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(block) methods for linear systems with multiple right-hand sides, since they are 
useful in many applications and also make natural use of BLAS2 and BLAS3 com- 
putations. The chapter terminates with a discussion on testing iterative methods. 

Preconditioning is an important step in iterative approaches; this and paral- 
lel implementations are thoroughly presented in Chapter 9. Besides the classical 
incomplete schemes, a few pages are devoted to the presentation of recent ap- 
proaches, such as Sparse Approximate Inverse, and Element-by-Element precon- 
ditioning, which typically exhibit their best performance in a parallel context. It 
would have been nice if the authors had opted for a more detailed presentation of 
domain decomposition methods. 

Chapters 10 and 11 describe methods for the standard and generalized eigen- 
value problems. After a survey of the most widely used approaches, the very suc- 
cessful package ARPACK is described together with its parallel implementation 
P_ ARPACK (written using MPI). Several important issues are discussed at length, 
providing the reader with some implementation hints and with a good feeling of 
the expected performance. Finally, the Appendices gives the necessary information 
to practically deal with some of the described codes. 

In conclusion, in spite of what the authors say in the Preface (" ... Any book 
that attempts to cover these topics must necessarily be somewhat out of date before 
it appears"), the book contains a lot of up-to-date material, and I recommend it to 
computational scientists who deal with linear algebra methods on any of parallel, 
vector and sequential (!) computer environments. Readers who already own the 
previous edition will find that this book has been significantly expanded to include 
recent important advances in numerical linear algebra tools and HPC environments 
that will make their "HP computational life" much easier. 
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5[65F15, 65F10] ARPACK Users' Guide, Solution of Large-Scale Eigenvalue 
Problems with Implicitly Restarted Arnoldi Methods, by R. B. Lehoucq, D. C. 
Sorensen, and C. Yang, SIAM, Philadelphia, PA, 1998, xv+142 pp., 251 cm, 
softcover, $39.00 

The chief impediment to solving large eigenvalue problems is lack of sufficient 
memory a difficulty that has two aspects. In the first place, if the order of the 
matrix in question is large, the matrix must be represented in some compact form. 
This limits what we can do with the matrix to simple operations like multiplying 
it by a vector or, if we are lucky, factoring it so that we have a representation of 
its inverse. The second aspect is that we cannot hope to store the entire matrix of 
eigenvectors and must content ourselves with computing a few selected eigenpairs. 
We are also limited in the number of extra working vectors that we can use to 
compute these eigenpairs. 

Krylov sequence methods are popular in part because they can be made to 
respect these limitations. The methods proceed by orthogonalizing a Krylov 
sequence u, Au, A2u .... When the resulting vectors are arranged in a matrix 
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Uk = (ul ... Uk), they satisfy the relation 

(1) AUk = UkHk + Fk, 

where Hk is Hessenberg and Fk is nonzero in only its last column, which is orthogo- 
nal to the columns of Uk. Theory (and practice) show that as k increases, the spaces 
spanned by the Uk contain increasingly good approximations to eigenvectors whose 
eigenvalues lie on the periphery of the spectrum of A. However, Krylov sequence 
methods are not necessarily confined to finding such eigenpairs. If we can factor 
the matrix, we have the option of working with (A - oI)-1, which moves the part 
of the spectrum of A near a to the periphery a process known as shift-and-invert 
enhancement. 

When A is Hermitian, the method is known as the Lanczos method. In this case 
the matrix Hk is tridiagonal, and the vectors Uk satisfy a three-term recurrence. 
Thus, in principle, it is not necessary to save all the ui to expand the sequence. In 
practice, however, the ui can loose orthogonality, and it is necessary to reorthogo- 
nalize them, a costly procedure. It was eventually realized that it is not necessary to 
reorthogonalize against all preceding vectors, and the algorithm became the method 
of choice for large Hermitian eigenvalue problems [2, Ch. 13]. 

When A is non-Hermitian, the method is called the Arnoldi method. Here there 
is no three-term recurrence, and each new vector must be orthognozied against all 
the previous vectors. This not only increases the computational work, but raises the 
possibility that the method will consume the available storage before the required 
eigenpairs have converged. A cure is to restart the Krylov sequence with a vector 
containing information on the required eigenvectors. Unfortuantely, good starting 
vectors are hard to find [1]. 

Sorensen's implicitly restarted Arnoldi [3] is based on the observation that the 
matrix Hk contains approximations, called Ritz values, to the eigenvalues of A. If 
the QR algorithm is used to triangularize Hk in such a way that the eigenvalues 
that are desired are at the top and the transformations are accumulated in the 
Arnoldi factorization (1), the factorization can then be truncated to one containing 
only approximations to the desired eigenpairs. Thus the implicitly restarted Arnoldi 
algorithm breathes in and out, first expanding the Arnoldi factorization to get better 
approximations to the desired eigenpairs and then contracting it to get rid of the 
undesired eigenpairs. Of course there is nothing to keep A from being Hermitian, 
in which case the algorithm becomes implicitly restarted Lanczos. 

The book under review documents the software that Sorensen and his colleagues 
have built around the idea of implicit restarting. In judging a software package 
there are three things to take into account: the organization of the software, the 
accessibility of the user documentation, and the quality of the technical documen- 
tation. 

ARPACK is soundly designed. An important problem in a package like this is 
how to get the user to perform the matrix-vector multiplications needed to generate 
the Arnoldi sequence. The authors have wisely chosen to use reverse communica- 
tion, a contrived but effective device in which a called routine returns to the calling 
routine and asks it for further input. The package handles single and double pre- 
cision, real and complex, and Hermitian and non-Hermitian matrices. It will solve 
both ordinary and generalized eigenvalue problems with or without shift-and-invert 
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enhancement. The package provides options for tracing and check-pointing the cal- 
culations. Calling sequences are necessarily complicated, but there are drivers which 
cover the majority of cases occuring in practice. 

The user documentation is excellent. After leading the reader through a simple 
example, the authors give a general overview of the capabilities of the package. An 
appendix contains detailed descriptions of the various drivers. Nothing can make 
learning to use a package of this magnitude actually easy, but the authors have 
taken care to see that it is not unnecessarily difficult. I asked students in a class of 
mine to get ARPACK up and running on problems of their choice. They had little 
trouble with the project. 

Technical documentation can be divided into program details and mathematical 
underpinnings. Of the former there is none, and the reader must go to the programs 
to find out what is going on. Fortunately, they are well formatted and commented. 
I was disappointed in the mathematical description of the algorithm in Chapter 4. 
There is a lot of information there, but it is not very well organized, and I found 
parts very tough reading. Important topics (e.g., locking in eigenpairs after they 
have converged) are slighted while peripheral topics (e.g., block methods) are given 
undue attention. Since the guide itself is not long, the authors could have easily 
found extra space for a more leisurely, didactic treatment a treatment not to be 
found in the literature. 

But this lost opportunity will not be missed by most of the users of ARPACK. The 
authors, starting from an elegant idea, have produced a sound, well-documented 
package, which has deservedly become widely popular. We may hope that others 
with new ideas for solving large eigenvalue problems will hew to the authors' high 
standards. 
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6[65-02, 65D32, 65Y05, 65Y10, 65Y15, 65Y20] Computational Integration, 
by Arnold R. Krommer and Christoph W. Ueberhuber, SIAM, Philadelphia, PA, 
1998, xx + 445 pp., 251 cm, softcover, $64.00 

The book under review has three major parts entitled, respectively, Introduction 
(86 pages), Symbolic Integration (20 pages), Numerical Integration (288 pages), and 
a 23-page bibliography of some 450 items dating mostly from the last 15 years. 

Part I contains three chapters. The first deals with various concepts of integrals 
and their properties: proper and improper Riemann integrals, and Cauchy principal 
value and Hadamard finite part integrals in one and several variables. Chapter 
2 briefly describes selected areas in scientific computing that rely on numerical 
integration, while Chapter 3 spells out more concretely the types of integration 
problems occurring in practice. Also discussed are matters of conditioning, available 


