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THREE NEW FACTORS OF FERMAT NUMBERS 

R. P. BRENT, R. E. CRANDALL, K. DILCHER, AND C. VAN HALEWYN 

ABSTRACT. We report the discovery of a new factor for each of the Fermat 
numbers F13, F15, F16. These new factors have 27, 33 and 27 decimal digits 
respectively. Each factor was found by the elliptic curve method. After divi- 
sion by the new factors and previously known factors, the remaining cofactors 
are seen to be composite numbers with 2391, 9808 and 19694 decimal digits 
respectively. 

1. INTRODUCTION 

For a nonnegative integer n, the n-th Fermat number is F, = 22' + 1. It is 
known [12] that Fn is prime for 0 < n < 4, and composite for 5 < n < 23. For a 
brief history of attempts to factor Fermat numbers, we refer to [3, ?1] and [5]. 

In recent years several factors of Fermat numbers have been found by the elliptic 
curve method (ECM). Brent [2, 3, 4] completed the factorization of Flo (by finding 
a 40-digit factor) and Fll. He also "rediscovered" the 49-digit factor of Fg and the 
five known prime factors of F12. Crandall [10] discovered two 19-digit factors of 
F13. 

This paper reports the discovery of 27-digit factors of F13 and F16 (the factor of 
F13 was announced in [3, ?8]) and of a 33-digit factor of F15. All three factors were 
found by ECM, although the implementations and hardware differed between F13 
and F15, F16. In fact, we used Dubner Crunchers (see ?3) on Fn for 12 < n < 14, 
and Sun workstations with DWT multiplication (see ?4.2) for 16 < n < 21, as 
well as a Pentium Pro for n = 15, again with DWT multiplication. Details of the 
computations on F13, F16 and F15 are given in ?5, ?6 and ?7 respectively. 

F16 is probably the largest number for which a nontrivial factor has been found 
by ECM. Factors of larger numbers are customarily found by trial division [16, 18]. 

2. THE ELLIPTIC CURVE METHOD 

ECM was invented by H. W. Lenstra, Jr. [23]. Various practical refinements 
were suggested by Brent [1], Montgomery [24, 25], and Suyama [32]. We refer 
to [3, 14, 22, 26, 31] for a description of ECM and some of its implementations. 

In the following, we assume that ECM is used to find a prime factor p > 3 of a 
composite number N, not a prime power [21, ?2.5]. The first-phase limit for ECM 
is denoted by B1. 
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Although p is unknown, it is convenient to describe ECM in terms of operations in 
the finite field K = GF(p) = Z/pZ. In practice we work modulo N (or sometimes 
modulo a multiple of N, if the multiple has a convenient binary representation), 
and occasionally perform GCD computations which will detect a nontrivial factor 
of N. 

The computations reported here used two parameterizations of elliptic curves. 
These are the symmetrical Cauchy form [9, ?4.2]: 

(1) x3 + y3 + z3 = Kxyz, 

and the homogeneous form recommended by Montgomery [24]: 

(2) by2 Z=X3 +ax2Z+xZ2 

Here ic, a and b are constants satisfying certain technical conditions. For details we 
refer to [3, ?2.1]. 

The points (x, y, z) satisfying (1) or (2) are thought of as representatives of ele- 
ments of P2(K), the projective plane over K, i.e. the points (x, y, z) and (cx, cy, cz) 
are regarded as equivalent if c # 0 mod p. We write (x: y : z) for the equivalence 
class containing (x, y, z). When using (2) it turns out that the y-coordinate is not 
required, and we can save work by not computing it. In this case we write (x: : z). 

2.1. The starting point. An advantage of using (2) over (1) is that the group 
order is always a multiple of four (Suyama [32]; see [24, p. 262]). It is possible to 
ensure that the group order is divisible by 8, 12 or 16. For example, if f ? {0, 1, 5}, 

u = f 2-5, v = 4o, 

(3) xI = U3, Zj = V3, 

a = (v-u)3 (3u + v) -2, 
4u3v 

then the curve (2) has group order divisible by 12. As starting point we can take 
(xi : : z1). It is not necessary to specify b or Yi. When using (2) we assume that 
the starting point is chosen as in (3), with a a pseudo-random integer. 

3. THE DUBNER CRUNCHER 

The Dubner Cruncher [8, 15] is a board which plugs into an IBM-compatible PC. 
The board has a digital signal processing chip (LSI Logic L64240 MFIR) which, 
when used-for multiple-precision integer arithmetic, can multiply two 512-bit num- 
bers in 3.2 psec. A software library has been written by Harvey and Robert Dub- 
ner [15]. This library allows a C programmer to use the Cruncher for multiple- 
precision integer arithmetic. Some limitations are: 

1. Communication between the Cruncher and the PC (via the PC's ISA bus) 
is relatively slow, so performance is much less than the theoretical peak for 
numbers of less than say 1000 bits. 

2. Because of the slow communication it is desirable to keep operands in the on- 
board memory, of which only 256 KByte is.accessible to the C programmer. 

The combination of a cheap PC and a Cruncher board ($US2,500) is currently 
very cost-effective for factoring large integers by ECM. The effectiveness of the 
Cruncher increases as the integers to be factored increase in size. However, due to 
memory limitations, we have not attempted to factor Fermat numbers larger than 
F15 on a Cruncher. A number the size of F15 requires 4 KByte of storage. 
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4. ARIT'HMET'IC 

4.1. Multiplication and division. Most of the cost of ECM is in performing 
multiplications mod N. Our Cruncher programs all use the classical O(w2) algo- 
rithm to multiply w-bit numbers. Karatsuba's algorithm [19, ?4.3.3] or other "fast" 
algorithms [11, 13] are preferable for large w on a workstation. The crossover point 
depends on details of the implementation. Morain [27, Ch. 5] states that Kara- 
tsuba's method is worthwhile for w > 800 on a 32-bit workstation. On a Cruncher 
the crossover is much larger because the multiplication time is essentially linear 
in w for w < 10000 (see [3, Table 4]). 

Our programs avoid division where possible. If the number N to be factored is 
a composite divisor of Fn, then the elliptic curve operations are performed mod Fn 
rather than mod N. At the end of each phase we compute a GCD with N. The 
advantage of this approach is that we can perform the reductions mod Fn using 
binary shift and add/subtract operations, which are much faster than multiply or 
divide operations. Thus, our Cruncher programs run about twice as fast on Fermat 
(or Mersenne) numbers as on "general" numbers. 

4.2. Use of the discrete weighted transform. For Fn with n > 14 we found 
it more efficient overall to employ standard workstations with an asymptotically 
fast multiplication algorithm rather than special hardware. For these larger Fn we 
employed the "discrete weighted transform" (DWT) of Crandall and Fagin [10, 13]. 
In this scheme, one exploits the fact that multiplication modulo Fn is essentially a 
negacyclic convolution [11] which can be effected via three DWTs. For two integers 
x, y to be multiplied modulo Fn, one splits each of x, y into D digits in some base W, 
with D log2 W= 2'. We actually used W = 216, and employed the "balanced digit" 
scheme which is known to reduce floating-point convolution errors [10]. The three 
length-D/2 DWTs were then performed using a split-radix complex-FFT algorithm. 
The operation complexity is O(D log D), and 64-bit IEEE floating point arithmetic 
is sufficiently precise to attack Fermat numbers at least as large as F21 in this 
way. Our DWT approach becomes more efficient than "grammar-school" O(D2) 
methods in the region n - 12. However, the Cruncher hardware is so fast that a 
Cruncher performs faster than a 200 Mhz Pentium Pro workstation for n < 14. 

The advantage of DWT methods is not restricted to multiplication. The elliptic 
curve algebra using the Montgomery parameterization (2) can be sped up in a 
fundamental way via transforms. The details are given in [10]; for present purposes 
we give one example of this speedup. For the point-adding operation 

Xrn+n _Zl -nl(xntxn -Z Zntz) 2 

Zrn+n X ln_nl(xntzn -Xnznt )2 

it is evident that one can compute the transforms of xnt, xn, Zrn, zn, then compute 
the relevant cross-products in spectral space, then use the (stored) transforms of 
Xlntnl, zl1-nl to obtain Xnt+n, Zr+n in a total of 14 DWTs, which is equivalent to 
14/3 4.67 multiplies. Similar enhancements are possible for point-doubling. 

Memory capacity is a pressing concern for the largest Fermat numbers under 
consideration (F16 through F21). Another enhancement for the ECM/DWT imple- 
mentation is to perform the second stage of ECM in an efficient manner. We note 
that a difference of x-coordinates can be calculated from 

Xt Zn - XnZt = (Xnt -Xn)(Zrt + Zn) - XrnZrn + XnZn, 
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and a small table of xrZrnz can be stored. Thus the coordinate difference requires 
only one multiply, plus one multiply for accumulation of all such differences. Again, 
if DWTs are used, one stores the transforms of x., zrn, xrZrnz, whence the difference 
calculation comes down to 2/3 of a multiply, plus the accumulation multiply. The 
accumulation of differences can likewise be given a transform enhancement, with the 
result that each coordinate difference in stage two consumes only 4/3 of a multiply. 
In practice, this second stage efficiency allows the choices of stage two limit B2 at 
least as large as 5OB1. 

4.3. GCD computation. It is nontrivial to compute GCDs for numbers in the 
F21 region. We used a recursive GCD implementation by J. P. Buhler [6], based on 
the Sch6nhage algorithm [7, 28]. The basic idea is to recursively compute a 2 x 2 
matrix M such that if v = (a, b)7 is the column vector containing the two numbers 
whose GCD we desire, then Mv = (0, gcd(a, b))7'. The matrix M is a product of 
2 x 2 matrices and is computed by finding the "first half" of the product recursively. 
The first-half function calls itself twice recursively (for details see [7]). In practice 
it is important to revert to a classical algorithm (such as Euclid's) for small enough 
integers. We found that GCDs taken during factorization attempts on numbers as 
small as F13 could be speeded up by using the recursive algorithm. In the region of 
F21 the recursive approach gives a speedup by a factor of more than 100 over the 
classical GCD. 

The Cruncher programs use the classical (non-recursive) GCD but only perform 
two GCDs per curve (one at the end of each phase). This is possible, at a small cost 
in additional multiplications, because the programs use the homogeneous forms (1) 
and (2) and never divide by the z-coordinate. 

5. A NEW FACTOR OF F13 

Our first Cruncher ECM program [3, Program F] was implemented and debugged 
early in December 1994. It used the Cauchy form (1) with a "birthday paradox" 
second phase. In the period January - June 1995 we used a Cruncher in an 80386/40 
PC to attempt to factor F13 (and some other numbers). We mainly used phase 1 
limit B1 = 100000. On F13 each curve took 137 minutes (91 minutes for phase 1 
and 46 minutes for phase 2). At the time three prime factors of F13 were known: 

F13 = 2710954639361 * 2663848877152141313 * 3603109844542291969 C2417. 

The first factor was found by Hallyburton and Brillhart [17]. The second and 
third factors were found by Crandall [10] on Zilla net (a network of about 100 
workstations) in January and May 1991, using ECM. 

On June 16, 1995 our Cruncher program found a fourth factor 

P27 = 319546020820551643220672513 = 219 * 51309697. 11878566851267 + 1 

after a total of 493 curves with B1 = 100000. The overall machine time was about 
47 days. We note that P27 + 1 = 2 . 3 - 73 - 59 - P22. The factorizations of P27 ? 1 
explain why Pollard's p ? 1 methods could not find the factor P27 in a reasonable 
time. 

The successful curve was of the form (1), with initial point (x1: Yi: Z1) 
(150400588188733400929847531 : 277194908510676462587880207: 1) mod p27 and 
group order 

g = 32 72 . 13 31 *3803*6037 9887-28859 274471. 
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TABLE 1. Some curves finding the P27 factor of F13 

1915429 2 4-3 29 857- 12841 42451 48299* 10173923 
2051632 23 * 3 17 * 19 * 1031 23819 * 65449 86857* 295277 
2801740 22 . 3. 7. 79- 157. 19813 . 89237- 122819* 1412429 
4444239 22 *3 23 * 173 191 * 907 1493 * 3613 4013 * 1784599 
6502519 22 . 3 . 23 131 - 14011 * 305873 . 433271 . 4759739 
8020345 23 3 17* 23 41 113 271 3037* 10687 12251 68209 
8188713 22 .32 17 41 47. 139 181 - 34213 - 265757- 1184489 

Using Fermat's little theorem [5, p. lviii], we found the 2391-digit quotient 
C2417/P27 to be composite. Thus, we now know that 

F13 = 2710954639361 - 2663848877152141313 

* 3603109844542291969 * 319546020820551643220672513 * C2391 

At about the time that the P27 factor of F13 was found, our Cruncher ECM 
program was modified to use the Montgomery form (2) with the "improved standard 
continuation" second phase [3, ?3.2]. Testing the new program with B1 = 500000 
and second-phase limit B2 = 35B1, we found P27 seven times, with a total of 579 
curves. The expected number of curves, predicted as in [3, ? 4.4], is 7 x 137 - 959. 
The successful curves are defined by (3), with ox and the group order g given in 
Table 1. 

The fact that our programs found the same 27-digit factor many times suggests 
(but does not prove) that the unknown factors of F13 are larger than P27. 

When testing our program with B1 = 500000, we also "rediscovered" both 
of Crandall's 19-digit factors using the same elliptic curve (mod F13). In fact, 
our prograrrm returned the 39-digit product of Crandall's factors. Taking uf = 
6505208 in (3), the group corresponding to the factor 2663848877152141313 has 
order 22 2 32 . 1879. 2179 . 3677. 4915067, and the group corresponding to the factor 
3603109844542291969 has order 24 - 3 - 72- 22003 . 79601 - 874661, so both factors 
will be found if B1 > 79601 and B2 > 4915067. 

6. A NEW FACTOR OF F16 

The DWT/ECM program was run on a small network of SPARCstations at 
Dalhousie University from June 1996, in an attempt to find factors of F16,... ,F20. 
It was known that 

F16 = 825753601 C19720 

where the 9-digit factor was found by Selfridge [29]. 
Over the period September to December1996 an average of 6 SPARCstations ran 

the DWT/ECM program exclusively on F16 and in December found a new factor 

P27 = 188981757975021318420037633 

of F16. Since 

P27 - 1 = 220 . 32 . 31 * 37. 13669 * 1277254085461 
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and 

P27 + 1= 2 240517- 1389171559 * 282805744939, 

it would have been very difficult to find P27 by Pollard's p ? 1 methods. 
We remark that P27 was found twice - the first time with B1 = 400000, B2 = 

5OB1, of = 1944934539, and group order 

g = 22.3 .53 7 13* 19 83 113 2027 386677 9912313, 

and the second time with B1 = 200000, B2 = 5OB1, of = 125546653, and group 
order 

9 = 22 32 72 .109 761 2053 20297- 101483 305419. 

The ECM limits were set so that each curve required roughly four days of CPU. 
Altogether, we ran 130 curves with various B1 e [50000,400000]. 

The quotient q = C19720/P27 was a 19694-digit number. We computed x = 

3q mod q and found x 7 3. Thus, q is composite, and we now know that 

F16= 825753601 188981757975021318420037633 C19694. 

As a check, the computation of q and x was performed independently by Brent and 
Crandall (using different programs on different machines in different continents). 
In both cases the computations found x mod 216 = 12756. 

7. A NEW FACTOR OF F15 

Using the same DWT/ECM program, run on a 200 MHz Pentium Pro, a search 
for a new factor of F15 was attempted during the Spring and early Summer of 1997. 
It was known that 

F15 = 1214251009 2327042503868417 C9840, 

where the 13- and 16-digit prime factors were found by Kraitchik (1925; see [20]) 
and Gostin (1987; see [16]) respectively. 

On July 3, 1997 we found the new factor 

p33 = 168768817029516972383024127016961 

after running only three curves with B1 = 107 and B2 = 50B1. Each curve took 
approximately 920 hours of CPU time (a Cruncher would have taken about 1250 
hours per curve). The successful curve had uf = 253301772 and group order 

g = 25 3 - 4889 5701 . 9883 11777- 5909317* 91704181. 

As before, we remark that 

p33 - 1= 217 5 -7 53 97 181 199* 1331471 149211834097 

and 

p33 + 1= 2 3 - 61 . 5147- 9835373 . 9108903846900395897. 

To determine whether the 9808-digit cofactor q' = C9840/p33 is composite, we 
computed x' = 3q mod q' and found x' 7 3; in fact, the least positive residue 
x' mod 216 is 557. As before, q' and x' were computed independently by Brent and 
Crandall. 
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Note added in proof. On April 16, 1999, Richard McIntosh and Claude Tardif of 
the University of Regina found the new 23-digit factor 

81274690703860512587777 = 223 29 293 * 1259 . 905678539 + 1 

of F18, using the same method and software as described in Section 4. McIntosh and 
Tardif report that they were successful after having run about a dozen curves with 
B1 = 100000, B2= 40B1 on a Sparc Ultra 1; the successful uf was uf = 731185968. 
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