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RUDIN-SHAPIRO-LIKE POLYNOMIALS IN L4 

PETER BORWEIN AND MICHAEL MOSSINGHOFF 

ABSTRACT. We examine sequences of polynomials with {+1, -1} coefficients 
constructed using the iterations p(x) -+ p(x) ? xd+1p*( (-x), where d is the 
degree of p and p* is the reciprocal polynomial of p. If po = 1 these generate the 
Rudin-Shapiro polynomials. We show that the L4 norm of these polynomials 
is explicitly computable. We are particularly interested in the case where 
the iteration produces sequences with smallest possible asymptotic L4 norm 
(or, equivalently, with largest possible asymptotic merit factor). The Rudin- 
Shapiro polynomials form one such sequence. 

We determine all po of degree less than 40 that generate sequences under 
the iteration with this property. These sequences have asymptotic merit factor 
3. The first really distinct example has a po of degree 19. 

1. INTRODUCTION 

We are interested in the L4 norm of a polynomial with coefficients {+ 1, -1} (or 
some other fixed set of coefficients), with the most interesting case being when the 
norm is small. The norm is the Lc, norm on the boundary of the unit disc defined 
by 

1PIR = (27r P p(ezO)I d0) 

We call a polynomial with coefficients {-+1, -1} of degree n a Littlewood polynomial 
of degree n and denote this class by 4n. 

The L2 norm of any element of En-l is \/;Hi and this is, of course, a lower bound 
for the L4 norm. There are two natural measures of smallness for the L4 norm of a 
polynomial p in Ln-l. One is the ratio of the L4 norm to the L2 norm, IIPI4/x/n. 
The other (equivalent) measure is the merit factor, defined by 

MF(p) = 
____ 

-1J1 
_ HpJ1 1p -n2 

* IIPII ~ ~ ~~4 2 4 

The expected L4 norm of an element of En, is computed in [25] (see also [6]); the 
expected merit factor is 1. The L4 norms of the Rudin-Shapiro polynomials are 
explicitly computed by Littlewood [22] (see also [25]); their merit factors tend to 3. 
We also compute this in this paper. 

In ?2 we analyse the Rudin-Shapiro-like polynomials generated by the iterations 

p(x) -, p(X) ? xd+1p*(-X). 
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We show that the merit factors of the polynomials generated by these iterations 
with initial polynomial po approach 

4-y/3- 1' 

where 

11pO1I4 + JJpO(Z)pO(-Z)II > 1 
211poIJ 

Note that the maximum possible asymptotic merit factor is 3, and this occurs when 
-y = 1. In ?3 we address the problem of determining when -y = 1, and we find all 
po with this property of degree less than 40. 

It is possible to construct sequences with asymptotic merit factor 6. Golay [14] 
gives a heuristic argument that a sequence of polynomials explored by Turyn has 
limiting merit factor 6, and this is proved rigorously in [15]. Turyn's polynomials 
are constructed by cyclically permuting the coefficients of the Fekete polynomials 

fq(z) _= E (k) Zk 

by approximately q/4. Here, q is a prime number and (q) is the Legendre symbol. 
The Fekete polynomials themselves have asymptotic merit factor 3/2, and different 
amounts of cyclic permutations can give rise to any asymptotic merit factor between 
3/2 and 6. 

Golay [14] speculates that 6 may be the largest -possible asymptotic merit fac- 
tor. He writes, "the eventuality must be considered that no systematic synthesis 
will ever be found which will yield higher merit factors." Newman and 
Byrnes [25], apparently independently, make a similar conjecture. Computations 
by a number of people (including the authors) on polynomials up to degree 200 
lead us to believe that higher merit factors are probably possible, and so to 
doubt these conjectures. See [13], [23], [27], and the web page of A. Reinholz at 
http: //borneo .gmd. de/-andy/ACR. html. 

All of these explorations are closely related to Littlewood's conjecture that it is 
possible to find polynomials Pn E n-l, for all n > 1, satisfying 

Ci6? ? Pn(Z)I < C2/n 

for all z with IZ = 1, where Ci and C2 are positive absolute constants. See [22]. As 
a finer form of this problem, replace the constants Ci and C2 by the optimal values 
Ci(n) and C2(n) for each n. It follows from a related conjecture of Erdos [11] that 
C2(n) remains bounded away from 1, independently of n. These conjectures are all 
still open. 

The Rudin-Shapiro polynomials (which some argue should be called the Shapiro 
polynomials) satisfy the upper bound in Littlewood's conjecture. No sequence is 
known which satisfies the lower bound. 

When q is an odd prime, the Fekete polynomial fq(z) has modulus /F at each 
qth root of unity (except at z = 1, where it vanishes), and one might hope that 
they also satisfy the upper bound in Littlewood's conjecture, but Montgomery [24] 
shows that this is not the case. 
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2. THE ITERATION 

Let p* denote the reciprocal polynomial of p: p*(z) = zdp(1/z), where d is the 
degree of p. We consider the following construction. 

Iteration 1. Let po(z) be a polynomial of degree D - 1 with coefficients in a set A 
of complex numbers, and suppose that p0(O) 7& 0. Let 

Pn+1 (Z) = Pn(Z) + Zd+1p* (-z) 

where d is the degree of Pn. Then Pn is a polynomial of degree 2nD -1 with all 
coefficients in A U -A. Furthermore, if 

Rn :=P n(Z) and Sn p=P(-z), 

then 

Rn+l = Rn + Zd+1Sn 

and 

Sn+l = (-_)d(Rn - Zd+lSn). 

Proof. Most of this is simple calculation. Observe that 

Pn+ 1 (Z) = Pn(Z) + (_l)dz2d+lpn(-l/z), 

so 

Pn+l (-1/z) = Pn(-1/z) - (_l)dz-2d-1p (z), 

and multiplying this equation by _z2d+1 yields the second form of the iteration. D 

Lemma 1. In the notation of Iteration 1, 

IRn(z)12 + ISn(z)12 = 2n(Ipo(z)12 + P*(- Z)12), 

provided lzl = 1. Furthermore, 

I Rn (Z) 1 2 + Sn (Z) 12 I|PO (Z) 12 jPO (Z) 12 

I ll2 I ll2 IIPO 112 2 112 

Proof. The first statement follows from the parallelogram law for complex numbers: 

Rn+i(Z)12 + IS l(Z)12 = JRn(z) + Zd+lS (Z)12 + JRn(z) - zd+lSn(Z)i2 

= 2(lRn(z)12 + ISn(z)12). 

The second statement follows on observing that 1IRn+l 112 = 21IRnll 2 and ISn+1112 = 
2 S~~~~~~~ ~~~~. D~2 2 11Sn 11 2 

We wish to compute the L4 norm of Pn. For this we follow Littlewood [22]. 

Theorem 1. In the notation of Iteration 1, let Yn = IlPn4 /HlPn2i for n > 0, and 

let 

11PoJI4 + Ilpo(Z)p*(-Z)112 
ThenlPO 1124 

Then 
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Proof. With Rn and Sn as in Iteration 1, let 

4R~ = In4 Xn := IIRnII4 =Inl4 

and 

Wn := ||RnSn l2' 

Then, with z = eio and d = deg(Rn), 

2Xn+1 IIRn+1 + S+ 

27r 

= Uwr J(( Rn (Z) + zd+lSn(z)14 + IRn (z) - zd+l S (Z) 1) dO. 

0 

If we use the identity for complex numbers 

IU + V14 + U -V14 = 2( uI4 + Iv14) + 4Re(uvU)2 + 8|UV12 

with u:= zd+lSn(z) and v := Rn(z), we deduce that 

27r 

2Xn+ 1= 4Xn + 8bn + - J Re(Rn(z)zd+lSn(z))2 dO. 

0 

Now Rn(z)zd+lSn(z) = R*(1/z)Sn(l/z)/z, a polynomial in 1/z with constant 
term 0, so the integral above is 0. Thus 

(1) Xn+1 = 2Xn + 4Wn 

We now observe that, with Lemma 1, 
27r 

2xn + 2wn = 2 ] Rn (Z) n + SZ 1(z) 2dO 

0 

27r 
22rL |(IP (Z) 12 + IP0 (-Z) 12)2 dO 

27r 
22n+2 JpoO(Z)I4 + po(Z)pO(-_ Z) dO 

2,7r J2 
0 

22n+2 (IIPOI4 + IIPO(Z)P(-Z)l2) 

FRom this and (1) we deduce that 

Xn+1 = -2Xn + 222n+3 (IIPOI4 + IIPO(Z)P0(-Z)l) 

Since IIPn+1 114 = 41jPn 114, this yields 

Yn+l = -Y + 2-y, 

which simply solves to give the result. D 

An immediate consequence of this is the following. 
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Corollary 1. The sequence Pn(Z) generated by Iteration 1 satisfies 

(jnj4 4)~1/4 
noo ||Pn ||2 (3) 

and 

lim MF(Pn) 1 
n---+oo4-y/3 -1I 

where 

IIPO114 + IIpo( (-Z) 112Z _ 1. 
2Ho 

Proof. The only part needing proof is that y > 1. For this, note that 

1Pjj4 + IIp(Z)p*(_Z)112 
2 lpJ( 1z)12+lp*(-Z)l22 

0 

>2(1 

27r 
lP(Z)12 + lP*(_Z)12 2f > 2 ( j27r j()2 dtpO-zj 

= 2lpl2 

Here we have used the fact that L2(q) > Li(q). ? 

It is easy to check that the same results hold for the iteration Pn+I (X) = Pn(X)- 

xd+ Pn* (- x) 
Define 

iPH14 + Ilp(X)p*(_X)112 
?(P) 

4 
2ll 

2j1pJj4 

and let 

T? (p) = p(x) ? Xd+ Ip* (_x). 

A direct computation, as in the proof of Theorem 1, shows that y(T?(p)) = a(p). 

Thus, by an obvious analogue of Corollary 1, if {qn } is a sequence of polynomials 
generated by qn+I = T? (qn) for some choice of signs, then 

lim = ( ___ 

n-~oo ln2 3 

We remark that the usual Rudin-Shapiro polynomials satisfy the recurrence 

Pn+l(x) = Pn(X) - (-1)nx2 Pn(-x) 

and 

Qn+l(x) = Pn(X) + (-_)nX2 p*(-x) 

for n > 1, so 

fPn+1 Qn+1 }= {T+(Pn),T(Pn)j} 

The interesting question now becomes: For which p is -y(p) = 1? 
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3. LITTLEWOOD POLYNOMIALS WITH -y = 1 

Polynomials which satisfy -y(p) = 1 are of special interest in that they give rise 
to sequences of polynomials (under iteration by T?) that satisfy 

IPII4 \4 1/4 

n--o I |Pn II2 \3J 

the smallest possible limit under the process. The interesting observation is that 
many such p exist. Indeed, there are 128 distinct such p of degree 19, which we list 
later in this section. One example is 

1+X -x 2 + X 3 + X 4 + X 5-_x6 + X 7-_x8 + X 9 -X10 - X 

12 13 14 15 16 17 18 19 +fX +fX +fX -x - x -x - x +X 

We describe an algorithm for determining all Littlewood polynomials p of degree 
d having -y(p) = 1. We first require some preliminary lemmas. 

Lemma 2. Let p(x) = Ed=oxk. Then IIPII4 = (d + 1)(2d2 + 4d + 3)/3 and 

Ilp(X)p*(_X)112 = d+ 1. 

Proof. Since p(x)2 = (d + 1)Xd + Ed-1(k + 1)(Xk + X2d- k), the first identity follows 
easily from Parseval's formula. For the second identity, we have 

p(X)p*(-X) = 5 1 xd+l + (i)d 
x - x+1I 

JEk=o x2, d even, 
= (Xd+l1) Z(d71)/2 2k dodd 

and the formula follows. O 

Lemma 3. Let p be a Littlewood polynomial of degree d. The coefficient of xd in 

p(x)p*(-x) is 0 if d is odd and 1 if d is even. 

Proof. Write p(x) = :d=0 akXk, so that p*(_x) = (I)d Ed= ad-k(_)kXk. The 
coefficient of xd in the product is therefore 

d d 

(_I)d Ej aiad_j(-l)i = - Z-()za = Z(a1)i 

i+j=d i=O i=O 

and the result follows. O 

Lemma 4. Suppose p and q are Littlewood polynomials of degree d. Then IIpII4 
llq l4 (mod 8), and Ilp(x)p*(_x) 112llq(x)q*(-x) 112 (mod 8). 

Proof. Let p(x) = Ed=0 akXk and p(x)2 = EZ=d bkxk It is enough to prove the 
statement for the case where p and q are identical except for one coefficient, so 
assume that q(x) = p(x) - 2amxm for some m. Write q(X)2 = EZd= 3kxk. Then 

d {bk-4amak-m, m < k < m + d, k # 2m, 
bk, otherwise. 

Therefore 

(2) llqj14 = IIPII4 + 16d - 8am S ak-mbk 
m<k<m+d 

k$2m 
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and the first assertion of the theorem follows. For the second, let 
2d 2d 

p(X)p* (-x) = CkXk and q(x)q*(-x) = E kXk. 
k=O k=O 

Now 

(3) q(x)q*(-x) = (p(x) - 2amxm) (p*(-x) - 2am(-)mxdm),m 

So 62 -C2k (mod 4) for each k. Because 6d = Cd by Lemma 3 and 6k = ?62d-k, it 

follows that jlp(x)p*(_x)112 _lq(x)q*(-x) 112 (mod 8). D 

We immediately deduce the following theorem. 

Theorem 2. If p is a Littlewood polynomial of degree d and d 2 (mod 4), then 
(P) > 1. 

Proof. By Lemmas 2 and 4, we have IIPII4 + Ilp(X)p*(_X)12- 6 (mod 8), but 
2 1pJ4_ 2 (mod 8), so -y(p) 7& 1. The result follows from Corollary 1. C: 

In searching for Littlewood polynomials p having -y(p) = 1, clearly we may 
assume that the coefficients of the two highest-order terms are both 1. We employ 
a Gray code [26] to enumerate all possible combinations of signs among the lower- 
order terms. This way, each polynomial considered differs in exactly one position 
from the previous polynomial tested, and we may use formulas (2) and (3) to 
compute each -y in 0(d) time. 

Algorithm 1. Rudin-Shapiro like polynomials in L4. 

Input. d, a positive integer, d # 2 (mod 4). 

Output. All Littlewood polynomials p(x) of degree d having -y(p) = 1. 

Data. ak is the coefficient of xk in p(x), bk in p(x)2, and Ck in p(x)p* (-x). 

Initialize. Set the ak, bk, and Ck for the polynomial p(x) = Ed=o xk. Set Vk = 0 

for 1 < k < d. Choose s, t, so, and to so that (d + 1)(2d2 + 4d + 3)/3 = 8s+ +so 
d + 1 =8t + to, 0 < so < 8, and 0 < to < 8. Let u = (2(d + 1)2-so -to)/8. 

Loop. Enumerate all possible combinations of signs among the lower order d - 1 
coefficients of the polynomial using a Gray code. Execute the following statements 
when changing the sign of the mth coefficient of the polynomial. 

ss+-s?2d-am E akbk+m 
O<k<d 
k$m 

bk (bk-4amak-m, m < k < d+m, k $ 2m 
Vk (-l)d+m-k+lamam+d-k m < k < d 
Vk Vk ? (-l)m+lamam+k-d, d - m < k < d 
t +- t + EZk= Vk(Ck + Vk) 

Ck Ck+ 2Vk, 1 < k < d 
Vk O, 1<k<d 

am -am 

If s + t = u then print p(x). 
Searching through degree 39, we find many polynomials with ty = 1 at the 

degrees of the Rudin-Shapiro polynomials, plus a number of examples of degree 
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19 and degree 39. The following table shows the total number n of Littlewood 
polynomials with Iy = 1 for each degree d. 

d n 
1 4 
3 8 
7 32 
15 192 
19 128 
31 1536 
39 1088 

The coefficients of sixteen of the polynomials of degree 19 are listed below. 
Each one represents eight Littlewood polynomials with y = 1, since y(p(x)) - 

1. ++?++-+-++-?+++--++- 

2. +++++-+---+-++--- ++- 
3. ????-?-????-??--?--? 

4. ????-?-?---???--?--? 

5. ++++--?+?-+?+-+--+-+ 
6. ++++- -++-+++-?+--+-+ 
7. ++++--+-+++-?+?--+-? 
8. ++++---+++-+++-??-+- 
9. +?+- +?+ -?---+?+_+_+- 

10. +++-+++--++++?-?--?- 

11. ++-+++-++-+++++----+ 
12. ++-+++-?-+--+++----+ 

13. + +----+ + +-+ + +- + -+ --+ 
14. ++----++-+++-+-+-++- 
15. ++----+-+++-+?+-+--+ 
16. ++-----+++ ++ 

By analyzing our data we find another operator that preserves y. 

Theorem 3. Let p(x) be a polynomial, and define U(p) = Xp(X2) +p* (-X2). Then 
y(U(p)) = 

Proof. Let q = U(p). Then 

llq 14 = II (xp(x2) + p*(_X2))2 12 

= X2p(X2)2 + p* (_X2)2112 + 112xp(X2)p* (_X2) 112 

= IIXp(X)2 + p* (_X)2112 ?4p(x)p*(-X)12 

The first term is 
27r 27r 

X! J zp(z)2 ? p* ( z)2 12 do = 2Hlpil ? l j Re(z-2 deg(P)p(z)2p(-z)2) dO 

0 0 

with z = ei0, and the integral is 0 because p(x)p(-x) is an even function. Thus 

(4) llq 4= 2 4p4 ? 41 p(x)p*(-x) .2 
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Next, we compute 

llq(x)q*=(-x) ?12 2) + xp(x2))(p* (x2) - Xp(_X2))112 2 
- xp(x )p-x2) 

2 

= I*(2)P* (_X2) - x2P(X2)p(_X2)1ll2 

? Hlx(p(x2)p* (X2) - P(_X2)p* (_X2))112 

11P* (X)P* (_X) - XP(X)P(_X) 11 2 IIp(x)p* (x) - p(_x)p* (_x) 11 2 

The first term equals 2Ilp(x)p(-x) 12 because p(x)p(-x) is an even function. The 
second term is 

2w 

I ) Ig (Z)12 _ IP(_Z)I212 11=2I11-|PX)(xl2 2w Jflpz)~ - p~~z~2~dO = 211pll - 211p(x)p(-x), 
0 

so 

(5) llq(x)q*(-x) 12 = 2IpIPI. 

Clearly, llq 12 = 2IIpI2 , and this fact combined with (4) and (5) proves the theorem. 
D 

Thus, the four operators T+, T_, U, and U* (the reciprocal of U, U* (p) = 
xp(-x2) + p* (x2)) in general allow us to construct four polynomials of degree 2d + 1 
with -y = 1 for each polynomial of degree d with this property. 
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