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EVOLUTION GALERKIN METHODS 
FOR HYPERBOLIC SYSTEMS IN TWO SPACE DIMENSIONS 

M. LUKA(4OVA-MEDVID'OVA, K. W. MORTON, AND G. WARNECKE 

ABSTRACT. The subject of the paper is the analysis of three new evolution 
Galerkin schemes for a system of hyperbolic equations, and particularly for 
the wave equation system. The aim is to construct methods which take into 
account all of the infinitely many directions of propagation of bicharacteristics. 
The main idea of the evolution Galerkin methods is the following: the initial 
function is evolved using the characteristic cone and then projected onto a 
finite element space. A numerical comparison is given of the new methods with 
already existing methods, both those based on the use of bicharacteristics as 
well as commonly used finite difference and finite volume methods. We discuss 
the stability properties of the schemes and derive error estimates. 

1. INTRODUCTION 

It is our belief that the most satisfying methods for approximating evolutionary 
PDEs are based on approximating the associated evolutionary operator, or its dom- 
inant part. Then most advantage seems to be gained by placing this in a Galerkin 
formulation. This is the basis of the "modified method of characteristics" pioneered 
by Douglas and Russell [8], the Lagrange-Galerkin methods of Pironneau [24] and 
of Benque et al. [1], the Euler-Characteristic/Galerkin methods of Childs and Mor- 
ton [5] and most recently the methods of Fey [9]; see [18] for a partial review and 
other references. 

For simple problems this approach can be fully exploited. Thus for linear, con- 
stant coefficient advection the solution evolves by pure transport along the char- 
acteristics. In a Galerkin framework on a uniform mesh all the integrals can be 
calculated exactly and trivially. Using a continuous piecewise linear approximation 
in one dimension gives the highly effective third order accurate method first derived 
by Lesaint [12] and often rediscovered; Childs and Morton [5] showed that the L2 
projection gives the most accurate scheme, but other projections give alternative 
well-known third order schemes; and tensor product basis functions in more dimen- 
sions give tensor product difference operators. The methods are unconditionally 
stable and can be extended to arbitrary orders of accuracy by either increasing the 
order of the approximation space or introducing a recovery stage with higher order 
approximations. 
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For more complicated problems, and on irregular meshes, approximations and 
compromises have to be made in the interest of practical efficiency. Thus when the 
Lagrange-Galerkin method is applied to the Navier-Stokes equations on practical 
domains there are several approximations in common use [1], [24], [28]: the evolu- 
tionary operator is applied to only the convective terms, the trajectories have to be 
approximated, and all the integrals have to be handled by very careful quadrature. 
Similarly, when the approach is applied to weather forecasting [11], [27], [29], all the 
Galerkin integrals are deemed too expensive, and a semi-Lagrangian approach is 
used instead. When the characteristic Galerkin method is applied to scalar nonlin- 
ear conservation laws and the solution may contain shocks, the evolution operator 
is approximated using the Brenier transport collapse operator so that the time step 
is limited by the resulting inaccuracy [5]. However, the important point in each case 
is that using an approximate evolution operator over a finite time interval affords 
the scheme a basic advantage. 

Our purpose in this paper is to develop a number of approximate evolution 
operators for hyperbolic systems of equations in two space dimensions, in particular 
for the wave equation and later for the Euler equations. Preliminary attempts will 
then be described to develop these into practical numerical algorithms. 

Scalar problems in several space dimensions, or systems that can be reduced to 
(possibly coupled) scalar equations, pose no essentially new difficulties to evolution- 
Galerkin methods. But the two-dimensional wave equation, with the solution at a 
point determined by that over the whole base of the bicharacteristic cone, presents 
a new challenge which is generic for hyperbolic systems. Thus we concentrate on 
the development and analysis of methods for that problem. It should be noted here 
that a corresponding difficulty arises in the solution of the steady subsonic Euler 
equations where a distinction needs to be made between the elliptic and hyperbolic 
parts of the system. This has been exploited, for example, in the design of mulitgrid 
methods by Brandt and Ta'asan [2]. 

Section 2 will be devoted to finite difference and evolution Galerkin methods 
for the wave equation system which are based on the straightforward use of the 
bicharacteristic cone. We will describe the approach of Butler [3] (and its follow 
up by Prasad et al. [25], [26]) who first used bicharacteristics in order to derive 
numerical schemes. We will prove a useful lemma which allows us to derive new 
approximate evolution operators for the wave equation system. Using a projection 
onto piecewise constants a simple evolution Galerkin method is then derived, called 
the EGi scheme. 

In Section 3 we describe a general approach to the use of the bicharacteristics 
for hyperbolic systems. In Section 4 two alternative evolution Galerkin methods 
for the wave equation system, the so-called EG2 and EG3 schemes, will be derived. 
They are based, respectively, on the Butler approach and on the general theory for 
hyperbolic problems. As is shown in Section 5, where questions of stability and 
error estimates are discussed, all of our methods based on using piecewise constant 
approximations are of first order. The accuracy can be increased by increasing 
the order of approximation space and the accuracy of the approximate evolution 
operator. However, we indicate at the end of Section 4 how an alternative finite 
volume formulation, coupled with a recovery stage, can yield second order accuracy 
even with the first order approximate evolution operators that have been derived 
here. 
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In Section 6 we present some numerical examples for continuous as well as dis- 
continous initial data. We compare the scheme EG3, closely related to a scheme 
first derived by Ostkamp [22], [23], with the other two new schemes based on the 
earlier more ad hoc approach, the EGi and EG2 schemes. It is shown that the 
scheme which uses a general theory of bicharacteristics for the hyperbolic systems, 
viz. the EG3 scheme, gives the best numerical results in terms of accuracy. There- 
fore it will be a good candidate for the construction of higher order schemes [16]. 
It will be observed that circular symmetry is preserved by the evolution Galerkin 
schemes very well, which is for example not the case when using finite volume di- 
mensional splitting methods (see, e.g., LeVeque [13] and Lukacova', Morton and 
Warnecke [17]). This is an important property and advantage of the evolution 
Galerkin schemes, which are also seen to conserve vorticity very well. Moreover, 
it will be shown that the exact integration in space, used in EGI, EG2, and EG3 
schemes, leads to successful resolution also for discontinuous data problems. This 
does not hold for Butler's and Prasad's schemes, where the upwind bias introduced 
by the use of the bicharacteristics is undermined by the interpolation procedures 
based on the cone apex. 

2. A STRAIGHTFORWARD USE OF THE BICHARACTERISTIC CONE 
FOR THE WAVE EQUATION 

In a paper that was well ahead of its time in regard to using an approximation 
to the evolution operator rather than to the differential equation, Butler in 1960 [3] 
used differences along a set of four bicharacteristics on a square mesh to derive an 
approximation to the wave equation in two space dimensions. Indeed, he presented 
the scheme for a general hyperbolic system and applied it very successfully to the 
unsteady Euler equations in two space dimensions and also to the steady supersonic 
Euler equations in three dimensions. Considerable attention was given to the use 
of bicharacteristics by researchers at that time, and his scheme was judged to be 
particularly effective (see, e.g., [6] and the references therein). Nevertheless, the 
work is little known at the present time, and numerical methods, particularly for 
steady problems, have developed in the interim in quite different directions. 

However, both Butler as well as Prasad et al. who took up the method again in 
the 1980's (see [25], [26]) lost most of the advantage from the approach by using 
a poor interpolatory procedure at the old time level. Thus, suppose Ujn+ is to 
be predicted from values of the vector Un at the feet of various bicharacteristics 
at time level n. Butler used biquadratic interpolation over nine points centered at 
(k, 1) for this purpose; thus the interpolation used in a given mesh square varied 
according to the corner of the square that was being updated. The situation is very 
different with any evolution Galerkin method, where a consistent approximation at 
one time level is used everywhere in performing the update. 

It was Ostkamp in [22], [23] who put some of the ideas of exploiting bicharacter- 
istics into an evolution Galerkin framework. She did so in the context of general 
hyperbolic systems, and showed how such schemes in the case of the Euler equa- 
tions linked up with those methods developed by Fey in [9], [10]. It is Ostkamp's 
work, especially her approximations to the evolution operator, that we shall build 
on and develop here, but first we consider approximations to the evolution operator 
based on Butler's approach. 
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FIGURE 1. Bicharacteristic along the Mach cone through P and Q($). 

2.1. Two approximations to the evolution operator. In this subsection we 
will briefly recall the approach of Butler [3] as well as Prasad et al. [25], [26] to 
deriving finite difference methods for the wave equation. For later generalisation, 
particularly to the Euler equations, it is important to write the wave equation as a 
first order system in the following form 

t +C(Ux +Vy) = 0, 
(2.1) ut?cCXx= 0, 

Vt + coy = 0, 

using the unknown functions 0, u, v. Then any smooth solution 0 satisfies the sec- 
ond order wave equation, but the system (2.1) also admits solutions with nonzero, 
but constant, vorticity. Consider a characteristic cone corresponding to system 
(2.1) with the apex P = (x, y, t + At) and the base points Q(0) = (x + cAtcosO, 
y + cAt sin 0, t) parametrized by the angle 0 E [0, 27r] (see Figure 1). The lines from 
Q(0) to P generating the mantle of the cone are bicharacteristics. Differentiation 
in the direction of these bicharacteristics is given by 

d _ a a 
(2.2) - ccos0- - csin0 - 

Hence, by combining the three equations of (2.1) with weights (1,- cos 0, -sin 0), 
we obtain the equation 

(2.3) d (q-u cos 0-vsin0) =-S 

with the source term 

(2.4) S(t, 0) = c[uX (x, y,Jt) sin2 0-(u (x,y,) + v (x,y,t)) sinOcosO 
+ vy, 1,i) cos2 0], 

where ( = (x + c(t + At - t) cos 0, y + c(t + A?t -t) sin 0) and t E [t, t + z\t]. 
Integrating (2.3) along the bicharacteristic, from the point Q(0) on the base of the 
bicharacteristic cone to its apex P, gives 

(2.5) [q$] - [u] 
P cos 0- [v] 

P sin 0 -j S(t, 0)dt. 
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Now integrating this around the cone, i.e., over 0, gives the integral representation 

(2.6) q$p= j [k Q - uQ cos 0 - vQ sin 0]dO 

( * ) 1 o~~~~~~t+At 2r2 
- 1-f+j ' 

j27~ S(i, 0)dOdt. 

Similarly, by increasing the weights multiplying (2.1) by a factor cos 0 or sin 0, one 
obtains 

27r 

Up =-j [-OQ COSO + UQ COS2 0 + vQ sinOcosO]dO 

(2.7) 1 ft+At 27r 

+ -I X S(t, 0) cos OdOdt, 

27r 

VP = X [ OQ sin 0 + uQ sin 0 cos 0 + vQ sin02O]d0 

(2.8) 1 ft+At 27r 

+ - I S(t, 0) sin Od0dt. 
r it Jo 

Let us note that we have obtained an integral representation of the exact evo- 
lution operator. This will be the basis for numerical approximations. The integral 
of S over intermediate time levels is the term most needing attention. We shall 
use quadrature in time to construct approximate evolution operators. To neglect 
S entirely can easily be shown to give an inconsistent approximation. More com- 
monly, the rectangle rule or the trapezoidal rule can be applied to give an O(At) 
or O(L\t2) approximation, respectively. The rectangle rule applied to (2.6) gives 
simply 

1 f27r At 27 

(2.9) q$p = 2-X ] Q - uQ cos 0 - vQ sin 0]d0 - 2 1 S(t,0)d0 + O(t2), 

with corresponding formulas for up and vp. 
On the other hand, Butler [3] used the trapezoidal rule to obtain the following 

approximation: 

I t+At 27r 

2x,( 1; S(t 1O)dOd1 

(2.10) = S(t+ At, O)dO + S(t, O)d + O(At3) 

= 2 Ct[2c(ux + vy)p + 2-j S(t, 0)d0] + O(zt3). 

However, this has introduced the unknown derivatives u, and vy at the point P for 
which we want to solve. Butler solved this problem by eliminating these derivatives 
via integration of the equations along a time-like bicharacteristic curve P'P, where 
P' _ (x, y, t) and P (x, y, t?+At) (see Figure 1). Thus, using the same trapezoidal 
rule to integrate the first equation of (2.1) from P' to P gives 

(2.11) qp - qp' + 1cz\t [(ut + vy)p + (u + v )p] = O(At3). 
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Eliminating the derivatives at P from equations (2.10) and (2.11) we get 

1 r2 
p =- [j Q - UQ cos 0- vQ sin 0]dO - qp/ 

+ 2 /(U, +?v )p/- ]t S(t, O)dO + O(At3). 

Similar expressions follow from (2.7) and (2.8) for u and v, respectively: 
(127r 

up =-A [-OQ cos 0 + UQ COS2 + vQ sin 0 cos 0] dO 

(2.13) ~~+ 2\tj S(t,0) cosOdO +O(z.t3), 

27r 

Vp =- [-q QsinO+uQsin0cos+vQsin2 O]dO 
(2.14) 

7r 

(+ 2] S(t, 0) sinOdO + 0(L\t3). 

These equations give the values of 4, u and v explicitly at the point P, i.e., at 
time t + A\t, in terms of the values at t. The error in equations (2.12)-(2.14) is 
O(L\t3) in one time step, so we obtain second order schemes with respect to time; 
similarly, (2.9) gives an O(zAt) approximation. 

Now on the basis of these equations a sequence of finite difference schemes can 
be derived. We can replace integration with respect to 0 by a suitable numerical 
quadrature and use an appropriate interpolation formula to determine the inter- 
mediate values of 4, u, v and their derivatives at the points Q on the base of the 
bicharacteristic cone in terms of the mesh points. 

Butler [3], for example, used four bicharacteristics to obtain a finite difference 
scheme. In fact he approximated the line integral with respect to 0 by the trape- 
zoidal rule and took the values on the base of the bicharacteristic cone for 0 = 0, 2, ,r 

and 3. The finite difference scheme obtained in this manner is given in the Ap- 
pendix. 

On the other hand, Prasad et al. used Simpson's rule with 8 or 16 subdivisions 
of the interval [0, 2ir] but, as one of the referees pointed out to us, this choice fails 
to recognize the special suitability of the trapezoidal rule for integrating a periodic 
function. Our numerical experiments, described in Section 6, have indeed shown 
that these schemes have no advantages over those of Butler. 

2.2. A useful lemma. We observe that the source S is composed of tangential 
derivatives on the surface of the bicharacteristic cone so that its integral can be 
simplified through integration by parts; and for later use we state a more general 
result as a lemma. 

Lemma 2.1. Suppose w e C1(R2), and p E C1(R) is 2ir-periodic. Then integrat- 
ing around the circle of radius a, with a general point denoted by Q (a cos 0, a sin 0), 
gives 

(2.15) jP'(0)w(Q)d0 - a p(0) [wx (Q) sin 0 -wy (Q) cos 0]dO = 0. 



EVOLUTION GALERKIN MEHODS FOR HYPERBOLIC SYSTEMS 1361 

Proof. Consider the integral of d [p(O)w(Q)], noting d = -a(sin O a- cos O a). 

Taking p = sin 0,w = u and p = -cos0,w = v with a = c/At gives from the 
definition of S in (2.4) 

27r 2 7 

(2.16) /At j S(t, O)dO =j [UQ cos 0 + vQ sin 0]dO. 

The importance of eliminating the derivatives in the definition of S, to give the 
right-hand side of (2.16), is that this formula can be applied to piecewise constant 
approximations, as we shall do in the next subsection. 

Approximate evolution operator for EG1. Thus, from the rectangle rule (2.9) and 
(2.16) we have the following approximation of (2.6) 

1 2r2 
(2.17) qp = 

2- jk$Q - 2UQ cos0 - 2VQ sin 0]d0 + O(Att2). 

Formulae similar to (2.16) can be derived for the integrals of S sin 0 and S cos 0, 
so as to obtain corresponding approximations to up and vp from the rectangle rule 
applied to (2.7) and (2.8); namely 

I 27r 

(2.18) up = [-f Q cosO + UQ(3cos2 0-1) + 3VQ sin0cos0]d0 + O(i.t2), 
r Jo 

1 27r 
2 0 O(At2). 

(2.19) vp =- [-q$Q sinO + 3UQ sinOcosO + vQ(3sin - 1)]dO + 
1r 

Equations (2.17), (2.18) and (2.19) define an approximate evolution operator for 
the wave equation system. It gives a first order approximation with respect to the 
time. In the following subsection we show how this leads to a scheme to be called 
EG1. 

2.3. An evolution Galerkin scheme. For the general hyperbolic system we shall 
consider later, we denote by E(s): (Hk(lRd))m __ (Hk(IRd))m the exact evolution 
operator, acting on the Sobolev spaces Hk(IRd), associated with a time step s for 
the system, i.e., 

(2.20) U(., t + s) = E(s)U(., t). 

We suppose that Sh is a finite element space consisting of piecewise polynomials 
of order r. Let Un be an approximation in the space Sh to the exact solution U(, tn) 
at a time tn > 0, and take E<: Sh -* (Hk(Rd))m to be a suitable approximation 
to the exact evolution operator E(z\t). We denote by Ph: (Hk(J1Rd))m __ Sh the 
L2-projection onto Sh. Then we can define an evolution Galerkin method. 

Definition 2.2. Starting from some initial value U0 C Sh at time t = 0, the 
evolution Galerkin method (EG) is recursively defined by means of 

(2.21) U = PhEAUn. 

For simplicity we assume constant time steps Ait, i.e., tn = n?\t. The method is 
uniquely determined by the approximate evolution operator EA and the projection 
Ph . 
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In the present paper, in order to relate our schemes to the difference schemes 
given by Butler [3], Prasad et al. [26] and also to link up with the well known 
Lagrange-Galerkin methods for the linear advection scheme (see Morton [19] for 
a summary of these), we shall limit our consideration to cases where the space 
Sh is composed of piecewise constant functions on a square mesh. The resulting 
schemes will therefore be only first order schemes, even when EA is approximated to 
second order. Higher order accuracy can be obtained either by using higher degree 
polynomials in Sh, or by inserting a recovery step Rh before the evolution step in 
(2.21) to give UL+7 = PhEARhUT (see [18], [19], or [20] for more details). An 
indication of how this may be achieved instead through a finite volume formulation 
will be given in subsection 4.4. 

Now let Q be our computational domain. We construct a mesh for Q, which 
consists of the square mesh cells Qkl [(k- )h, (k ? 2)h] x [(1- )h, (1 + )h], 
where k, I E Z, and h > 0 is the mesh size parameter. In what follows we will 
work with the L2-projection given by integral averages onto a space Sh of piecewise 
constant step functions, 

(2.22) PhU Z(hJ (x, y)dxdy) Xkl, U E (L2(Rd))m 
k,IE7Z 

h2 
kl 

where Xkl is the characteristic function for the square mesh cell Qkl. Now, the 
evolution Galerkin algorithm using (2.17) takes the form 

127r 
(2.23) qnl = 2nh2 J j [nq$ - 2un cos 0- 2vn sin 0] dOdxdy, 

where as before Q (x + c/t Cos 0, y + c/At sin 0). Similar expressions follow from 
(2.18), (2.19) for u and v. We emphasize that the integrals in (2.23) are not ap- 
proximated using numerical quadrature as in the Butler and Prasad schemes. We 
compute these triple integrals exactly using the fact that the approximate functions 
?n v unI vn are piecewise constant. The rather technical computations of these inte- 
grals with respect to 0, x and y have been carried out for c/At < h. Using standard 
finite difference notation for the first and second order central differences, 

oxff(x) 
1/2[f(x + h) -f(x -h)], 

xf (x) f (x + h) - 2f (x) + f (x-h), 

the resulting formula for 0 can be written in the following form: 

(2.25) 0+ = [1 ? -(62 ? 62) + 2 52] q 1+-I(1 + 6 y)/ x6u -on 2 \y 

- (1 ? _6)OU - (1 ? 6)AYn 

where we denote by v the CFL number c/At/h. When (2.25) is coupled with the 
corresponding formulae for u+1 and vnHl, which are given in the Appendix, we call 
this evolution Galerkin scheme for the wave equation EG1. Note the unusual factor 
of 7r in the coefficients of this scheme, which comes from the exact computation of 
the integrals in the approximate evolution operator. This is a novel feature of all 
of our EG schemes that seems to reflect the geometry of the characteristic cone. 

It is interesting to compare this scheme with other more familiar schemes in the 
particular case that the data and solution do not vary in the y-direction. Then the 
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wave equation reduces to the advection of X + cu and q-cu along the character- 
istics dx/dt = c and dx/dt = -c, respectively; thus the evolution operator can be 
evaluated exactly. The result, for piecewise constant approximations, is the first 
order upwind scheme for each of 0 ? cu, so that in combination we obtain 

(2.26) q$n+l = (1 + -62)on _ IJ\xU 1 
2x 

with a corresponding formula for un+1. For comparison, (2.25) reduces to a similar 
scheme but with the diffusion coefficient of V/2 reduced to v/7r in the 0 update and 
increased to 2v/ir in the u update. On the other hand, the Lax-Wendroff scheme, 
to which the Butler scheme would reduce in this case, is similar but with a diffusion 
coefficient of v2/2 in both cases. One can show that it is the approximation of the 
evolution operator by the rectangle rule that is responsible for the reduction of the 
damping in (2.25) compared with (2.26). But (2.25) can still be regarded as an 
upwind scheme and it is more damped than Lax-Wendroff for IJ < 2/7r. 

3. GENERAL HYPERBOLIC SYSTEMS 

Now we describe a general approach to the derivation of the exact evolution 
operator for any first order hyperbolic system. The role of the bicharacteristics will 
be illustrated more precisely. We consider a general hyperbolic system in d space 
dimensions 

d 

(3.1) Ut + ?AkUXk = 0, x = (X1,... .,Xd)T E d, 
k=1 

where the coefficient matrices Ak, k = 1, ..., d are elements of R'mxm and the de- 
-k 

pendent variables are U = (uj, ... ., uM E Rm. Because of the assumed hyperbol- 
icity of the system, we have m real eigenvalues Aj, j = 1,... , m and corresponding 
linearly independent right eigenvectors rj = rj (n), j = 1,... , m of the matrix 

pencil A(n) : nk-k for any unit vector n = (n, . ... , nd)T E Rd. Since a 

common factor is irrelevant, we assume InI = 1. In the case d = 2 we have replaced 
n on the unit circle by the parameter 0 in Section 2. 

We denote by R = R(n) := (rl,... , rm) the matrix of the right column eigenvec- 
tors. For any direction n the characteristic variables W = W(n) = (w1,.... 7 Wm)T 

for a general, possibly nonlinear, hyperbolic system, are defined by OW(n) = 

R-1(n)>U, i.e., for constant coefficient matrices this can be integrated tio yield 

W=_RU U=RW. 

Multiplying (3.1) by R-1 from the left we obtain the characteristic system 

d 

(3.2) Wt + Z BkWXk = 0, 
k=1 

where Bk :=_-1AkR = (b1kj)T=j= We introduce the decomposition k = k?+-k, 

where A is the matrix containing the diagonal part of k. This gives a quasi- 
diagonalised system 

d d 

(3.3) iWt?ZA_kWXk ZkWXk =:S, 

k=1 k=1 
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which reduces to the diagonal case, i.e., S = 0, in the special case that all matrices 
Ak commute. The jth bicharacteristic corresponding to the jth equation of the 
system (3.3) is defined by 

(3.4) ~ ~ d jj_ (n): (bl bd)T. 

We integrate the jth equation of the system (3.3) from the point P down to the 
point Qj(n), where the bicharacteristic hits the plane through P'. This situation 
is depicted in Figure 1 for a special case. Note that in general the set traced out 
by Qj (n) can be quite complicated (see Courant and Hilbert [7, pp. 599-618]). For 
a linear constant coefficient problem this will be a straight line. In this case A(n) 
is constant and we assume this in what follows. For nonlinear systems this is an 
approximation which will place a limit on the choice of A\t. 

Integration along the bicharacteristics introduces a formula for the characteristic 
variables 

(3.5) wj (P, n) -wj (Qj (n), n)-=Sj (n), j = , ,m) 

with S (n) = f+ jt Si (x; (t, n), t, n) dt. Multiplication of (3.5) by R from the left 
and integration of the variable n over the unit sphere 0 in Rd leads to an integral 
representation 

1 ~ ~~~~ w (Ql 1(n), n) 
U(P) =U(x, t + At) = R(n _) Q 1 dO?S 

(3.6) wm (Qm (n), n) I 
M 

I jZEwj(Qj (n),n) nrj(n) dO +S 

with 

1 / 1 r r~~~t+A\t 
S = (S1 v . ,Sm)T:= 1Ol j R(n) S'(n) dO = j R(n) S(t, n) dt dO. 

This is an exact representation formula for the evolution operator. Tbhe second 
term contains the integral between the two time levels t and t + /\t which in general 
cannot be evaluated exactly. Thus, suitable approximations for the source term S 
may be used. The main purpose of this paper is to explore various possibilities as 
a starting point for the development of numerical schemes. 

4. FURTHER EVOLUTION GALERKIN METHODS 

FOR THE WAVE EQUATION SYSTEM 

We will now deal more fully with the wave equation system (2.1). First we derive 
an alternative form for the awkward source term in (2.6)-(2.8). Then we apply 
Butler's ideas as well as the general theory for linear hyperbolic systems, described 
in Section 3, to the wave equation system and obtain two further approximate 
evolution operators. 
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4.1. Exact evolution operator for the wave equation. In order to compare 
with other methods of approximation, it is useful to transform the exact evolution 
operators of (2.6)-(2.8) by applying Lemma 2.1 at each time level, and also to 
eliminate the angle 0. Thus from (2.15), in the same way that (2.16) was obtained, 
we have 

1 Rt+At 2r2 
? Jt j2r S(t, 0)dOd[ 

A/t 1 r2 

= j j [~u cos 0 + v sin 0] dO dT 
(4.1) ? ~~2,7r,T i =t+/\t-7- (4.1) = ~ -[ 

jt 2CT2 ID div(u, v) dxdydT 

-A/t 

= C j (div(u, v))d-, 2 

where (.) represents an average over the disk DT, of radius cT, given by the inter- 
section of the characteristic cone with the plane at time level t. If we also denote by 
(.)/t an average over the perimeter of the characteristic cone base, i.e., the circle 
of radius c/\t, the exact evolution operator (2.6) defining 9p can be written in the 
following form 

1 Fr ~~~~At 
(4.2) op = (O)At 

- c [At(div(u, v))At + (div'(u,v)),d-] 2 [ J o~~~~~~~~~~~~ 
The relationship with the first equation of (2.1) is now much more obvious. 

Obtaining similar formulae for u and v is more difficult because of the extra 
factors cos 0 and sin 0. But approximations to any order of /At are easily derived 
from combining quadrature formulae in the t-direction with Taylor expansions in 
the (x, y)-plane. Thus, for example, an expansion about the axis points (x, t) leads 
to the update for u 

Up u + 8 (CZ\t)2(3uxx + uyy + 2vxy)] 

(4.3) cAt [ox + 8(C/t)2V2Xx] 

1 2 'At 
+ 4C2 T [uxx - uyy+ 2vxy] dT + O( At4), 

4 Jo y 

with a similar formula for v. Such expansions are useful in assessing the truncation 
errors of schemes, such as those derived below, since they allow the error committed 
in approximating the evolution operator to be separated from the projection error. 
They may also be compared with the Taylor expansion in the t-direction, followed 
by substitution from the differential equation, that is used in the development of 
Lax-Wendroff difference schemes. 

4.2. EG2, a Butler-based scheme. We reconsider the approach of Butler out- 
lined in subsection 2.1, which uses the trapezoidal rule in time to obtain an O(zAt2) 
approximation to the evolution operator, but we eliminate (ux + vy) in (2.11) and 
(2.12) at P' as well as P. FRom Taylor expansions used in obtaining (4.3) followed 
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by application of Gauss' theorem, we obtain 

r(cLt) (us + V )p/ = J(ux + vy) dxdy + O(At4) = f[udy - vdx] + O(At4) 

27r 

(4.4) = cAt j [UQ cos 0 + vQ sin 0]dO + O(At4). 

Approximate evolution operator for EG2. Combining (4.4) with (2.16) we see that 
the last two terms of (2.12) cancel, and we obtain 

(4.5) fbp = ; [j Q - UQ cos 0 - vQ sin 0]dO - bp' + O(it3). 

In obtaining similar approximations for up and vp, we note that the integrals 
of S cos 0 and S sin 0 at t + At give zero contributions. Then at t we apply Lemma 
2.1 first with p = sin 0 cos 0, w = u, and next with p =-cos2 o, W = V, to obtain 

1 27r 

(4.6) up = - I [-kQ cos 0 + uQ (2 cos2 0U _) + 2vQ sin 0 cos U]dJ + (At3), 

and similarly we have 

I 27r 

(4.7) vp =- [ OQ sin 0 + 2UQ sin 0 cos 0 + vQ(2 sin2 0 - 2)]dO + O(At3). 
7 o 

Equations (4.5), (4.6) and (4.7) define a new approximate evolution operator for 
the wave equation system. It gives a second order approximation with respect to 
the time. Using the projection onto a space of piecewise constant functions we will 
obtain a numerical scheme which will be referred to as the EG2 scheme, but this is 
now only first order accurate. The finite difference formulation of this scheme can 
be found in the Appendix. 

4.3. EG3, a scheme derived from the general theory. Our aim will be to 
apply the theory for a general linear hyperbolic system and following Ostkamp [22], 
[23], to derive another scheme for the wave equation system. System (2.1) in two 
space dimensions can be written in the following form: 

(4.8) Ut +-AUJ + A2Uy = 0 = (x,y) E R , 

where the, noncommuting, coefficient matrices A1A2 E R23X3 are defined by 

8 c )' ( c 

-1=|C 0 0 ' -2 = l ? ? 
\0 0 O, c C 0/ 

Here c E IR denotes the speed of sound and U = ( , u, v)7 E R3 is the vector 
of dependent variables. We have three eigenvalues A1 =-c, A2 = 0, A3 = c, and 
corresponding linearly independent right eigenvectors 

ri Co 1 r2 = [ sin , L 
CO3 

S 
c sin 0 j -COS O j sinO0 

of the matrix pencil A(n) := A1 cos 0 +A2 sin 0 for any unit vector n = (nx, nY)T7= 

(cos 0, sin 0)T E j2 
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As described in Section 3, we multiply system (4.8) by R-1 = (rlr,2,r3)-1 and 
obtain the characteristic system (3.2) for the wave equation. The characteristic 
variables W are 

2(-q$ ?ucosO + vsinO) 
(4.9) W(n) R-1(n)U usinO-vcosO 

1(0>+ ucoOS+ vsinO) 

It is important to point out that in this approach we multiply the system for the 
wave equation with the whole matrix of all three right eigenvectors R-1, whereas 
in the approach of (2.6)-(2.8), only the first eigenvector r, was taken into account, 
and though Butler's scheme and EG2 make use of the characteristic A2, they do 
not use r2. Although further approximations will be more or less similar to those 
made before, this is the crucial point that leads to new representation formulae for 
the exact evolution operator. 

Let us denote the footpoints by 

Qi(0) = (x + cAtn(O), t), Q2 = (X, t), Q3(0) = (x-ccAtn(O), t) 

and the points on the bicharacteristic curve Q2P by 

Q2 = (Xt) E [t, t+ /\t]. 

The representation formulae analogous to equation (3.6) (see [22], pp. 50-53) are, 
after a short computation, 

1 27r 

(4.10) q$(x,t ? At) 4-f / k(Q (0)) - u(Qi (0)) cosO - v(Q1(0)) sin 0] dO 

-1j2 7j At / S(x+cTn(0),t,0)dTdd0, 

(4.11) 
1 27r 

u(x, t + At) = 24 j[[-(Qi(0)) cos0 + u(Qi(0)) Cos20 + v(Q1(0)) sin0cosQ] d0 

1 1 ~~27r rAt 

+ -U(Q2) ? r j j cos 0S(x+ cTnr(0), t,0) dTdO 

At 

-2cj Ox$(Q2)dT, 
2 

(4.12) 
1 r27r 

v(x, t + At) = 2 j [-q$(Ql(0)) sin 0 + u(Ql (0)) cos 0 sin 0 + v(Ql (0)) sin2 0] dO 
21r 

1 1 f27r At 

? -v(Q2) ? J 1 sin OS(x + cTrn(O), ,0) dT dO 
2 2ir 

At 
-ct Oy(Q2) d-, 
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where S(x + crn(O), [, 0) -S([, 0) is given by (2.4). We have thus obtained two 
exact representation formulae, (2.6)-(2.8) and (4.10)-(4.12), which are equivalent. 
This can be easily verified by integrating the second and third equations of (2.1) 
from Q2 P' to P. 

As with Butler's scheme, the final integrals in (4.11) and (4.12) involving 0q5 and 
qy need to be replaced by integrals over the cone mantle. In particular, we generate 
the evolution Galerkin scheme we have called EG3 from applying the rectangle rule 
to the time integrals in the above representation. Then, since Q2 P', the formulae 
to replace Xx and qy at Q2 are as in (4.4). 

Approximate evolution operator for EG3. In the notation used above for EG1 and 
EG2, we obtain 

(4.13) qp = [j Q - 2UQ cosO - 2VQ sin 0]d ? O( + t2), 
2 0r 

(4.14) 
1 1 f2l 

Up = -UpP + 2 [-20Q cos0 + uQ(3cos2 0-I) + 3VQ sinucosu]jd + o(/\t2), 2 27r J 

(4.15) 
1 1 27r 

Vp = -VP/ ? - [-20QQsin0 + 3uQ sin0 cos 0+ vQ(3 sin 2- 1)]d ?+ o(Jt2)) 2 2ir J 

where Q = (x + c/t cos 0, y + c/t sin 0, t) -Ql. These formulae are similar to 
those derived by Ostkamp in [22], [23] which she showed to be closely related to the 
method of transport developed independently by Fey [9] for the Euler equations. 

The EG3 and Ostkamp schemes differ by the terms UQ (2 cos2 0-1) and 2VQ sin 0 
cos 0 included in the integral (4.14), which are neglected in the Ostkamp scheme 
along with similar terms in (4.15); clearly these terms are zero for constant UQ and 
vQ but are important when the base of the characteristic cone intersects neighbour- 
ing cells. [Note that in the preprint version of this paper and in [17] we did not 
distinguish between the Ostkamp and the EG3 schemes.] 

A brief comparison of the three schemes EG1, EG2 and EG3 is now in order. 
They are all limited to first order accuracy by the projection onto piecewise constant 
approximations in the evolution Galerkin formulation (2.21). The first two are 
based on Butler's exact evolution operator given by (2.6)-(2.8); and the EG3 scheme 
on the exactly equivalent formulation of Ostkamp, given by (4.10)-(4.12). Then 
EG1 and EG3 lead to approximate evolution operators, which are only first order 
accurate in /At, by use of a rectangle rule, while EG2 gives a second order accurate 
EA by use of the trapezium rule in a similar way to Butler. However, in all the 
numerical tests described below in Section 6, EG3 consistently out-performs not 
only EG1 but also EG2. 

It is clear that the Ostkamp formulation of the evolution operator is significantly 
better than that of Butler. Moreover, it is not difficult to see why this is so. The 
wave system of equations (2.1) has the vorticity Ou/Oy - vIx as a constant of the 
motion, and, from the characteristic form in this section, we see that the equivalent 
expression u sin 0 - v cos 0 is carried up the cone axis. This fact is never exploited 
in the Butler formulation. But, although premultiplication of the characteristic 
variables by R to get (4.10)-(4.12) obscures this property to some extent, it will 
be apparent from the numerical results in Section 6 that this is a very significant 



EVOLUTION GALERKIN MEHODS FOR HYPERBOLIC SYSTEMS 1369 

feature of the EG3 scheme. There still remains the possibility of exploiting the 
characteristic form, and in particular this property, more effectively than does the 
Ostkamp formulation. 

4.4. A finite volume formulation. Despite the attractive features of the evolu- 
tion operator given by (4.10)-(4.12), we are left with the difficulty of integrating 
the source terms to higher accuracy, and the experience of using the trapezium rule 
in deriving EG2 is not very encouraging. So in this subsection we briefly explore 
an alternative, finite volume, formulation. It is shown in [20], and the references 
therein, that for a scalar conservation law the use of the evolution operator in a 
finite volume formulation gives the same scheme as the direct formulation given 
above because of the single family of characteristics. But we shall see that for the 
system studied here we obtain different discrete schemes by this means. 

If we integrate equation (4.8) over a mesh cell centered at point P, and over the 
time interval from n/\t to (n + 1)/\t, application of Gauss' formula gives 

(4.16) Un+1- u iUn t j [A6xun+T/At + A 6 un+T/AtJ dT 0. 

In this formula, U and Un1 represent averages over a mesh cell at a given time 
level, while 6XUn+T/At involves averages along the cell edges to the right and left 
and ' Un+T/At along edges to the top and bottom, in all cases at an intermediate 
time level n/\t + r. The approximate evolution operator is now used to evaluate 
these edge fluxes. 

There are several advantages to this formulation. The most important is that 
the first order accurate approximation ET to the evolution operator E(r) yields an 
overall second order update from Un to Un+1. To obtain this second order approx- 
imation in the discrete scheme it is only necessary to carry out a recovery stage at 
each time level to generate a piecewise linear approximation U, from the piecewise 
constant un, to feed into the calculation of the fluxes. Moreover, it is at this stage 
that some solution dependence of the scheme can be introduced, for example to 
maintain monotonicity, positivity or TVD properties of the approximation (see [20] 
again). 

We illustrate this procedure by returning to the special case of one-dimensional 
data discussed at the end of subsection 2.3. For the CFL number Iv < 1, the edge 
values are independent of T and for EG1 are given by 

(4.17) ?on+* = tb {/n _26 Un un+* =,n _62 ?n, (4.17) = ,u A - 

where we have extended the notation of (2.24) with 

tlf(X) = 2 f (x+ 2)+ f (x 
_ 

7 aUf (x) =f (x + 2- f (x-2 

Substitution into (4.16) then gives an update of the form (2.26), but with v/2 
replaced by 2v/7r for both the 0 and the u update. So now there is slightly more 
damping than with the standard first order upwind scheme. 

If, on the other hand, from the many possible recovery schemes we select one 
that approximates 0 near an edge by a linear function that equals the average from 
the cells either side of the edge, i.e., ,izxq, and with a slope given by h-16xo, we 
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obtain the edge values 

.,On+.= on CT n n* n_CT 6 n (4.18) (n+* , -_ u h /xX . 

Substituted into (4.16) this gives the second order accurate Lax-Wendroff scheme. 
Thus we see that putting the EG1 approximate evolution operator into this 

finite volume formulation restores the common operator treatment of the 0 and 
u variables, in this one-dimensional case, and it gives -a scheme very close to that 
obtained from the exact evolution operator (cf. (4.1)). We see that it will also give 
a second order accurate scheme when a recovery stage is added. 

Further development of this approach, based on the evolution operator used for 
EG3, is deferred to a later paper because, not only is this the most convenient 
approach to obtaining second order accuracy, but it is also much to be preferred 
for imposing typical boundary conditions. 

5. STABILITY AND ERROR ANALYSIS 

We consider the general hyperbolic system (3.1) and denote by II jj the L2-norm 
and by 11 * Ilk the Hk-norm. The global error between the exact solution of the 
hyperbolic system considered and the approximate solution Un is then defined as 

en = U(tn)-U 

The error can be decomposed into a projection error r1 and an evolutionary error 

(5.1) e = (U(tn) - QU(tn)) + (QU(tn) - U) -71 ? ', 

where Q L2 Sh is a suitable projection onto Sh, possibily different from Ph. 
In what follows we consider projections for which the following projection error 

estimates hold. Take U(t) e (Hr+l(IRd))m, then 

(5.2) 11s11 U(t)-QU(t) Il ? Clihr+l sI||U(t)Ilr+l 

for any s E [0, r]. An example for such a projection will be given below. For a 
piecewise constant approximation (i.e.,i r = 0) the projection error in the L2-norm 
is assumed to be 0(h); for a piecewise linear approximation (i.e., r = 1) it would 
be 0(h2). 

We derive an evolution equation for ( by introducing the term PhEAQU as 
follows: 

(5.3) W = (QOWt) - PhEAQU(tn-1)) + (PhEAQU(tn-l) -PhEAU ) 

If the operator PhEA is strongly stable, i.e., 

(5.4) IlPhEAII < 1, 

the last term is bounded by lfn1 Il,so that the evolutionary error n is determined 
by the truncation error 

(5.5) T:= (QU(tn) - PhEAQU(tn-1))) 

through the recurrence relation Iljj < jjfrLljj + z\tIITT|j. 
Generally, to obtain an order of accuracy p, we need both the projection error 

71n and the truncation error Tn to be of this order. But we have a free choice of the 
projection Q to ensure that this holds. Therefore, it remains to establish the strong 
stability of PhEA, to choose Q, and to prove the order of the truncation error. 
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5.1. Strong stability of the EG1, EG2 and EG3 schemes. Our aim in this 
subsection will be to consider the stability of the evolution Galerkin schemes EGi, 
EG2 and EG3 for the wave equation system. The approximate evolution operators 
EA are defined in (2.17)-(2.19), (4.5)-(4.7), and in (4.13)-(4.15) for the EGi, EG2 
and EG3 schemes, respectively. 

Using the L2-projection Ph (cf. (2.22)) and the approximate evolution operators 
EA, the resulting finite difference formulae for each EG scheme can be put into the 
following form: 

1 1 

(5.6) 1= Z UZn + CELE h-ii+j, 
i=-1 j=-1 

where the entries of the matrices Cij are taken appropriately according to the 

respective approximate evolution EA. In the Appendix these are given in terms of 
stencil matrices a, ,3, -y where we have 

(5.7) C.. a2 O? 2 

Due to the linearity of the problem it is possible (and most convenient) to use 
Fourier analysis to establish the stability of the EG schemes (5.6), i.e., to prove (5.4). 
It should be pointed out that this is nontrivial because of the approximations to 
the evolution operator that have been made: if it were possible to use the exact 
evolution operator, unconditional stability would follow immediately. On the other 
hand, as indicated in subsection 2.3 the form of the scheme EG1 given there and of 
the EG2 and EG3 schemes given in the Appendix are those which are valid for the 
CFL number iv satisfying iv < 1, so we need only to prove stability of the difference 
operators under this condition. 

Even this is a difficult task, and to explore the form of the schemes and their 
stability for iv > 1 would take us far beyond the scope of the present article. 
Fortunately, for these necessarily first order schemes (because they are obtained 
from a projection onto piecewise constants), the dominant damping term makes it 
easy to establish that there is a nonempty interval of stability, and this is what we 
shall do here. In a following paper [16] we shall discuss second order EG methods as 
well as standard second order methods, such as Lax-Wendroff and Taylor-Galerkin 
methods. A more detailed analysis will be necessary and will be given there. 

Lemma 5.1. Each of the difference operators representing EG1, EG2 and EG3 
is strongly stable in some positive interval 0 < IV < V/max for the CFL number Iv. 

Proof. For 0 < iv < 1, the schemes may be written as in (5.6) and the Appendix so 
that after Fourier transformation we have 

(5.8) Un+1 = [I-_V(CR + iC)] Un 

where CR, C, are real symmetric matrices. Moreover, CR = D+vCi and C, = 02 + 
vIC3, where D is a positive diagonal matrix, and D, C1, C2 and C3 are independent 
of iv. Hence we can introduce a matrix K such that 

(5.9) 
^ n+ 1 2 (Un* [I - 2uD + V2K] Un. 
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Writing s, = sin('k,h), sy = sin('k h), it is easy to show that 

(5.10) JIDII > d(s8 + s8), d > 0, 

and, although K depends on iv, for iv < 1 it is readily shown that 

(5.11) IIKII < k(82 + s2) 

for some k, independently of kx, k. It follows that (J+ 1H ? L7 for i < 
min(2d/k, 1). 

5.2. Error estimates for the EG1, EG2 and EG3 schemes. In this subsection 
the truncation error estimates for the EG1, EG2 and EG3 schemes will be given. 
Together with the results above these will give error estimates for the schemes in 
cases where stability is established. It will be convenient to work with the projection 
Q: (L2(R d) )m -+ Sh given by point evaluation, i.e., 

QU(tn) := E U(xk,yltn)Xkl U e (L2(R d))m, 
k,1EZ 

where Xk = kh, Y, = lh is the midpoint of the square cell Qkl We note that Q is a 
projection onto the space Sh of piecewise constant functions such that (5.2) holds 
for r = 0 (see Ciarlet [4]). This means that JJinJJ = 0(h). 

Lemma 5.2 (truncation error). The truncation error Tn of the evolution Galerkin 
schemes EG1, EG2 and EG3 is of first order, i.e., IlTnll = 0(h) for At/h = A 
fixed. 

Proof. We evaluate and compare both terms of Tn in (5.5) assuming a smooth 
solution U e (C2(IlRd)) M. For QU(tn) we have by Taylor expansion 

(5.12) U(xk, Yl, tn) = U(xk, Yl, tn-1) + AtUt(xk, Y, tn-1) + 0(At2). 

The wave equation system UL =-AU - A2Uy implies that for (x, y) E Qkl 

QU(x,y, tn) = U(Xk, Yl, tn) 

(5.13) = U(Xk, Yl, tn- 1) -AtA _Ux(Xk, Yl, tn- 1) 
- AtA2Uy(xkk Yl, tn-1) + O(At2). 

On the other hand we apply the numerical scheme PhEAQ, in the form (5.6), to 

the exact solution U and use the Taylor expansion again. Then we have, using the 

definition of Q, 

(5.14) 

PhEAQU(x, y, tn-1) = U(Xk,Yl, tn-1) + C. U(Xk+i, Yl+j, tn-1) 
i,j=-1 

= U(Xk,Y1Jn-0)+ _]C ij (U(Xk, Yl, tn-1) 
i,j=-1 

+ihUL(Xk, Yl tn-l) + jhUy(Xk, Yl, tn-l)) + 0(h2). 

Each of the schemes considered here satisfy consistency conditions of first order, 
i.e., 

At 
1 

At 
1 

(5.15) --A E iC.., --2 Z jij' 
i,j=-1 i,j=-1 
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These can be verified by straightforward calculation using the stencil matrices 
a, , 7y from the Appendix. Thus, 

PhEAQU(x, y, tn-1) = U(Xk, Yl, tn-1)- AtA!LU(xk,YlI,tn-i) 
(5.16) - AtA2Uy(Xk,Ylvt_l) ? 0(h) 

Subtracting (5.16) from (5.13) and using the fact that we assume At/h to be con- 
stant, we have the estimate for the truncation error from (5.5): 

(5.17) JITTl ? 02 h t = 
0(h). At 

Now we can give error estimates for the EG schemes. 

Theorem 5.3 (error estimate). The evolution Galerkin schemes EG1, EG2 and 
EG3 are of first order for 0 < v < Vmax, where vmax E (0, 1]. Suppose we are 
interested in the approximation at time t -- T and n = T/At. Then there exists a 
constant C > 0, such that 

(5.18) lenll < Ch. 

Proof. The estimate follows straightforwardly using (5.1), (5.2), (5.3), (5.4), and 
Lemmas 5.1 and 5.2: 

l 
n Ln+e < Clh + AtIlT + IPhEI1 . 

(5.19) < Clh +?At ZE ITk . 
k=1 

The fact that n/\t-= T gives 

(5.20) lien 11 < Clh + TC2h < Ch. 

6. NUMERICAL RESULTS 

We will present results of numerical experiments for the wave equation system 
with continuous and discontinous data. The EG schemes have been studied experi- 
mentally and compared with other well-known numerical methods. 

Problem 1. We consider the initial value problem for the wave equatioR with the 
initial values 

0(x,0) =--(sin27rx+sin27ry), u(x,0) =O=v(x,0). 
C 

In this case the exact solution is known: 

(6.1) 0(4, t) =-- cos 27rct(sin 27rx + sin 27ry), 
C 

(6.2) u(x, t) = sin 27rct cos 27rx, 
C 

(6.3) v(x, t) =-sin 2irct cos 2iry. 

The general behaviour of the solution is plotted in Figure 2. The computational 
domain [-1, 1] x [-1, 1] was divided into 80 x 80 cells. The solution shown was 
obtained by the EG3 scheme at time T = 0.2. 
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FIGURE 2. Components of the solution obtained by the EG3 
scheme, their graphs, and isolines. 
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TABLE 1. EG1 scheme, T = 0.4, CFL = 0.55. 

N [ Ilq(T) _ qnll Ilu(T) - ul | JJ_(T) -_n | EOC 

40 0.150773 0.060456 0.173327 
80 0.076730 0.031408 0.088659 0.967157 
160 0.039043 0.016164 0.045242 0.970604 
320 0.019692 0.00820 0.022853 0.985279 

TABLE 2. EG2 scheme, T = 0.4, CFL = 0.55. 

N |Il(T)-4nll I Ilu(T)-unl | ffU(T)-Unll| EOC 

40 0.164243 0.096602 0.213631 
80 0.087041 0.049397 0.111608 0.936681 
160 0.045169 0.025042 0.057397 0.959393 
320 0.023008 0.012599 0.029100 0.979956 

TABLE 3. EG3 scheme, T = 0.4, CFL = 0.55. 

N I kb(T) - 711 I Ilu(T) - un |- JJU(T) -- En I EOC 
40 0.0453708 0.004218 0.045761 
80 0.017574 0.004112 0.018511 1.305735 
160 0.007876 0.002801 0.008813 { 1.070677 
320 0.003709 0.001593 0.004340 1.022041 

In Tables 1, 2, and 3 the errors for the schemes EG1, EG2 and EG3 are given 
for meshes of 40 x 40, 80 x 80,... .,640 x 640 cells, together with the experimental 
order of convergence (EOC) computed from two meshes of sizes N1 and N2 as 

I__ __N_ (T n, N2\ 
EOC = ln I 1 /ln KNT 

In all cases the results are for a CFL-number v of 0.55 and an end tirme T = 0.4, 
but experiments for several other values of v and T have confirmed the comparative 
accuracies of the schemes; that is, EG3 consistently out-performs both EG1 and 
EG2. 

In Figure 3 the second component of the solution, the velocity u(x, 0, T) re- 
stricted to the x-axis for a 20 x 20 and an 80 x 80 mesh at the end time T = 0.4, 
is plotted. We see that EGI and EG2 introduce much more damping of the wave 
than does EG3. This is, in fact, reflected in the numerical diffusion of the schemes, 
particularly the values of the coefficients a11, a22(= a33) and a33 (= a22) given in 
the Appendix. Thus the term all + a22 has the relative values 9: 11: 6 in the three 
schemes, while EGi is the only scheme which has a33 7 0, which boosts the sum 
all + a22 + a33 to the relative value 12 in this case. For comparison, the first order 
upwind scheme discussed at the end of subsection 2.3 would give a relative value of 
3-r for this sum, and the Lax-Wendroff scheme a value 3-wv. 
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0.6 
u.exact' 

0.4 _ /' R a t u ~~~~~~~~~~~EG1_80' EB- 
u. EG3_20 x---- 
'u.EG3_20' -x ... 

0.4 ,--- -u.EG1 80' 
'uEG2_80'---- 
'u.EG380' -x ... 

0.2 

0 

0.2 

0.4 

-0.6 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 

FIGURE 3. Velocity u(x,0,0.4) obtained by the EG schemes on 
different meshes. 

To check that the experimental orders of convergence are reasonably represen- 
tative we have also made other tests with linear and exponential initial conditions 
(see [17]) as well as for different values of v. We are indeed able to introduce any 
piecewise linear initial data and give a comparison of our EG methods with a variety 
of other numerical methods for solving the wave equation system. The behaviour 
of the schemes as described above has been confirmed. 

However, it should be noted that some schemes display exceptionally good ac- 
curacy for special values of v, for example, when the quantity a1l + a22 discussed 
above is close to the Lax-Wendroff value 3-rv. In particular, for EG3 this occurs 
when v = 2/1r = 0.6366, and for the Ostkamp scheme when v = 5/37r = 0.5305. 

Problem 2. As noted in subection 4.3, the wave equation system preserves the 
vorticity &u/&y - &v/Ix. This is trivially zero in Problem 1, because u is indepen- 
dent of y and v of x; so now we take the following initial conditions, for which this 
is not true while the solution still has vanishing vorticity: 

(6.4) 0(x, 0) = cexp(-10x2- by2), u(x,0) = 0 = v(x,0). 

We compute the discrete vorticity DV given by the formula 

(6.5) DVkl := JxyUk+/21+1/2-Iy6xVk?1/2,I?1/2, for each k, 1 E 2, 

where by Uk?1/21?1/2 u= ((k ? 1/2)h, (1 ? 1/2)h) we denote values at the corner 
points of the square mesh Qkl. In Table 4 we show reference values for DVkl, 
namely, the average value (vor-aver), the minimum (vor-min) and the maximum 
(vor-max). These are all after a time T = 0.2, with N = 40 and N = 200 mesh 
cells in each direction, and v- = 0.55. 
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TABLE 4. Vorticity preservation, CFL= 0.55. 

N =401 EGI EG2 EG3 
vor-aver 3.9478950 10-4 2.6959134 10-4 2.4984926 10-4 

vor-min -1.69011228 10-3 -1.10278088 10-3 -1.07928549 10-3 

vor-max 1.69011228 i0- 1.10278088 i0- 1.07928549 10-3 

N =200| EG1 EG2 EG3 
vor-aver 1.421346 9.53898 10-6 7.51300 10-6 
vor-min -6.616513 10-5 -4.397805 10-5 -3.497483 10-5l 
vor-max 6.616513 *10-5 4.397805 10-5 3.497483 10-51 

TABLE 5. Accuracy of the EG schemes and of the first order vor- 
ticity preserving scheme. 

Z[IIEG1 - LWII JJEG2 - LWHl EG3 - LW |I-LW* -LWl IIIVOR - LW||| 
U 0.029777 0.037713 0.023824 0.024059 0.032352 

170 0.014338 0.017933 0.011517 0.012350 0.013936 
LI 0.018454 0.023460 0.014747 0.014601 0.020646 

Table 4 shows clearly that EG3 is better than EGI and EG2 in preserving the 
initial zero vorticity. In [21], however, it is shown that there are nine-point difference 
schemes that exactly preserve the discrete vorticity given by (6.5). The "rotated- 
Richtmyer" variant of the Lax-Wendroff scheme, which is given in the Appendix, 
is the most familiar of these, but there is a first order scheme which is directly 
comparable to EGI, EG2 and EG3 which also preserves this quantity exactly. It is 
given in the Appendix where it is denoted by VOR. 

In Table 5 we therefore compare the accuracy of this scheme with our three 
evolution Galerkin schemes. We make this comparison on the practical mesh N = 

40 at the time T = 0.2 and again with v = 0.55; the difference from a fine mesh 
Lax-Wendroff calculation is given, and a 40 x 40 Lax-Wendroff calculation, denoted 
by LW*, is also included. We see that VOR has a similar accuracy to EGI but that 
EG3 is significantly better; it is indeed quite comparable with the Lax-Wendroff 
scheme on this mesh. 

Problem 3. The next example contains a discontinuity in the initial data. Al- 
though the theory is not applicable to discontinuous data, we consider this problem 
since many physically relevant' problems in gas dynamics have discontinous solu- 
tions: discontinuities in linear problems correspond to contact discontinuities in gas 
dynamics. We consider the data 

0(x, O) = 0, 

v() O-1, elsewhere. 

In Figures 4 and 5 the isolines of the computed approximate solutions for the 
evolution Galerkin schemes EGI, EG2, EG3 and the Butler scheme are shown. The 
computational domain [-1, 1] x [-1, 1] was divided into 400 x 400 cells, the final 
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..... ~ ~ ~ - -0.5 0.. . ... . 0.5.. ... . . . 

1 s ;1 1 x; -0.5 . . . . .. . 

-1 -0.5 0 0.5 1-0.5 0 0.5 

-o. -1. 

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 

-1 -0.5 o 0.5 1 -1 - t 0.5 E 0.5 

FIGURE 4. Isolines of the solution obtained by the EGI and EG2 schemes. 
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 

1 1~~~~~~~~~~~~~~~C 

-1 X 0. . 

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 

FIGURE 5. Isolines of the solution obtained by the EG3 and Butler schemes. 
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time set to be T = 0.4. For the first component q, two discontinuities propagate in 
the positive and negative direction of the main diagonal while for the velocities u 
and v an additional discontinuity occurs along this diagonal. 

It can again be observed that the EG2 scheme has considerable numerical dis- 
sipation and discontinuities are smeared out. The second order scheme of Butler 
resolves shocks much better, but it produces oscillations.' The EG3 scheme is clearly 
the best of the four schemes shown. Its good features have also been demonstrated 
in [17], where computations with the Euler equations have been compared with 
those produced by some directional splitting finite volume schemes. In particular, 
they demonstrate the good preservation of circular symmetry that we have seen 
here in the q plot of Figure 5 as well as in Problem 2. 

7. CONCLUSIONS 

In this paper we have derived three evolution Galerkin schemes EGI, EG2 and 
EG3 for systems of hyperbolic equations in two space dimensions. They approxi- 
mate the evolution of the solution through one time step by means of the bichar- 
acteristics and then project this onto a finite element space of piecewise constant 
functions. 

The first two schemes, EGI and EG2, are based on a straightforward use of the 
bicharacteristics following the approach of Butler [3]. But the much more effective 
EG3 scheme is based on the quasi-diagonalization of a general hyperbolic system in- 
troduced by Ostkamp [22]. All the schemes differ from the finite difference schemes 
of Butler [3] and Reddy et al. [26] by replacing the overlapping biquadratic interpo- 
lation with the L2 projection onto a consistent piecewise constant approximation. 
Thus they retain the upwind features of the basic first order upwind approximation 
of the advection equation, to which they are related. 

In this first paper introducing these schemes we have concentrated on their ap- 
plication to the first order wave equation system. A theoretical analysis shows 
that they are stable for a range of CFL numbers 0 < v < v1max and are first order 
accurate, both results being sharper than those obtained by Ostkamp [22], [23]. 
Numerical experiments demonstrate the superiority of EG3 over EGI and EG2, 
good maintenance of solution properties such as circular symmetry independent of 
the mesh orientation, vorticity preservation, nonoscillatory approximation of dis- 
continuous solutions and an accuracy that matches that of second order schemes 
on practical meshes. 

In subsequent papers we intend to extend the schemes to second order accuracy 
by use of a technique which is outlined here; we will apply more general boundary 
conditions and extend the stability analysis. 

8. APPENDIX 

We write out the finite difference formulation of all the numerical schemes we 
have referred to. Using the standard finite difference notation (cf. (2.24)) each 
scheme can be written down in the following form: 

= [1 + allG5$ + 3$) + b11i3$] Xbhv(l + a12 $ U)noxu - v(l + a13 62)AoYvn, 

un+1 = [1 + (a22 $2 + a'23$) + b223x2y] Un-V(1 + a2l2A0),oxqn + v2a23AOxA ovn, 

vn+1 = [1 + (a333$ + a'33$) + b333x,y] vT-V(1 + a3l 3)AoyqY + iAa32AoxAoYun. 
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Below the coefficients of the schemes are given. For simplicity we use the notation 
= cDt 

* EGI scheme 

al1 = v/7r, b1l = v2/47r, a12 -2v/37r, a13 = 2v/37r, 

a2l = 2v/37r, a22 = 2v/7r, al2 = 0, b22 = v2/47r, a23 = 3/4, 

a31 = 2v/37r, a32 = 3/4, a33 = 0, a'3 = 2v/7r, b33 = v2/47r. 

* EG2 scheme 

al1 = 2v/7r, b1l = v2/27r, a12 = 2v/37r, a13 = 2v/37r, 

a2l = 2v/37r, a22 = 5v/3ir, a/2 = v/37r, b22 = v2/47r, a23 = 1/2, 

a31 = 2v/37r, a32 = 1/2, a33 = v/37r, a'3 = 5v/37r, b33 = v2/47r. 

* EG3 scheme 

al1 = v/7r, b1l = v2/47r, ai2 = 2v/37r, a13 = 2v/37r, 

a2l = 2v/37r, a22 = v/7r, a22 = 0, b22 = v2/87r, a23 = 3/8, 

a31 = 2v/37r, a32 = 3/8, a33 = 0, a'3 = v/7r, b33 = v2/87r. 

* Ostkamp scheme 

al1 = v/7r, bl1 = v2/47r, a12 = 2v/37r, a13 = 2v/37r, 

a2l = 2v/37r, a22 = 2v/37r, al2 = v/37r, b22 = v2/87r, a23 = 1/8, 

a3l = 2v/37r, a32 = 1/8, a33 = v/37r, a33 = 2v/37r, b33 = v2/87r. 

* VOR scheme 

a1l = v/2, b1l = v/4, a12 = 1/4, a13 = 1/4, 

a21 = 1/4, a22 = v/2, a'2 = 0, b22 = v/8, a23 = 1/(2v), 

a31 = 1/4, a32 1/(2v), a33 = 0 3 = v/2, b33 = v/8. 

* Lax-Wendroff (rotated-Richtmyer) scheme 

a1l = v2/2, b1l = v2/4, a12 = 1/4, a13 = 1/4, 

a21 = 1/4, a22 = v2/2, a'2 = 0, b22 = v2/8, a23 = 1/2, 

a31 = 1/4, a32 = 1/2, a33 = 0, a'3 = V2/2 b33 = v2/8. 

* Butler scheme 

all = v2/2, bil = 0, a12 = V2/4, a13 = V2 47 

a21 = 0, a22 = v2/2, a'2 = 0, b22 = 0, a23 = 1/2, 

a31 = 0, a32 = 1/2, a33 0, a'3 = V2/2, b33 = 0. 

* Prasad scheme 

a1l = v2/2, b1l = v4/12, a12 = v2/4, a13 = /4 

a21 = V2/6, a22 = v2/2, a'2 = 0, b22 = v4/24, a23 = 1/2, 

a31 = v2/67 a32 = 1/2, a33 = 0, a'3 = V2/2, b33 = v4/24. 
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In subection 5.1 we used a finite difference formulation in the following form: 

n+1= n + S 
(cQn+il+j 

+ 
1 

+ 

ytjvkil+j)7 i,j=-l 

Ukl+l=k E (2 ijn il+j + 3%juk+il+ 1+3 %3 k+ilj X,-1 

kl= kl + S 3 ( k+t I + /3tjuk+u+j + %j kv+il+J), 
i,j=-l 

Below the stencil matrices_, a, ty for the EG3 scheme are given. 
* EG3 scheme 

v2 v v2 v2 v2 2 

1 4 

i7r 

7r 27r 47r 37r 37r 

v2 v 2 v2 1 I 2 nV2 1 

ce 1:= v v 4v +v v _ ,A R. 2,A 0 -, + 2 

4 . r 
i 

27 4 J 7r 2 3 7r 
2 v2 2 2 

2 

27r 2, 7r - 7 2 37r 37r 

v2 v .2v }2 2:{ 2v2,2 0 v 
2 

37r 2 + 37 , 37r 37 } 

1 2 v 2v2 0 V2~~2 

_ v2 ii){_3v v 

0 0 04i ai 0v+ 

2 27r 47r 8s 11 3 2 32 

v_2 _2v+ v2 v 22 __ 2 

3 3it 2 37r 332 32 

_3:=4 0 0 30 K, /133:={0 0 0> 

v2 v2 2 v2 J3v2 0 

87r 2 27r 27r 32 32 

3 v 2 2v+ v 2 V2 

2, _ 22 2, 2, 

= r 47r 7r 27r 7r 47r - 

1 2 2 2 1 

2 V2 _ 2,22 

87r 7r 4t 3 82 J 
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