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COMPUTING THE HILBERT CLASS FIELD 
OF REAL QUADRATIC FIELDS 

HENRI COHEN AND XAVIER-FRANQOIS ROBLOT 

ABSTRACT. Using the units appearing in Stark's conjectures on the values of 
L-functions at s = 0, we give a complete algorithm for computing an explicit 
generator of the Hilbert class field of a real quadratic field. 

Let k be a real quadratic field of discriminant dk, so that k = Q( dk), and let 
w denote an algebraic integer such that the ring of integers of k is O9k := 2 + w2. 
An important invariant of k is its class group Clk, which is, by class field theory, 
associated to an Abelian extension of k, the so-called Hilbert class field, denoted 
by Hk. This field is characterized as the maximal Abelian extension of k which is 
unramified at all (finite and infinite) places. Its Galois group is isomorphic to the 
class group Clk; hence the degree [Hk: k] is the class number hk. 

There now exist very satisfactory algorithms to compute the discriminant, the 
ring of integers and the class group of a number field, and especially of a quadratic 
field (see [3] and [16]). For the computation of the Hilbert class field, however, 
there exists an efficient version only for complex quadratic fields, using complex 
multiplication (see [18]), and a general method for all number fields, using Kummer 
theory, which is not really satisfactory except when the ground field contains enough 
roots of unity (see [6], [9] or [15]). 

In this paper, we will explore a third way, available for totally real fields, which 
uses the units appearing in Stark's conjectures [21], the so-called Stark units, to 
provide an efficient algorithm to compute the Hilbert class field of a real qua- 
dratic field. This method relies on the truth of Stark's conjecture (which is not 
yet proved!), but still we can prove independently of the conjecture that the field 
obtained is indeed the Hilbert class field and thus forget about the fact that we had 
to use this conjecture in the first place. 

Of course, the possibility of using Stark units for computing Hilbert or ray class 
fields was known from the beginning, and was one of the motivations for Stark's 
conjectures. Stark himself gave many examples. It seems, however, that a complete 
algorithm has not appeared in the literature, and it is the purpose of this paper to 
give one for the case of real quadratic fields. 

In Section 1, we say a few words about how to construct the Hilbert class field 
of k when the class number is equal to 2. Here, two methods can be used which are 
very efficient in this case: Kummer theory and genus field theory. In Section 2 we 
give a special form of Stark's conjectures, namely the Abelian rank one conjecture 
applied to a particular construction. Section 3 is'devoted to the description of the 
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algorithm, and Section 4 to the verification of the result. Section 5 deals with an 
example. 

We end the paper with an Appendix giving a table of Hilbert class fields of real 
quadratic fields of discriminant less than 2 000. 

1. CONSTRUCTION WHEN THE CLASS NUMBER IS EQUAL TO 2 

We assume in this section that hk = 2. As we already said, in this case there are 
two powerful methods to compute Hk, and we quote them without proof. 

The first uses Kummer theory, which states that when the ground field contains 
the n-roots of unity, every Abelian extension of exponent dividing n can be obtained 
by taking n-th roots of elements of the ground field. From this, one easily obtains 

Proposition 1.1. Let k be a real quadratic field of class number 2, let v be a real 
embedding of k, let q1 denote the fundamental unit of k such that v(rq) > 1, and let 
21 be a non-principal integral ideal of k. Let a be one of the generators of Q2 chosen 
so that v(a) > 0. Then Hk = k(V) for some 0 E fq, a, ral. 

The second method uses genus field theory, which enables one to construct un- 
ramified Abelian extensions of k by taking the compositum of k with Abelian ex- 
tensions of Q (see [11]). 

Proposition 1.2. There exists a divisor d of the discriminant dk with 1 < d < dk 
and d = 0 1(mod4) such that Hk= k(jii). 

Hence the determination of Hk in this case boils down to a finite number of easy 
tests. 

2. A SPECIAL CASE OF STARK'S CONJECTURES 

We now assume only that hk > 1. We keep the same notations, we let v be one 
of the real embeddings of k and we denote by - the action of the non-trivial element 
of the Galois group of k/Q. We will identify k with its embedded image v(k) into 
R11. Let K be a quadratic extension of Hk such that K/k is Abelian and v stays real 
in this extension but v becomes complex. We identify K with one of its embedded 
images in R (so with one of its images w(K), where w is a place above v). 

Let f denote the conductor of K/k and G its Galois group. Let Ik(f) denote 
the group of fractional ideals coprime with the finite part f( of this conductor, let 
Pk(f) denote the group of principal ideals generated by elements multiplicatively 
congruent to 1 modulo f, and let Clk(f) := Ik(f)/Pk(f) be the ray class group 
modulo f. The Artin map sends any ideal 21 E Ik(f) to an element o,% of the Galois 
group G, the so-called Artin symbol of 21. For any element uf E G and any complex 
number s with Re(s) > 1, we can thus define a partial zeta function 

(K/k(S, U) Z E AV-S 
Or2t =or 

where 21 runs through the integral ideals of Ik(f) whose Artin symbol is equal to a. 
These functions have a meromorphic continuation to the whole complex plane with 
a simple pole at s = 1 and, in our situation, a simple zero at s = 0. 

Theorem 2.1. Assume the Abelian rank one Stark conjecture. Then there exists 
a unit ? C K such that 

uT(E) = e2 Klk() 
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for any a e G. Furthermore, if we set a := ? + E-1, we have Hk = k(a) and 
lalw ' 2 for any infinite place w of Hk which does not divide v. 

We refer to [22] for this conjecture and a more general statement of Stark's 
conjectures, and to [17] for a proof of this result. 

In the next section, we will explain how to compute K/k (O Iu) for a E G, and 
how to find the element a as an algebraic number, if it exists. 

3. DESCRIPTION OF THE ALGORITHM 

The first task is to find the field K. An easy way is to construct an element 
6 E Ok such that 6 > 0 and a < 0, and to set K := Hk(IJ). Another way is to 
construct the field K using class field theory. Such a field has conductor 2W for an 
integral ideal A and corresponds via class field theory to a subgroup of index 2 of 
the kernel of the map Clk(f) -- Clk where Clk is the usual class group. Indeed, the 
kernel of this map corresponds to the Hilbert class field, and thus its subgroups of 
index 2 correspond to quadratic extensions of Hk. Hence, we may compute the ray 
class group modulo 2W, where ?2 runs through the integral ideals A, by increasing 
norm, then compute ker(Clk(f) Clk) and check if it contains a subgroup of index 
2 whose conductor is 2W. 

This last idea is probably the best, since heuristics and numerical evidence show 
that the Stark unit tends to grow exponentially like the square root of the norm of 
the conductor of K; hence we need to minimize this norm. 

Algorithm 3.1. This algorithm computes a modulus f and a subgroup 7- of Clk(f) 
such that f is the conductor of XH and the field K c'orresponding to XH by class field 
theory is a quadratic extension of Hk where v splits and T becomes complex. This 
algorithm uses the tools of [6]. 

1. Set n -2. 
2. Compute the integral ideals 11, ... , Am of norm n. Set c 4- 1. 
3. If c > m then set n +- n + 1 and go back to step 2. Otherwise, set f +- Q1-v. 

If f is a conductor then go to step 4, else set c +- c + 1 and go to step 3. 
4. Compute the kernel of Clk(f) - Cllk and then its subgroups X1,... , Hi of 

index 2. Set d -1. 
5. If d > I then set c <-c + 1 and go back to step 3. If f is the conductor of 7Hd 

then return the result (f, Hd) and terminate the algorithm, else set d <- d + 1 and 
go to step 5. 

Once the field K is chosen, we need to compute the values uK/k(u). For this 
purpose, we use Hecke L-functions (see [13] for the more general theory of Artin 
L-functions). Let X be a character of G := Gal(K/k). By composition with the 
Artin map, X can be considered as being defined on the group Ik(f). If s denotes a 
complex number with Re(s) > 1, we define 

LK/k(S, X) J= (1 -X(P)P ) 
p unramified 

where p runs through the prime ideals of k unramified in K/k. These functions 
have meromorphic continuations (even holomorphic if X is non-trivial) to the whole 
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complex plane and are related to the partial zeta functions by the formula 

(*) (K/k(S,U) = 1k] ELKlk(S,X)XV01, 

where the sum is taken over all characters of G. 
Let X be a character of G and let T denote the non-trivial automorphism of 

the quadratic extension K/Hk. If X(T) = 1, the functional equation implies that 
LIKk(O, X) = 0; hence X will not contribute to the value of (IKl/k(0, u) in (*). Thus 
from now on we assume that x(T) =-1. We extend X to all ideals of k by setting 
x(a) = 0 if a is not coprime with the conductor f. of X. To each character X is 
associated a canonical L-function defined for s E C with Re(s) > 1 by 

L(s,X) f( -1X(P)P 

p 

where the product is taken over all prime ideals of k. 

Lemma 3.2. Let X be a character such that X(T) =-1. Then fX = f. In particular, 
LK/k(s, X) = L(s, X). 

Proof. Let K. be the subfield of K fixed by the kernel of X. By definition the 
conductor of K. is equal to fX. It is clear that the conductor of HkKx is also equal 
to f., and moreover HkKX = K since K. is not included in Hk; thus fx = f. ? 

We set 

A(s, X) := C'F(sl2)]F 
s 

2 
I 

L (s, X), 

where C := 7r- /d7k and 1(z) is the classical gamma function. This function 
satisfies the fundamental functional equation 

A(1 - s, X) = W(X)A(s,X 

where W(X) is a complex number of modulus equal to 1, called the Artin root 
number. 

Theorem 3.3. Let x > 0 be a real number. For n > 1, let 

an(X) Z X A) 
Af9=n 

where the sum is taken over all integral ideals of norm n, and let N := [c2?8x. 

Define the following two quantities: 
N 

T(X) := E an (X) fl (C/n), 
n=1 

N 

S(X) := xi an(X)f2(C/n), 
n=1 

with fl(x) := 'e-2/x and f2(x) := Ei(2/x), where Ei(x) = f+e-tdt/t is the 
exponential integral function. Then 

L'(O, X) = S(X) + W(X)T(X) + i;, 

where the error term i, is smaller than x. 
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Proof. Letting s tend to 1 in the functional equation gives 

L'(0, X) = W(X)A(1, X) 

Then a theorem of Friedman [10] tells us that 

A(1,X) = E [an(X)f (C/n, 1) + W(X)an(X)f(C/n, 0), 
n>1 

where the function f is defined by 

1 f ]+i xzF(z/2)F(z+l) _ 
2V/7 for (2-z 1(z) dz 

2i7w J 00 z -s 2iwr io\ x/ z -s 

for any real number of such that of > Re(s). If we differentiate f with respect to 
the variable x and use the fact that z/(z - s) = 1 + s/(z - s), we obtain 

xf (x, s)= 2-7r - IF (z) dz + sf(x, s). 
2i7 J -io x 

We solve the differential equation and find that 
+00 

f (x, s) = xs t 8lF(t) dt, 
J/x 

where 
Cr+ic)o 

F(t) :2i j (2t) zI(z)dz. 

But the theory of Mellin transforms (see for example [20], Chapter 4) tells us that 
F(t) = 2re-2t, and thus f(x, 1) = 2firf,(x) and f(x,0) = 2Vrf2(x). Finally, 
we compute the number of terms needed for sufficient accuracy by looking at the 
asymptotic expansion of the functions fi and f2. Ol 

Thus, we need to compute the following three objects. First, the coefficients 
an(X). Second, the functions fi and f2 (there of course exist methods to compute 
these functions, but here we are interested in efficient methods to compute them 
for many consecutive values of n). Third, the values of W(X). 

We compute the coefficients an(X) by using the multiplicative property 

an(X) = an/pm(X)apm(X), 

where pm is the largest power of p that divides n. 

Algorithm 3.4. Let N be an integer and let X be a character of G such that 
X(T) = -1. This algorithm computes the coefficients an(X) for 1 < n < N using the 
sub-algorithm fill-in(, p) which distributes the value of apm (X) according to the 
function 0: N \ {0} -? C (recall that X(P) is set equal to zero whenever the prime 
ideal p divides the conductor of X). 

1. For n going from 1 < n < N set an(X) - 1 and set p -1. 
2. Set p +- (least prime > p), and if p > N return the coefficients an(X) for 

1 < n < N and terminate the algorithm. 
3a. If p is inert: for m odd set q(m) = 0, and for m even, set q(m) = X(p)m. 

Execute fill-in(q, p) and go to step 2. 
3b. If p is ramified: write POk = p2 and set 0(m) = X(p)m. Execute fill-in(q, p) 

and go to step 2. 
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3c. If p splits: write POk = Pp. if X(P) & X(P_), set 

=X(P)M+l - X(-)M+l 

X (P ) X (-P) 

else set 

)(m) = (m + 1)X(P)m. 

Execute fill-in(q, p) and go to step 2. 
Sub-algorithm fill-in(q, p). 

1. Set q 1 and m +- 0. 
2. Set q qp and m -- m + 1. If q > N then terminate the sub-algorithm else 

set c +- q and d +- 1. 
3. If p does not divide d then set ac(X) = a,(X)q5(m). 
4. Set c -c+q and d - d + 1. Ifc < N then go to step 3, else go to step 2. 

We now need to compute the functions fi(C/n) and f2(C/n) for consecutive 
values of n. For f1(C/n) = Ce2n/C, the algorithm is very simple. 

Algorithm 3.5. Let A > 0 be a real number and let N > 1 be an integer. This 
algorithm computes the values of fi (A/n) for 1 < n < N. 

1. Set V +-e- 2/A ,V, <- AV/2, U, + V, and n +- 2. 
2. While n < N, set 

Un +-Un -1 
* 
V, Vn 

(- U 

and n +- n +1. 
3. Return the values Vn for 1 < n < N. 

We compute the values of f2(C/n) = Ei(2n/C) in the same spirit, that is to say 
by trying to compute the function Ei for only a very few values. For this, we use 
the following lemma. 

Lemma 3.6. Let A > 0 be a positive constant and define 0(x) := Ei(xA). Then 
q'(x) = l -xA and more generally for all m > 1 we have the induction formula 

(m+l)(X)= 
1 (mq$(m)(x) + (-A)m e -xA). 

Proof. The first assertion comes from the definition of the exponential integral 
function Ei(x) = f3+jj e-tdt/t, and the second is easily proved by induction. O 

If we have computed q5(N) we may obtain q(N - 1) by using Taylor's formula: 

?(N - 1) = 0(N) - 0'(N) + 2! 0"(N) - >() (N) + 4! ?>(N) - 

where the derivatives ?(m) (N) can be computed by the previous lemma. Moreover, 
since (-l)m 1 (m)(N) is always positive, we need only to sum these terms and 
stop as soon as the next term becomes smaller than the required precision. 

Algorithm 3.7. Let A > 0 be a positive constant and let N > 1 be an integer. This 
algorithm computes the values Ei(nA) for 1 < n < N with the precision x > 0. 

1. Set FN +- Ei(NA), nstop +- [4/A] and n +- N. Set also eO +- eA and 
el < e-NA 

2. Set FnlO -0, fo4-el, fi 4--fo/n andm -1, d --1, s- Fn. 



COMPUTING THE HILBERT CLASS FIELD OF REAL QUADRATIC FIELDS 1235 

3. If lsI > then set Fn +- Fi-, + s, s - dfi, fo --Afo, 

f- -n (mfi + fo) 

m +- m + 1, d +- -d/m and go to step 3. 
4. Set n ?- n - 1, el +- ele0. If n > nstOp then go to step 2. 
5. For 1 < n < n,tOp compute F> *- Ei(nA) directly (see below). 
6. Return the values F, for 1 < n < N and terminate the algorithm. 

For small values of n, we compute the exponential integral by standard means 
since the Taylor series converges slowly. One can find explicit formulas to compute 
the function Ei in [3], Proposition 5.6.12. 

Note that this type of method for computing Ei and more generally for confluent 
hypergeometric functions has already been studied in detail, in particular with 
respect to its numerical stability. See [19, 23, 24]. 

Finally, we compute the Artin root number W(X). We will essentially follow the 
method given in [8] with a slightly different computational approach. This method 
needs to work with the conductor of the character X, but thanks to lemma 3.2, we 
know that this conductor is f = foU for odd characters. 

The following result is a special case of a theorem due to Landau. 

Proposition 3.8. Let X be an odd character of G. Choose an element A E fo such 
that A > 0 and the integral ideal g = A\f1 is coprime to fo, and choose an element 
,t E g such that ,u> 0 and the integral ideal = ,tg-1 is coprime to fo. Define the 
Gauss sum 

G(X) = x (dk(4) Z e2i7JTr(8p/I/), 

where Tr denotes the trace of k/Q and fi runs through a complete residue system 
of (Ok/Jo>< such that 3> 0. Then 

W(X) = - A/F 

This yields the following algorithm. 

Algorithm 3.9. Let X be an odd character of G. This algorithm computes the 
Artin root number W(x) attached to this character. 

1. Compute an element A E fo such that A > 0 and vp(A) = vp (fo) for all prime 
ideals p dividing fo. Setg +- (A)fJ' 

2. Compute two elements ,t E? g and v E fo such that i > 0 and it + v = 1 (note 
that g and fo are coprime by construction). Set [j* (,a)g-1. 

3. Let {al1,.. .,ar} be elements of Ok, and let dr I dr,- I I d, be positive 
integers such that (ii > 0, the image &i of ai modulo fo is of order di, the cardinality 
of ((9k/o)x is equal to d1 .. dr, and 

r 

(Okk/fo)x f J( 7dj ) 
i=1 

(the set {1, . .& , c} and the matrix whose diagonal entries are the di 's with zeros 
elsewhere define a Smith normal form of the finite Abelian group (Ok/Jo) X, see [6]). 
Let G +- 0. 
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4. For all tuples (i1,. .. ,ir) such that 0 < il < di, ... IO < ir < dr, compute 
Z < al ... 47' and let G <- G + x(p3) e2i-7'T(I/A). 

5. Let W < (-i) X(4 4) gg,k . Output W and terminate the algorithm. 

Using these algorithms and Theorem 3.3, we are now able to compute approxi- 
mations of L'K/k(0, X) for all characters X. Using formula (*), we then deduce the 
values (K/k(O, C) for all a, and hence approximations of C(?) and of the conjugates 
of a over k (see Theorem 2.1). 

Algorithm 3.10. Let 1H be a congruence group of conductor f such that the cor- 
responding field K verifies the hypothesis of Section 2, and let X > 0 be a real 
number. This algorithm computes approximations of the conjugates of a over k 
with the precision x. 

1. Let Xi1, --, Xh be all the characters of Gal(K/k) such that Xj (T) =-1, where 
h is the class number of k and T is the non-trivial automorphism of Gal(K/Hk). 

Set C +- ir1v'dNk, N -clog<x 

2. For all j, compute the coefficients an(Xj) using Algorithm 3.4, and the values 
fi (C/n) and f2 (C/n) using Algorithms 3.5 and 3.7 with the precision X. 

3. Compute the Artin root number W(xj) using Algorithm 3.9, and then deduce 
the values of L'(O, Xj) by the formula of Theorem 3.3, thus of L'K/k(O, Xj) by Lemma 
3.2. 

4. Let o'l, ., oh be a system of representatives of the quotient Gal(K/k)/(T). 
Compute the values (K4/k(0? Ofj) using formula (*) for all j (note that (4/k(?, %T) = 

-(K/k(O ofj)), and let zj denote the approximations obtained. 
5. Set 4j <e2zi +e2z3 for all j, return the approximations &j of the conjugates 

of a over k, and terminate the algorithm. 

Once we know the approximations aj, we compute the polynomial 

h 

P(X) := (X - j) = Xh + h_hX +... + . 
j=1 

If the element a exists, then this polynomial is the approximation of its irreducible 
polynomial over k, and thus every coefficient f3j should be close to an algebraic 
integer /3j. Theorem 2.1 also provides a bound for the conjugate of 3j: 

-p < 2i (h) 1F3i _ 

We use the following algorithm to recover an integer of k given by an approximation 
and a bound for its conjugate (recall that Lxj, [x] and Lx] denote respectively the 
floor, the ceiling and the closest integer to x 1 R). 

Algorithm 3.11. Let /3 be a real number and let x > 0 and B > 0 be two positive 
real numbers. This algorithm finds, if it exists, a /3 E Ok such that 1/3 -/31 < x and 

131 < B. 
1. Assume without loss of generality that w > ai and set A +- w - CU. Set 

b L:(B+xJ and bmax< b+ 2[ B+j1. 

2. If b > bmax then output a message saying that such an integer /3 does not 

exist and terminate the algorithm. Otherwise, set a -bw 
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3. Set /3 -a + bw, if 1/3-/31 < x and L,31 < B then return the element /3 and 
terminate the algorithm, else set b <- b + 1 and go to step 2. 

The correctness of this algorithm follows immediately from the inequalities -x < 
3- a - bw < x and -B < a + bU2 < B, which imply the given inequalities on b 

and the value of a. Note that it is also possible to use the LLL algorithm for this 
computation. 

We are now able to give the complete algorithm. 

Algorithm 3.12. Let k be a quadratic real number field. Under the hypothesis 
of Theorem 2.1, this algorithm computes the irreducible polynomial over k of a 
generating element of Hk. 

1. Using Algorithm 3. 1, find a modulus f and a congruence group 1H of conductor 
f such that the corresponding field K verifies the hypothesis of Section 2. 

2. Set x +- 10-20 e-FVdkNfl. 

3. Using Algorithm 3. 10, compute approximations ai of the conjugates of a over 
k with precision x. Set 

h 

P(X) +-fl(X - a). 
j=1 

4. Write P(X) - Xh + /h_lXh 1 + .+ fo, where /3 are real numbers. For 
1 < j < h, using Algorithm 3.11 try to find an algebraic integer /3j such that 

1,33 -,33 1 < x and 3 J < 2i3(j). If it is possible then return the polynomial 

xh +h Xh-1 +... +3 

and terminate the algorithm. Otherwise, increase the precision by setting for ex- 
ample x - x 2, and go back to step 3. 

Remark. As we said above, heuristics show that the conjugates of ce are mostly of 
the size of exp (x/dV7kN); thus the initial precision is chosen so as to obtain twenty 
additional digits. However, if this is not enough, we double the precision and redo 
the computations. Note that this is not really an algorithm, since if the conjecture 
is false it just keeps doubling the precision without stopping. 

4. VERIFICATION OF THE RESULT 

Let P(X) denote the polynomial given by the above algorithm. Since this algo- 
rithm is based on a conjecture, we need to check if a root of this polynomial does 
generate the Hilbert class field of k. 

First, we verify that the polynomial (whose degree is equal to hk by construction) 
is irreducible over k. Then let H be the extension of k generated by any root of 
P(X). We verify that the extension H/k is unramified at both finite and infinite 
places, using the algorithms given in [5]. 

Once we have proved that the extension H/k is of degree hk and unramified, 
we still have to prove that it is an Abelian extension. In fact, if hk = 2 or 3, 
this follows from the fact that the extension is unramified. (This is obvious for 
hk = 2. For hk = 3, assume the extension is not cyclic; then its Galois group is S3 

and k has a quadratic extension which is a subfield of the Galois closure of H/k 
and thus unramified. But this is impossible since it implies that 2 divides hk.) In 
the general case, we factor the polynomial P(X) in the field H, and it must have 
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only linear factors if H/k is Galois. Since every such linear factor corresponds to 
a k-automorphism of H, we can check if the extension is Abelian by proving that 
they commute with each other. 

However, once we have proved that the extension H/k is a Galois extension, it 
is possible to be more efficient for small values of hk, since there are only a few 
possibilities for the Galois group Gal(H/k). Another possibility is to use a result 
of Bach and Sorenson [1] which gives under GRH an upper bound for the norm of 
the prime ideals generating the norm group of an Abelian extension. Indeed, this 
result enables one to write an algorithm which, under GRH, does prove that an 
extension is Abelian (without having to prove first that it is Galois) and computes 
at the same time its norm group (see [17] for details). 

We now give an algorithm using the first method described above, which does 
not use GRH. 

Algorithm 4.1. Let P(X) be a polynomial of degree hk and with coefficients in 
Ok. This algorithm proves (or disproves) that a root of P(X) generates the Hilbert 
class field of k. 

1. Check if P(X) is irreducible over k[X]. If this is not the case then output 
a message saying that P does not generate an extension of degree hk of k and 
terminate the algorithm. 

2. Let 0 be a root of P and let H denote the field k(0). Compute the minimal 
polynomial of 0 over Q and check if H is totally real using Sturm's algorithm (see 
[3], Algorithm 4.1.11). If this is not the case then return a message saying that 
H/k is ramified at the infinite places and terminate the algorithm. 

3. Compute the relative discriminant of H/k using the algorithm given in [5]. 
If it is different from 0k, then output a message saying that H/k is ramified at 
the finite places and terminate the algorithm. Otherwise, if hk = 2 or 3 return a 
message saying that H = Hk and terminate the algorithm. 

4. Compute the factorization of P(X) in H[X]. If P does not admit only 
linear factors then output a message saying that H/k is not a Galois extension and 
terminate the algorithm. Otherwise, if hk = 4 or hk is a prime number return a 
message saying that H = Hk and terminate the algorithm. 

5. Let X-Sj(Y)ek[X,Y] be such that 

P(X) = [I (X - Si(0)) 
1<j<hk 

is the factorization of P in H[X]. For all 1 < i < j < hk, check if Si(Sj(0)) = 

Sj(Si(0)). If this is not the case then return a message saying that H/k is not an 
Abelian extension and terminate the algorithm, otherwise return a message saying 
that H = Hk and terminate the algorithm. 

5. AN EXAMPLE 

The algorithm presented in this paper has been implemented as part of the new 
version of the PARI/GP [2] package. The quadhilbert function uses complex 
multiplication to compute the Hilbert class field of complex quadratic fields, and 
the present algorithm for real quadratic fields. The following example was treated 
using this implementation. 
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Let k be the real quadratic field generated by w := 438. We then have dk = 

1752, Ok = 2 + Zw, and the class group of k is cyclic of order 4. 
The field K can be taken to be the ray class field of k modulo pv, where p is one 

of the two prime ideals above 11. Note that the extension K/k is cyclic of order 8, 
so there is no quadratic extension k'/k such that K = Hkk'. 

If o, denotes a generator of G:= Gal(K/k), then T = *4. Let i) be the character 
of G such that VP(o) = 48, where 68 is a fixed primitive 8-th root of unity. The 
characters X such that X(T) = -1 are then 4', /A3, /i5 and /7 (note that 7 

= , 
/A3 = /i5). With the notations of Theorem 3.3, we compute 

S(4') 1.71552623535657 + 0.744643091777554i, 
T(4') 14.1665156497187 + 2.51918530947938i, 
S(+b3) 0.842811390359850 + 1.29326746361755i, 
TQi/A) 12.8015376467263 -8.44945647020462i, 

and S(4'7) = S(o), T(4'7) = T(0), S(4'5) = S(4'3), T(4'5) = T(-3) 
For the character 4', we find that W(0) = e2iz/8 and similarly W(?/3) =W(o), 

W(b5) = W( -3) =-W(4') and W(4'7) = W(4'). So we compute the corresponding 
L-functions, and obtain 

(K' k (o0) el_, 7.25654406363900, (K/k(0I k ( ) = Klk(0' 0)' 

-KkO _0.944193530444349, (K/k(0,J) = 

(IKI k (oO l_, 2.94813989197904, (K/k(0,J) = -(Klk( l 

(IKI k (o O' 1) 1.92921444495667, (K/k(O, 1) = (K/k(O 1 

We then compute the values of the conjugates of a over k, and we form its irreducible 
polynomial 

- 2009298.2915480506125X3 + 839444123.58478759370X2 

- 40221955871.313705629X + 234161017552.69584759 

which, using Algorithm 3.11, is seen to be very close to the polynomial 

x4 + (-48004V438 - 1004649)X3 + (20055096V438 + 419722059)X2 

+ (-960939696V438 - 20110977936)X + (5594323104V438 + 117080508780). 

A relative reduction process gives the following simpler polynomial defining the 
same field extension: 

X4+ 2X3 + ( 438- 25)X2 + (--38 + 22)X + (-3438 + 63). 

We now have to check the result: we prove that this polynomial is irreducible over 
k and that the extension H that it defines is unramified at both finite and infinite 
places. Moreover, this polynomial factors completely over H; hence the relative 
extension H/k is Galois. Since its degree is equal to 4, this implies that it is 
Abelian, and since it is unramified this implies that H is actually the Hilbert class 
field of k. 
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Finally, since k/Q is a cyclic extension, it is possible to find a field L of degree 4 
such that k n L = Q and kL = Hk (see [7]). In fact, any subfield L of Hk of degree 
hk over Q and disjoint from k will work. In order to find such a field, one can use 
the algorithm for subfield computation given in [12], or use the method explained 
in [4], which gives only some subfields. In our example, we find that such a field is 
generated by a root of 

X4 - 2X3 - 5X2 + 6X + 3. 

APPENDIX. TABLES OF HILBERT CLASS FIELDS 

For each of the 607 real quadratic field k of discriminant less than 2 000, we give 
a polynomial defining a field Lk over Q such that the Hilbert class field of k is the 
compositum of k and Lk. For the sake of completeness, we recall the list of the 319 
fields k with class number equal to 1, for which trivially Lk = Q. 

Discriminant of the fields with hk = 1 

5 8 12 13 17 21 24 28 29 33 37 
41 44 53 56 57 61 69 73 76 77 88 
89 92 93 97 101 109 113 124 129 133 137 
141 149 152 157 161 172 173 177 181 184 188 
193 197 201 209 213 217 233 236 237 241 248 
249 253 268 269 277 281 284 293 301 309 313 
317 329 332 337 341 344 349 353 373 376 381 
389 393 397 409 412 413 417 421 428 433 437 
449 453 457 461 472 489 49T 501 508 509 517 
521 524 536 537 541 553 556 557 569 573 581 
589 593 597 601 604 613 617 632 633 641 649 
652 653 661 664 668 669 673 677 681 701 709 
713 716 717 721 737 749 753 757 764 769 773 
781 789 796 797 809 813 821 824 829 844 849 
853 856 857 869 877 881 889 893 908 913 917 
921 929 933 937 941 953 956 973 977 989 997 
1004 1013 1021 1033 1041 1048 1049 1052 1057 1061 1069 
1077 1081 1084 1097 1109 1112 1117 1121 1132 1133 1137 
1141- 1149 1153 1169 1177 1181 1193 1201 1208 1213 1217 
1228 1237 1244 1249 1253 1273 1277 1289 1293 1301 1317 
1321 1324 1329 1333 1336 1337 1349 1357 1361 1381 1388 
1389 1397 1401 1409 1432 1433 1437 1441 1453 1457 1461 
1468 1473 1477 1481 1493 1497 1501 1516 1528 1529 1532 
1541 1549 1553 1561 1569 1577 1589 1592 1597 1609 1613 
1621 1633 1637 1657 1661 1669 1673 1676 1688 1689 1693 
1697 1709 1713 1721 1724 1733 1741 1753 1757 1777 1784 
1789 1793 1797 1801 1816 1817 1821 1829 1837 1841 1852 
1857 1861 1868 1873 1877 1889 1893 1909 1912 1913 1916 
1933 1941 1948 1949 1964 1969 1973 1977 1981 1993 1997 

There are 194 fields with class number 2. We give a table for each possible value 
of the discriminant dLk of Lk- 
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First, there are 70 real quadratic fields k of discriminant less than 2000 with 
class number 2 and such that Lk = Q(V). 

Discriminant of the fields k such that hk 2 and dLk = 5 
40 60 65 85 105 120 140 165 185 205 
220 265 280 285 305 345 365 380 385 440 
460 465 485 545 565 620 645 665 685 705 
745 760 805 860 865 885 920 965 1005 1065 
1085 1165 1180 1185 1205 1240 1245 1265 1285 1340 
1385 1405 1420 1465 1505 1545 1565 1580 1585 1605 
1645 1660 1685 1720 1865 1880 1905 1945 1965 1985 

There are 34 real quadratic fields k of discriminant less than 2000 with class 
number 2 and such that Lk = Q(2)- 

Discriminant of the fields k such that hk = 2 and dLk = 8 
104 136 168 232 264 296 424 456 488 552 584 616 
712 744 776 808 872 1032 1064 1128 1192 1256 1416 1448 
1544 1576 1608 1672 1704 1832 1864 1896 1928 1992 

There are 14 real quadratic fields k of discriminant less than 2000 with class 
number 2 and such that Lk = Q(V)- 

Discriminant of the fields k such that hk = 2 and dLk = 12 
156 204 348 444 492 636 732 
1068 1212 1308 1356 1644 1788 1884 

There are 26 real quadratic fields k of discrimirlant less than 2000 with class 
number 2 and such that Lk = ( 3)- 

Discriminant of the fields k such that hk = 2 and dLk = 13 
221 273 312 364 377 429 481 533 572 
728 741 949 988 1001 1144 1157 1196 1209 
1261 1417 1469 1612 1729 1781 1833 1976 

There are 21 real quadratic fields k of discriminant less than 2000 with class 
number 2 and such that Lk= Q(17)- 

Discriminant of the fields k such that hk = 2 and dLk = 17 
357 408 476 493 561 629 748 [ 952 969 1037 1173 
1241 1309 1496 1513 1564 1581 1649 1717 1853 1921 

There remains 29 fields k with class number 2 and such that the discriminant dLk 

is larger than 17. We give them in a single table containing first the discriminant 
of k, and then the discriminant of dLkk, ordered by increasing value of dLkk. 

Discriminant and dLk for the fields k such that hk = 2 and dLk > 17 
609 21 861 21 JJ 1113 21 fi 1281 21 1533 121 If 1869 T21 
696 24 888 24 984 24 1272 24 1464 24 1 812 28 
1036 28 1148 28 1484 28 957 29 1073 29 1 1189 29 
1276 29 1537 29 1624 29 1653 29 1769 29 1353 33 
1749 33 1517 37 1628 37 1961 37 1804 141 II _ I 

There are 24 real quadratic fields with class number equal to 3 and discriminant 
less than 2 000. In the following table, we give their discriminants together with a 
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polynomial defining the field Lk- 

Discriminants of the fields K such that hK = 3 and polynomials for LK 
229 X3 - 4X - 1 257 X3 - X2 - 4X + 3 
316 X3-X2-4X+2 321 X3-X2-4X+1 
469 X3 - X2 - 5X + 4 473 X3 - 5X - 1 
568 X3 - X2 - 6X - 2 733 X3 - X2 - 7X + 8 
761 X3 - X2 - 6X - 1 892 X3 - X2 - 8X + 10 
993 X3 - X2 - 6X + 3 1016 X3 - X2 - 6X + 2 
1101 X3 - X2 - 9X + 12 1229 X3 - X2 - 7X + 6 
1257 X3 - X2 - 8X + 9 1304 X3 - 11X - 2 
1373 X3 - 8X - 5 1436 X3 - IIX - 12 
1489 X3-X2-1OX - 7 1509 X3-X2-7X + 4 
1772 X3 - X2 - 12X + 8 1901 X3 - X2 - 9X - 4 
1929 X3 - X2 - 1OX + 13 1957 X3 - X2 - 9X + 10 

There are 41 real quadratic fields with class number equal to 4 and discriminant 
less than 2 000. In the following table, we give their discriminants together with a 
polynomial defining the field Lk- 

Discriminants of the fields K such that hK = 4 and polynomials for LK 
145 X4 _ X3 - 3X2+ X +1 328 'T4- 2X3-3X2+2X +1 
445 X4 - X3-5X2+2X +4 505 X4 - 2X3-4X2+ 5X +5 
520 X4 -6X2 +4 680 X4 -6X2+4 
689 X4 - X3-5X2+X +1 777 X4 - 2X3-4X2+5X +1 
780 X4 - 2X3-7X2+8X +1 793 X4 - X3-6X2+8X -1 
840 X4 -6X2-+ 4 876 X4 -7X2-6X +i1 
897 X4 - 2X3-4X2+5X +3 901 X4 - 2X3-4X2+ 5X +2 
905 X4 - X3-7X2+3X +9 924 X4-5X2+1 
1020 X4-2X3-7X2+8X + 1 1045 X4- X3- 8X2+ X +11 
1096 X4 - 2X3-5X2+6X + 7 1105 X4 - 9X2 + 4 
1145 X4 - X3-8X2+6X +11 1160 X4 - 6X2 + 4 
1164 X4-2X3-7X2+8X +4 1221 X4- X3 - 10X2 + X + 1 
1288 X4-2X3-7X2+8X +- 8 1292 X4 - X3- 11X2 + 12X +8 
1313 X4 - X3-8X2-4X + 3 1320 X4 -6X2+4 
1365 X4 - 9X2 + 4 1480 X4 -6X2+4 
1560 X4 - 9X2 + 4 1640 X4 - 6X2 + 4 
1677 X4 - X3-7X2 + 2X +- 4 1736 X4 - 2X3-7X2+6X + 9 
1740 X4 - 2X3-7X2 +8X +1 1745 X4 -X3-0OX2+2X +19 
1752 X4-2X3-5X2+ 6X +3 1820 X4-9X2+4 
1848 X4 - 10X2 + 4 1885 X4 -9X2 + 4 
1932 X4 -5X2+1 .__ 

Finally, there are 29 real quadratic fields with class number ranging from 5 to 11 
and discriminant less than 2000. In the following table, we give their discriminants 
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together with a polynomial defining the field Lk. 

Discriminants of the fields K such that hK > 5 and polynomials for LK 
401 X5 _ X - 5X3 +4X2 +3X - 1 
577 X7-2X6-7X5+10X4+X13X-4X3-152 X X + X1 
697 X6 - 3X5 - 3X4 + 14X3- 9X2 - 5X +1 
785 X6_- X5 -8X4 +6X3+ 16X2- IOX - 5 
817 X5-_ X4 -6X3 +5X2 +3X - 1 
904 X8 -2X7 -9X6 + 1X5 +22X4 _14X3 -15X2 +2X + 1 
940 X6- 3x5- 5x4 +14x3.+9X2-_ 15X - 5 
985 X6-3X5 -4X4+13X3+3X2- 1OX +1 
1009 X7- X6-9X5+2X4+21X3+ X2-13X -1 
1093 X5 -8X3 -3X2+1OX + 4 
1129 X9 - 3X8 - lOX7 + 38X6 + 5X5 - 107X4 + 58X3 + 78X2 

-60X - 1 
1297 X1 - 5Xlo - 4X9 + 54X8 - 53X7 - 127X6 + 208X5 + 69X4 

-222X3 + 29X2 + 56X - 5 
1345 X6-3X5 -8X4+16X3+24X2 -5 
1384 X6 -2X5 -7X4+14X3+3X2 - 12X +4 
1393 X5- X4-7X3+6X2+3X -1 
1429 X5- X4_13X3 + 23X2+ 9X -23 
1596 X8-2X7- 13X6+16X5+43X4-1 OX3-34X2-4X + 4 
1601 X7-2X6- 14X5+34X4 +-4X3 -38X2 +-7X +-1 
1641 X5- X4-10X3+ X2+21X +9 
1705 X8- X7-14X6+9X5+62X4-23X3-84X2+20X -1 
1708 X6-3X5 -8X4 +-21X3 -6X2 -5X +?1 
1756 X5 - 2X4 - lOX3 + 14X2 + 21X - 16 
1761 X7-2X6-14X5+14X4+50X3-22X2-51X -3 
1765 X6-3X5 -6X4 + 17X3 + 5X2 - 14X +4 
1768 X8-4X7-6X6+32X5 -5X4-48X3+14X2+ 16X -4 
1785 X8 -2X7- 13X6-+ 17X5+48X4-23X3-33X2+3X +-1 
1897 X5- X4_13X3+8X2+27X +1 
1937 X6 - lOX4 + 25X2 - 13 
1996 X5-9X3-4X2+1OX +4 

These computations were done on a Pentium Pro 200 with 256 Mb of RAM. The 
total computation time (including class group computations, computations of the 
generating element, reduction of the result and computation of the field Lk) took 
about 21 minutes. Note that actually the last two steps (reduction and computation 
of the field Lk) represented more than 70% of the whole computation time. 

All these fields have of course been verified using Algorithm 4.1. 
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