d+2 < 1 + Ei < (1 + u)d+2 and |Ebj| < 33u(1 + u)d?l. 

Bounding fl(pd) - Pd iS now a simple matter: 

fl(Pd) -Pd K 2Zlog47<2 | )|E3 - 1 + 2 vfj)|E 

< log4 ((1+ u)d+2 - 1) + 33u(1 + u)d+ 
44 

<l4 (eu(d+2) - + 33ueu(d+_ ) 

The second inequality above uses E vf (I5) = 1/2, Ilog (1+442 1 < log 4, lEi - i < 

(1 ?u)d+2 - 1, and lEbj < 33u(1 + u)d+l . The tound on IEj -1 can be derived 
easily from (1-u)d?2 < 1 + E3 < (1 + u)d?2. The final inequality follows from 
Lemma A.2b. D 

Upper bounding Ifl(qd) - qd I involves a small, additional detail. For the rightmost 
positive Stern-Brocot interval I5d, amp(m) is maximum at m = oo. This causes no 
difficulty, however, because log((1 + 4m4)/(1 + M2)2) is taken as log4 at m = 00 
by the computation, and as a result, the bounds in (A.4) still hold. 

A program to compute Pd and qd is given below so that the computation leading 
to (4.2) can be easily reproduced. The program uses up 1.1 gigabytes of memory. It 
can be written using only a small amount of memory, but then it would be harder 
to read. For finding logs, we used the version of Tang's algorithm [38] that does 
not precompute and store 1/F for F = 1 + j2-7, 0 < j < 128. Though we do not 
give the code here because it is machine dependent, the guidelines given in [38] are 
enough to reproduce that log function (called tlog() in the program) exactly. 

#include <stdlib.h> 
#include <stdio.h> 
#define D 28 
#define N 268435456 
#define NRT 16384 
unsigned int filter = OxAAAAAAA; 

#define bitcount(x,b) \ 
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{b = 0; 
for( ; x!=0; x&=(x-1)) \ 

b++; 
} 
double tlog(double); 
double sum(double *, int); 

static double table[D+1] = { 
3.51792099313013395856e-7, 
2.17419474349120812252e-7, 
1.34372624963892583604e-7, 
8.30468493852282286483e-8, 
5.13257755786643549553e-8, 
3.17210738065638736930e-8, 
1.96047017721004812623e-8, 
1.21163720344633924307e-8, 
7.48832973763708883155e-9, 
4.62804229682630359918e-9, 
2.86028744081078523237e-9, 
1.76775485601551836682e-9, 
1.09253258479526686555e-9, 
6.75222271220251501272e-10, 
4.17310313575015364275e-10, 
2.57911957645236136997e-10, 
1.59398355929779227278e-10, 
9.85136017154569097184e-11, 
6.08847542143223175599e-11, 
3.76288475011345921584e-11, 
2.32559067131877254014e-11, 
1.43729407879468667570e-11, 
8.88296592524085864439e-12, 
5.48997486270600811265e-12, 
3.39299106253485053174e-12, 
2.09698380017115758091e-12, 
1.29600726236369295083e-12, 
8.00976537807464630088e-13, 
4.95030724556228320737e-13}; 

void main() 
{ 

int i,j,*num; 
double lower,upper,larrayl[NRT],larray2[NRT], 

uarrayl[NRT],uarray2[NRT]; 
unsigned int *lptr, *uptr; 

num = (int *)malloc(sizeof(int)*(N+1)); 
num[0] = 1; num[1]=1; 
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for(i=2;i<N;i=i+2){ 
num[i] = num[i/2]; 

num[i+1] = num[i/2]+num[i/2+1];} 
num[N] = 1; 

for(i=0; i<NRT; i++){ 
unsigned int k,b,x; double m, m2, m2pl, 

left, right, measure; 

k = i*NRT; m =(double)num[k]/(double)num[N-k]; 
m2 = m*m; m2pl = m2+ 1.0; 

left = tlog((1+4*m2*m2)/(m2pl*m2pl)); 

if (i < NRT/4) 
for(j=0; j<NRT; j++){ 

k = i*NRT+j; 

m = (double)num[k+l]/(double)num[N-k-1]; 
m2 = m*m; 

m2pl = 1 + m2; 

right = tlog((1+4*m2*m2)/(m2pl*m2pl)); 
x = k^filter; 

bitcount(x,b); 
measure = table[b]; 
larrayl[j] = measure*right; uarrayl[j] = measure*left; 
left = right;} 

else if(i < NRT-1) 
for(j=0;j<NRT;j++){ 

k = i*NRT+j; 

m = (double)num[k+l]/(double)num[N-k-1]; 
m2 = m*m; 

m2pl = 1 + m2; 

right = tlog((1+4*m2*m2)/(m2pl*m2pl)); 
x = k^filter; 

bitcount(x,b); 
measure = table[b]; 
larrayl[j] = measure*left; uarrayl[j] = measure*right; 
left = right;} 

else /* i == NRT-1 */ 
for(j=0; j <NRT;j++){ 

k = i*NRT+j; 

if(j==NRT-1) 
right = tlog(4.0); 

else{ 
m = (double)num[k+l]/(double)num[N-k-1]; 
m2 = m*m; 

m2pl = 1 + m2; 

right = tlog((1+4*m2*m2)/(m2pl*m2pl));} 
x = k^filter; 

bitcount(x,b); 
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measure = table[b]; 
larrayl[j] = measure*left; uarrayl[j] = measure*right; 
left = right;} 

larray2[i] = sum(larrayl,NRT); uarray2[i] = sum(uarrayl,NRT);} 

lower = sum(larray2,NRT); 
upper = sum(uarray2,NRT); 

lptr = (unsigned int *)(&lower); 
uptr = (unsigned int *)(&upper); 
printf("(l,r)= (%.17E, %.17E)\n",lower, upper); 
printf("(l,u) in hex = (%x %x, %x %x)\n",*lptr,*(lptr+l),*uptr, 

*(uptr+1)); 
} 

/* sums a list, length being a power of 2 */ 
double sum(double *list, int length) 
{ 

int i,step; 

for(step = 1; step < length; step = 2*step) 

for(i=O; i < length; i += 2*step) 
list[i]+= list[i+step]; 

return list[O]; 
} 
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