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CONVERGENCE OF GAUGE METHOD 
FOR INCOMPRESSIBLE FLOW 

CHENG WANG AND JIAN-GUO LIU 

ABSTRACT. A new formulation, a gauge formulation of the incompressible 
Navier-Stokes equations in terms of an auxiliary field a and a gauge variable 
0, u = a + V+, was proposed recently by E and Liu. This paper provides a 
theoretical analysis of their formulation and verifies the computational advan- 
tages. We discuss the implicit gauge method, which uses backward Euler or 
Crank-Nicolson in time discretization. However, the boundary conditions for 
the auxiliary field a are implemented explicitly (vertical extrapolation). The 
resulting momentum equation is decoupled from the kinematic equation, and 
the computational cost is reduced to solving a standard heat and Poisson equa- 
tion. Moreover, such explicit boundary conditions for the auxiliary field a will 
be shown to be unconditionally stable for Stokes equations. For the full non- 
linear Navier-Stokes equations the time stepping constraint is reduced to the 
standard CFL constraint At/Ax < C. We also prove first order convergence 
of the gauge method when we use MAC grids as our spatial discretization. 
The optimal error estimate for the velocity field is also obtained. 

1. INTRODUCTION AND REVIEW OF THE GAUGE METHOD 

We start with the homogeneous, incompressible Navier-Stokes equations (NSE) 
with no-slip boundary condition: 

{Ut+ (u.V)u+Vp= RAu, in Q, 

(1.1) l V*u =O, in Q, 

te = O, on oQ 

where u is the velocity, p is the pressure and Re is the Reynolds number. 
A new gauge formulation was proposed by E and Liu in [6]. Instead of using 

primitive variables of NSE, the gauge method replaces pressure by a gauge variable 
q$ and introduces the auxiliary field a = u - Vq. Then the incompressibility 
constraint in (1.1) becomes 

(1.2) AqO=-V*a, 
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and the momentum equation in (1.1) becomes 

(1.3) at+(u V)u?u + V at - RA ?P)=fReAa. 

If we require that 

(1.4) at- AO = -P, Re 
we obtain the gauge formulation of NSE: 

at + (u V)u= Aa in Q, 
Re 

(1.5) 1 
AO$=-V*a, inQ, 

u=a+Vb, inQ. 
One of the main advantages of gauge formulation is that q is a non-physical 

variable, so we have the freedom to assign boundary condition for 0. As pointed 
out in [6], corresponding to the no-slip boundary condition u = 0 on aQ, we can 
prescribe either 

(1.6) 
-n 

=0, a.n=O, a*r = -u, on 

or 

(1.7) 0=, an- a*r=0, onaQ, 

where n is the normal vector and r is the unit tangent vector. The system (1.5), 
(1.6) is called the Neumann gauge formulation and (1.5), (1.7) is called the Dirichlet 
gauge formulation. In this paper, we will concentrate on the Neumann formula- 
tion, and only give a brief description of the analysis with respect to the Dirichlet 
formulation. 

The idea of gauge formulation has a long history. For example, Oseledets first 
used an impulse variable to reformulate Euler equations as in a Hamiltonian sys- 
tem in [15]; Buttke first used an impulse variable as a computational method in 
[4]; Maddocks and Pego used an impulse variable to formulate an unconstrained 
Hamiltonian for the Euler equation in [13]. In [9], E and Liu found that the velic- 
ity impulse formulation of Buttke [4] is marginally ill-posed for the inviscid flow, 
and presented numerical evidence of this instability. In [16], Russo and Smereka 
studied the connection between different impulse/gauge formulations, especially the 
stretching effects. 

We can write the Neumann gauge formulation (1.5) and (1.6) in another form: 

I at + (u-V)u= -Aa in Q, 
(1.8a) a 

t a n = O, a,r = - < , on aQ, 

AO$=-V a, inQ, 

(1.8b) j -=0 on&Q. 
a 

n 

With this new formulation at hand, we can easily solve (1.8) by finite difference 
[6], finite element [7], or other kinds of numerical techniques such as spectral element 
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methods [11]. We only consider finite difference here. In this paper, we are mainly 
concerned with the case when the Reynolds number is O(l), which requires us to 
treat the diffusion term implicitly. For example, if the backward Euler method is 
used as our time discretization for the momentum equation, we have 

(1.9) an.l-a + (U n. V)un =Aan+l in Q. 
At 

For simplicity in this presentation, we have taken Re = 1 in (1.9). It is evident that 
the implementation of (1.9) requires that the boundary conditions for a be deter- 
mined. To avoid the coupling between the momentum equation and the boundary 
conditions, we use explicit boundary conditions for a, which are carried out by 
vertical extrapolation. For the first order scheme, we can just take 

(1.10) anl n=0, af+? Or' onOQ. 

Next we update g$fn+l at time step tn+1 by 

( An+l = -V.a n+1 in Q, 
(1.11) j O+n+ =0, onOQ, 

and the velocity Un+1 is determined by the incompressiblity 

( 1. 12) Xun+1 = a?n+1 + Vqon+1. 

We emphasize that the momentum equation (1.9) is decoupled from the kinematic 
equation (1.11), due to the fact that the boundary conditions for a in (1.10) are ex- 
plicit. The resulting scheme is very efficient, and the computational cost is reduced 
to- solving a standard heat and Poisson equation. As reported in [6], full accuracy 
was obtained with this explicit boundary condition. 

1.1. Stability of the explicit boundary condition. One of the main concerns 
in computations is the stability of the scheme. The main observation of this pa- 
per is that the explicit boundary conditions (1.10) are unconditionally stable for 
Stokes equations, where nonlinear terms are neglected. Using the method men- 
tioned above, we can write our scheme as 

an+1 - an a a~~=Aan+1 in Q 
At (1.13) /\a , inQ 

a ln= 0, a Or onOQ; 

then we obtain n+1 via (1.11), and finally, the velocity is given by (1.12). 
For the convenience of our analysis below, we introduce fin = an+l + Vo$n. The 

system (1.13), (1.11), (1.12) can be reformulated as 

+AV A ==t in Q, 

(1.14a) { s 
onOQ, 
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u un+1 -,fn + V((qnq_n+l)=o0 inQ, 

V.. un+1 = 0, in Q, 

l 0(0n-?)~ n u =. n+1 = O, on o9Q., 

This formulation is similar to the pressure increment formulation of the second 
order projection method in [3], [21]. So we can apply techniques similar to those 
used in [8] to analyze the stability of the system (1.14). 

The basic technique used here is just a standard energy estimate. As can be 
seen, if we take the inner product of the equation in (1.14a) with 2iin, and use the 
boundary conditions for ?ln in (1.14a), we have 

(1.15) 

Ilfnll 
2 _ l-Unll 2 + IlAn _unll 2+ 2At 11Vun 1 

2 = 2At ji n. VAqn dx 

=2At j (V. fin) \An dx _ I, 

Taking the divergence of the first equation in (1.14b), we get 

(1.16) Vf 
n 

= A(b - qn+l) 

Plugging back into the last term in the right hand side of (1.15), we have 

I =-2At j Z\(q$n+1-q$n)Aq$n dx 

(1.17) - -At(I I AOn+1 11 2 I IAon 1 2) + At|II\(obn+1 -on) 
) 2 

-=-At( IIn+1 |1 2 IlA- n 11 2) + AtVlV . ^n 11 2 

where in the last step we used (1.16) again. We note that IIV.finII can be controlled 
by the diffusion term lVitn l. The combination of (1.15) and (1.17) results in 

(1.18) 
1. nll 2 nll 2 + 11I7 - unll 2 + AtIIVfn112 + At(|Aq$n+l1 12 _ 11Anll 2) < 0. 

Next, we need an energy estimate of the first equation in (1. 14b). As can be seen, 
the incompressibility of Un+, together with the boundary condition Un+1 n= 0 
on &Q for the normal component of ul1, can guarantee that un+ is Qrthogonal 
to the gradient of o9n _ 9n+ 1, i.e. 

(1.19) jun+1.V(q$n - n+1 ) dx = 0. 

If we take the inner product of the first equation in (1.14b) with 2un+1, we have 

(1.20) || -n+1 11 2 _ IIfinII 2 + IIUn+l -inll 2 = 0. 

Finally, the combination of (1.18) and (1.20) results in 

(1.21) IIu n+1 2 _ IlUnh I2 + AtIIVfn iiI2 + At(II Aqnb1 |1 - 'IIAb | 2) < 0. 

Then the proof is completed, to wit, the gauge method with explicit boundary 
conditions (1.10) is unconditionally stable for Stokes equations. The analysis in 
this paper follows the philosophy used above. 
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Remark 1.1. The above arguments can also be applied in regard to the gauge 
method using the Dirichlet formulation. The only difference is that the bound- 
ary condition for the gauge variable analogous to (1.14b) will be on _ -n+1 = 

r * .n+1 = 0. Since Un+l is divergence-free, (1.19) is still valid, which in turn yields 
(1.20). Equations (1.15)-(1.18) are the same. Finally, (1.21) still holds. In other 
words, the gauge method with explicit boundary conditions (1.10), in either the 
Neumann or Dirichlet formulation, is unconditionally stable for Stokes equations. 

1.2. Connection between projection method and gauge method. The 
gauge method shares many similarities with the projection method [6]. The pro- 
jection method has been thoroughly analyzed in [17, 18, 8, 22]. We will adopt 
analyses and techniques similar to those used in [8]. One of the main differences 
between the gauge method and the projection method is that the gauge method 
is a direct discretization of the partial differential equations (1.5), while the pro- 
jection method is a fractional splitting of the Navier-Stokes equations with some 
artificial numerical boundary conditions. Consequently, the projection method re- 
sults in a singular perturbation of the original PDE and numerical boundary layers 
[14, 8]. This subtle fact is reflected in our analysis of the numerical method by 
the fact that the consistency analysis of the gauge method is much easier than 
that of the projection method, with regular expansions of the numerical scheme, 
and no numerical boundary layers are included. Another advantage of the gauge 
method is that it overcomes some difficulties in the numerical computations of the 
incompressible flow, such as the approximate projection in the projection methods 
[1] and the pressure boundary conditions [10]. Extension of the gauge method to 
the 3D case is also straightforward. Although we concentrate on the 2D case here 
for simplicity, any convergence analysis in this paper can easily be extended to the 
3D gauge method. 

This paper is organized as follows: Section 2 describes time and space discretiza- 
tions using gauge formulation, Section 3 provides error analysis and estimates for 
the spatially continuous Stokes equations, Section 4 proves the convergence theo- 
rem for the full NSE in the spatially discrete case, and Section 5 comments on the 
Dirichlet formulation. 

2. TIME AND SPACE DISCRETIZATIONS 

We will use the backward Euler method as our first order time discretization, 
the Crank-Nicolson method as our second order time discretization, and MAC grids 
as our spatial discretization. Since our analysis is close to that of the projection 
method, we adopt notation similar to that in [8]. 

2.1. Time discretization. 

Backward Euler. The backward Euler time discretization of (1.8) with explicit 
boundary conditions for a can be written as 

a _n _1 __ +1n 
(2.1) | at+ _ a + (un.V)un = Aan+1, in Q, 

a+.n = 0, a, r on&Q, 
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and 
Ao?n+l = _Va n+1 MnQ, 

(2.2) a0qVn+1=V inQ, 

and the velocity is given by 

(2.3) Un+1 = an+1 + von+l. 

Crank-Nicolson. We can also discretize (1.8) using second order Crank-Nicolson 
method, with explicit boundary conditions for a, 

(2.4) J At 2 
- A-(an?an+1), inQ, 

af+l n = 0a aq =-(2 - a9$) onaQ, 
an+l.=~(2ar arona 

where the term (U2n+ V)un+2 is defined as 32(U .V) u -2 (U?1 V)u-1. On 

the boundary, a is determined by the second order one-sided extrapolation of q$ in 
the previous time steps. 1+1 at time tn+ is still determined by a via (2.2), and 
the 'velocity can be calculated by (2.3). 

Remark 2.1. As can be seen, if the implicit boundary condition for the auxiliary 
field a in the momentum equation is adopted-for example, if the implicit boundary 
conditions for a is imposed when we solve a by backward Euler time-discretization 

(2.5) ~ 
n+ - 

a\t + (u12.V)u12 - A\aflI, in Q, 

_aqsn+1 
a +n = 0, af+ = ar, on aQ, 

coupled with the kinematic equation 

Aq$fn+l = _V.an+l in Q, 

(2.6) t 00; =0, on aQ 
an 

(2.7) U = af+l+ Vq$n+ 

-then by (2.3), the relation among the velocity u, the auxiliary field a and the 
gauge variable q$, (2.5)-(2.7) can be rewritten as 

,n+ 1 _,n 
| 

_U 
+ (U n.V)un + vpn+l=AUn+l in Q, 

I At 
(2.8) V un+l = 0 in Q, 

u ,n+1 = ol on aQ, 

where 

(2.9) pn+1 += A_ 
_ on + An+l 

which becomes the standard backward Euler discretization of the Navier-Stokes 
equations. The convergence of this scheme is straightforward. However, to im- 
plement the implicit boundary conditions in (2.5), one has to iterate the system 
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between (2.5) and (2.6), which is very costly. Extensive computational evidence 
shows that this iteration is not necessary, and accuracy is still maintained with the 
explicit boundary conditions for a in (2.1). Our analysis will give a theoretical 
insight into this. 

Dirichlet formulation. If we prescribe the Dirichlet boundary condition (1.7) of q$, 
the corresponding first order scheme analogous to (2.1)-(2.3) becomes 

I anlan+ 
(0At+l-a + (u n.V)un = Aa n+, in Q, 

(2.10) nqs 
? n+1. = , n+1 =?, o Q a n 

~~al+.,r=0, onaoQ, on 

( AOl= _V.al+l, in Q, 
(2.11) j (bn+1 = O) on oQ 

(2.12) un+- = an+1 + vq$on+1 
It is only necessary to solve three Poisson-like equations with Dirichlet boundary 

conditions. This gives some advantage in the iterative methods for the linear system 
generated by the finite element method [7]. Similarly, the corresponding second 
order method using the Crank-Nicolson time discretization becomes 

( an+l _ an ( n+' V)7\n+' A2(an+1 in 

(2.13) l a t n + -2 + a- 2 = 0, on oQ 
A2n + An 

along with (2.11), which gives us $n+' at the time step tn+1, and (2.12), which 
updates the velocity Un+1. 

j+l _ _ 1. 

Oi,j ai -1/2,j 

j1 S . S 

i i+1 

FIGURE 1. MAC mesh, Harlow, Welch, 1965 
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We will show later that this Dirichlet gauge method with explicit boundary 
conditions is still stable. Yet, because of the lack of the normal compatibility on 
the boundary, there are some problems in the expansions of the numerical scheme. 
We can only get a ADt order error estimate. However, it is hoped that this is only 
a theoretical difficulty, which will not influence practical computations. 

2.2. Space discretization. We will concentrate on the situation when Q = 

[-1, 1] x [0, 27r] with periodic boundary conditions in the y direction and no-slip 
boundary conditions in the x direction: 

u(x, 0, t) = u(x, 27r, t), u(-1, y, t) = u(1, y, t) = 0. 

a9 Q is used to denote the part of the boundary at x = ?1. It is assumed that 
Ax = Ay = h. The analysis of the spatial discretization with standard grids is 
quite difficult. Some analysis of the projection method with standard grids was 
carried out by Wetton in [15]. In this paper, we only consider the MAC staggered 
grids for spatial discretization. An illustration of the MAC mesh near the boundary 
is given in Figure 1. Here the gauge variable q$ (also the pressure p) is evaluated 
at the dot points (i, j), the gauge variable a (also the u velocity) is evaluated at 
the right arrow points (i ? 1/2, j), and the gauge variable b (also the v velocity) is 
evaluated at the upper arrow points (i, j ? 1/2). The discrete divergence of a (also 
u and it) is computed at the dot points: 

(vha)ij =ai+1/2,j- ai-1/2,j bi il2bi,j_x (Vh.a~,J ~+1/,J -a~l/ Jj / -1/ 
(V h ) ijh 

i 
h 

Other differential operators are defined as follows (for brevity, we just write out the 
definition of these operators on a, q$, where the same definition can be applied to 
u, i and p): 

ai+3/2,j -2ai+1/2, + ai-1/2,j 
(,ha)i+1/2,3 = h 2 

+ ai+l/2,j+l- 2ai+l/2,j + ai+l/2,J-l 
h2 

bi+A,j+1+2- 2bi,j+l/2 + bi1,j+l/2 
(Lhb)i,J+1/2 =h2 

bi -2bij+l/2 + bij,l/2 
h2v 

Oilj- kij i'+ - j 
(Dx0)i+12J= h (Dyq)i,j+l/2 = I 

ai,j+1/2 = (ai+1/2,j + ai-1/2J + ai+l/2,j+l + ai_1/2,J+1) 

bi+1/2,j 
= 

(bi+i,,+1/2 
+ bi,j-/2 + bi,j+i/2 + 

bi,-1/2) 

ai+3/2,j- ail/2, _ ai+1/2,j+l-ai+1/2J1 
Fh(Ul, a)i+l/2,j = Ui+1/2,3 Oh + Vi+1/2,j Oh 
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.Afh(U, b)i,j+l/2 = j+/2 bi+J+1/2 - +1/2 + Vj +3/2 2 

UiJ + 1 /2 + 
Vij+/2 Clearly the truncation errors of these approximations are of second order. The first 

momentum equation (for a) is implemented at right arrow points, the second mo- 
mentum equation is implemented at upper arrow points, and the (discrete) Poisson 
equation for q$ is implemented at dot points. 

The boundary condition u = 0 is imposed at the vertical physical boundary 
ry, whereas v = 0 is imposed by VOj+1/2 + V1,J1/2 = 0. Similarly, the boundary 
condition v = 0 is imposed at the horizontal physical boundary Ty , where u = 0 
is imposed by Ui+1/2,0 + Ui-1/2,1 = 0. Consequently, the boundary condition a = 

0, b = -ayq at the left vertical boundary is implemented by 

01,j+1 4 0,j_ 4Oj?1- (2.14) a = 0, b1,J+1/2 + b0,J+1/2 = h _ h 

Similar boundary conditions for a are imposed at the other three boundaries. 
One of the main advantage of the MAC grids is that the spatial discretization 

of (2.2) and (2.3), 

Ahon +1= nVh.aT+l, un+1 an+l ? vq$n+l1 

gives an exact projection 

an+l = - 
n 

_ $h+l, Vh+un1 - 0 

and the Neumann boundary condition 

aqn 0 onDQ, 

gives the boundary condition for the normal component of u, 

n.un+1?=0, ona'Q. 

Therefore we can rewrite the full discrete scheme analogous to (2.1)-(2.3) in the 
following form, which will be used in the convergence and error analysis: 

{2.15a | a+l-a? +J/h(un, un) = Ahan+, in Q, 

(2.15a) At 
aT+l = -7h$h, on Q, 

+ln+1 = an+l + h on+l, in Q, 

(2.15b) 4 ~Vh. Un+1 = 07 in Q, (2. 15b)If72IV 1?A 

n.u +=0 on0Q 

3. SPATIALLY CONTINUOUS CASE FOR STOKES EQUATIONS 

We have already shown the unconditional stability of the gauge method with 
explicit boundary conditions in the introduction. Now our convergence theorem for 
Stokes equations is stated. 
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Theorem 3.1. Let (u, 0) be a smooth solution of Stokes equations with smooth 
initial data uo(x) and let (uAt, qAt) be the numerical solution of the semi-discrete 
gauge method with explicit boundary conditions (1.10)-(1.13). Then 

(3.1) IU -UAtLoo(O,T;L2) < CAt. 

The convergence proof follows the standard strategy of consistency and stability 
estimates. We have already proven the stability of the scheme in the introduction. 
In the consistency part, we first make a transformation of the numerical scheme. 
Instead of directly comparing the numerical solutions with the exact solutions, we 
compare them with the ones constructed from the exact field, 0. The constructed 
fields satisfy the boundary conditions in the numerical scheme exactly. The ad- 
vantage of this approach is that no error term appears in the boundary conditions. 
This simplifies the energy estimates used in the stability part of the proof. 

For simplicity, we just do first order expansions in the spatially continuous case. 
In the fully discrete case, second order expansions are required to establish the a 
priori estimates needed in the convergence proof. 

3.1. Truncation error and consistency analysis of the numerical solutions. 
We follow the strategy of Strang [19] in constructing a high order expansion from 
the exact solutions to satisfy the numerical scheme up to high order. This will 
enable us to give a sharper a priori estimate. 

By introducing the new variable Ln = an+1 + Von, we obtained (1.14), an 
equivalent reformulation of the scheme (1.13), (1.11), (1.12). 

Let ue(X, t) and Pe(x, t) be the exact solutions of the Stokes equations, i.e. 

tue + VPe = AUe, in Q, 

(3.2) V UeO= , inQ, 

Ue = 0, on aQ, 

and let q$e(x, t) be a solution of the following heat equation with Neumann boundary 
condition: 

at$e = Aqee-Pe X in Q, 

(3.3) 4 aqe 0 onaQ$ 

where the initial data q$e(X, 0) is chosen from the following Poisson equation: 

Aqe(X O) =Pe(X0 O) + Cl X in Q, 
(3.4) &aqe(,?) 0 onX Q, 

an - 

where Ci is a constant such that Ci =- f Pe(X, 0) dx, to maintain the consistency 
that follows from the Neumann boundary condition. Obviously, if we introduce 
ae = Ue - Vqe, then (ae, Oe) is an exact solution of the Stokes equations in gauge 
formulation. 
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Next, we let ui be a solution of the Stokes equations with the prescribed bound- 
ary conditions and initial data 

atUl + Vpl = Au1, in Q, 
*u1=0 , oinQ, 

(3.5) {u(,)0 
ul (X, ) = O. 

By the construction of qe (x0 ), we have 

(3.6) atq$e(X, ?) = A$e(X, 0) -Pe(X 0) = C, 7 on aQ, 

which implies that atVq$e(X, 0) = 0 on the boundary, so we can choose u1 (x, 0) = 0 
as in (3.5). 

Consequently, we let 

(3.7) l= ul? + atae, 

and construct approximate profiles 

(3.8) U=Ue +?Attl 7 UU= e +AtUi17 ( = ?e 

Lemma 3.1. We have 

3U*n 
_ Un + AVDn = AU* + \Atf n in Q, 

(3.9a) A 
U* =0 on aQ, 

I Un+l - U*n + V((Dn _ (n+l) - At2g9n in Q, 

(3.9b) V Un+l = 
0, in Q, 

an =n.Un+l = 0, on DQ , 

(3.9c) U0 =u0, in Q, 

where f n and gn are bounded functions. 

Proof. Substituting (3.8) into (3.9a), by direct calculations we obtain 
U*n Un 

+ AVDn AU*n = 1 -U1? + AV$e 
- AUe - AtAU1 

(3.10) = (at ae - Aae) - AtA&&j 

= -AtAiil = O(At), in Q. 

In the last step we used the fact that (ue7 ae) is the exact solution of the Stokes 
equations in gauge formulation, i.e. 

(3.11) atae-Aae = O, in Q. 

By the construction of iti and the boundary condition for u1, we have 

(3.12) an =un +Ytan =atU>n =O, onaQ, 

which shows that 

(3.13) U*n = 0, on aQ. 
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For the equation in (3.9b), by direct calculations and Taylor expansions of U 
and ID w.r.t. time t, we have 

un+1- U*n + V(qhn - (Dn+l) 

=n + AtatUn + AtUln + O(At2) - n- Atitn -AtatVqn + O(At2) 

(3.14) - Atata n+ At(Un - itn) + O(At2) 

=O(At2), in Q. 

Since both Ue and u1 are divergence free, we obtain 

(3.15) V*U+1=O, inQ, 

and by the construction of our U and (, we have 

(3.16) = n. U?+=O, on aQ. 

Then we complete the consistency analysis of the first order gauge method with 
explicit boundary conditions. Lemma 3.1 is proven. D 

3.2. Proof of Theorem 3.1. We define the error functions 

(3.17) en =n_ _^n en = U*n _, &n qn = (,n _ on. (3.17) eTh=UT- uT e-=~-O qT=hq$. 

In Section 1, by making a transformation, we got (1.14), which is an equivalent 
formulation of (1.13), (1.11), (1.12). Subtracting (3.9) from (1.14), we get the 
equations for the error functions: 

en _ AeLn _V\n n t nQ 
(3.18a) J At 

e- - VAq ? Atf in Q 

n=O, onAQ, 

en+1 ln +VnV(qhq n+1) -At29m inQ, 
Ve 1=O iq,7 

in9 

(3.18b) 1 9(qn qn+l =O in O n 
i~~~ ~~ 0q- )= +.n = 0 , on aQ , 

an 

(3.18c) e? = 0, in Q. 

It can be seen that the system (3.18) is very similar to (1.14), except for the local 
truncation error terms Atfn, At2gn. So most of the energy estimate techniques 
we used in Section 1 can be carried out here similarly. The estimates corresponding 
to the local error terms can be given by the Cauchy inequality. We will omit some 
of the details in the following analysis. 

Taking the inner product of (3.18a) with 2en and using the fact that n vanishes 
on the boundary, we have 

11.en1l 2 _ 11en1l 2 + 11?en _ -nj 2 ? 2At || Ve2 2 

(3.19) < At3 Ilfnll 2 ? 
At Ile-nll 2 - 2At 

j 
Vn.VAqn dx. 



CONVERGENCE OF GAUGE METHOD 1397 

Taking the inner product of the first equation in (3.18b) with 2e'+1 and using 
a similar argument as in Section 1, i.e., that eg+T is orthogonal to the gradient of 
qn _ qfn+l we arrive at 

(3.20) 2|e 11 -||e 1n2 ? | -ell 1n+l nII 2 < AtIIen+1 1 2 + At3 llgng 2 

Combining (3.19) and (3.20), we get 
n+1 2 _ II-nII 2 + ?I,n _ -n I 2 + I1 n+1 2 ? 2At 2 Ve 2 

(3.21) < C At (Ilen 1 2 + II.n+1 11 2) + At3(IIfnll 
2 + llgnll 2) 

-2At f eTn VAqn dx. 

Similarly to the analysis in (1.17), the estimate of the last term in (3.21) is 

determined by integration by parts and then using the first equation in (3.18b): 

I _-2At j Tn-VAq n dx 

= 2At (V. & n)Aqn dx 

=-2At j zA(qn+1 - qn) A\qn dx - 2At3 j(V. gn) Aqn dx 

(3.22) = -At(I n+1 112 -11 Aqn II 2) + AtIIA(q n+l q n) 11 2 

- 2At3 j(V.gn )Aq n dx 

= At( || /n+1 11 2 _-1 Aqn 11 2) + AtIVIT. hin 11 2 + At5 g19 112 

+ 2At3 (V. n)(V. gn) dx - 2At3 j(V.gn )Aqn dx, 

By (3.22), 

I <-At(I IA 2n - 12 *lAqnll 2) + AtIlVenll 
2 + At2llAqnll 

2 

(3.23) +2At 4||. gVn 1 2 + At2 IVIThn 1 ;2 + At5 HIgn 11 2 

Going back to (3.21), we obtain 

2e1 - _ IInII 2 + AtIV enII2 ? At(Aqn+1 2 _ 1 Aqn 1 2) 

(3 .24) < C At (|n 11 2 + 11 Hn+1 1 2) + At2 11 Aqn 11 2 

+ CAt3(jIf 
n 2 + llgn 1 2 + Atllgn 

2 1). 

Applying the discrete Grownwall lemma to the last inequality, we arrive at 

(3.25) lleni ? At1/2 117en 1 + At1/2 nlAqTl < CAt, 

which completes the proof of Theorem 3.1. 

4. SPATIALLY DISCRETE CASE FOR THE FULL NAVIER-STOKES EQUATIONS 

Theorem 4.1. Let (u, q) be a smooth solution of the Navier-Stokes equations (1.1) 
with smooth initial data uo(x), and let (Uh, qh) be the numerical solution of the 
gauge method (2.15) coupled with the MAC spatial discretizations. Assume the CFL 
constraint At < Ch for some suitable constant C which we will specify in detail 
later. Then we have 

(4.1) "1U- UhLoo < C(At + h 2). 
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Some notation. For a = (a, b), c = (c, d), u = (u, v), we define the following 
discrete inner products on the MAC grids: 

(4.2) 
N-1 N N N 

(a, c) = h2 E 3 ai+l/2,jci+l/2,j + h2 bi,j+1/2di,j+/2 
i=1 j=1 i=1 j=1 

N-1 N N N 

(U,VhO) = h E -4Ui+1/2,j(Oi+lj- i,j) + h jvi,j+1/2(0i,j+1 -ij) 
i=1 j=1 i=1 j=1 

N-1 N N N 

(Vh , 0) = h E Z(Ui+1/2,j Ui-1/2,j)ci,j + h E (Vi,j+l/2 Vij-1/2)oij 
i=1 j=1 i=1 j=1 

and discrete norms 

(4.3) IIUII = (u,u)1/2, 1ul1 = max uij. 

Next we state some preliminary lemmas excerpted from [8] which are needed in 
the proof of the theorem. 

Lemma 4.1. We have the following: 

(i) Inverse inequality: 

(4.4) -lf lo00 < h 

(ii) Poincare inequality: If f x=?1 = 0, then 

(4.5) Ilf ?| < C||Vhf 1H 

(iii) If n.u 1x=? = 0, then 

(4.6) (U, Vhq) =-(Vh .,q 0) 

(iv) If u lx=? = 0, then 

(4.7) 2(u,zAhU) < -lVhUl12 - _IVh U112. 

(v) If a lx=?1 = 0 and c.n IX=1 = 0, then 

(4.8) 1(a,Afh(U,c))j ? CjjcjjVhajjjujjw1,oo. 

Lemma 4.2. Let (U,p) be a solution of the Navier-Stokes equations with smooth 
initial data uo(x). Let (uo, po) be a solution of the following system: 

atUO + VhPO +? Vh(UO, UO) = AhUO, in Q, 
| Vh*UO =O, inQ, 

(4.9) uO=0, at x=?1, 

uo(, 0) = u0(.), in Q. 

Then (uo, 0o) is smooth in. the sense that its discrete derivatives are bounded. More- 
over, 

(4.10) IU -UO1IL + IIP-PO;I|L < Ch2. 
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Remark . 1. Let 00 be the solution of the following discrete heat equation: 

atbO h0O +? P 0, in Q, 

(4.11) 0 at x = ?1 

M., 0,=) , 000 inQ, 

and define 

(4.12) a0 = u0-Vhq$0 

Then the solution (uo, 00) of the decoupled system (4.9), (4.11) is smooth in the 
sense that its discrete derivatives are bounded and 

(4.13) IIU- UO|lLO + 110 - XO||L < Ch 
where (u, q) is the solution of Navier-Stokes equations in the gauge formulation 
with initial data u0. 

Lemma 4.3. Let (u, p) be a solution of the linear system of ODE 

atu + VhP +?Jh(UO,U) +?Jh(U,UO) = AhU + f, in Q, 

VhU0, inQ, 
(4.14) j 

=9 atx=?1, 

u(., O) UO(.) I inQ, 

where f, g, and uo are smooth and satisfy some compatibility conditions. Then 
(u, p) is smooth in the sense that its divided differences of various orders are 
bounded. 

Remark 4.2. Once again, let q be the solution of the discrete heat equation 

ato AhO+p=O, in Q, 

(4.15) __ /O 
-0 on aQ. an 

Then the solution (u, 0) of the decoupled system (4.14), (4.15) is also smooth in 
the sense that its divided differences of various orders are bounded. 

4.1. Consistency analysis of spatial discretization with MAC grid. As 
pointed out in Section 2, the numerical scheme can be written in the form (2.15) 
for the convenience of our analysis. Similarly to the spatially continuous case, if we 
introduce t7n = an+1 + Vhqon, (2.15) is equivalent to 

(4.16a) | ?Af+J\h(u ,un)?+AhVh(=/$Ahu, inQ, 

itT t=0, atx=?1, 

(4.16b)I Vh.uT+I=0, inQ, 

(4.16b| a(0+ - ) =_ un+1 =0O, at x = ?i. 

n 

We note that (4.16) is almost a discrete version of (1.14), except for the appearance 
of AFh (uTb, uTh), a nonlinear term. 
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Let uo(x, t), qo (x, t) be solutions of the decoupled system (4.10), (4.12), which 
are guaranteed by Lemma 4.2 and Remark 4.1 to be smooth in the sense that the 
divided differences of various orders are bounded. 

Next, we define u1 (x, t) as the solution of the following system 

atu+ VhP1 +?JVh(UO,U1) +JVh(Uj,uO) 

=thUl + atA - 2ao, in Q, 

( VhU1=0, inQ, 

U1 lx=+l= atVhk0 lx=?l, 

with suitable initial data for u1, and let 01 (x, t) be the solution of the following 
discrete heat equation: 

at_l-Ahl + Pl= , in Q, 
(4.17b) _ = o 

in 

with suitable initial data for 01. We know from Lemma 4.3 and Remark 4.2 that 
(4.17) has a smooth solution. 

Let u2 (X, t) be the solution of the (spatially) discrete Stokes equations with the 
prescribed boundary condition and some suitable initial data 

I tU2 + VhP2 =AhU2, in Q, 

(4.18) t Vh*U2 = O, in Q, 

U2 lx=+l= (- -tVh0 D9tUl + 9tVhql) 1x=?1 

Subsequently, we let 

(4.19) = u1 + 9tao, 

and 

(4.20) t=2 = + 2? t2 + ao ? DtUi 9tVhqlX 

Now we construct 

u = u0o + Atu + At %t2 

(4.21) Un = uo + Atui + At 2u2, 
n = qo + Atq$, 

and substitute them into (4.16). Similar to the computations and arguments in the 
spatially continuous case and doing Taylor expansions Of Uh and Vhq w.r.t. time 
t, we obtain 

(4.22a) 
- U*n _Un. 

+ A/h(U , Un) + ?AhVh n = AhU*n +hAt2fn in Q 

u* =0, at x= ?1, 
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un+1- U*n Vh(,jhn- _ln+1) = At 39, in Q, 

Vh.Un+l+=0, inQ, 
(4.22b) ja - D=0naxl1 

l=@n n- un+1 = 07 at X = ?1, 
on 

where fn and gT are bounded and smooth if (uo q$o) is sufficiently smooth. It 

can be seen that the only difference between (4.22) and (4.16) is the higher order 

truncation error terms At 2fn, At3gn. 
It is obvious that 

(4.23) max IlUnTh)||W,_ < C*. 
0<tn <T 

Under the compatibility condition 

(4.24) 9tVhqo(X, 0) = 0, on a9Q, 

we can choose 

(4.25) ui(x,0) = 0. 

Then we have a second order approximate initial data 

(4.26) U0(x) = uo(x,0) + At2w0(X), 

where wo is a bounded function. 

4.2. Proof of Theorem 4.1. Assume a priori that 

(4.27) max iiu nlWl,_,?C 0<tn <T 

In the following estimate, the constant will sometimes depend on C* and C. We 

define 

(4.28) en =n_ _tn en = U*n _ &tn qn = Dn _ on. (4.28) e =U -u, e U-O qT=hq$* 

The following system of error equations is obtained by subtracting (4.22) from 

(4.16) 

(4.29a) 

i- An _n 

t e(enU)?Kh(un,en) + VhAhq = he 
+ At2fn, in Q, 

t en= 0 at x = ?1, 

I en+1_en 
n 

-qn+1 At3 n in Q, 

(4.29b) Vhe +=0, 
in Q, 

= rnern=1 =0 atx=?1, 
o9n 

(4.29c) e0 = At2 w?, in Q. 

The system (4.29) is similar to the system of the error equations for the spatially 
continuous Stokes equations (3.18). At first glance, (4.29) is almost a discrete 

version of (3.18). Then most of the techniques used in Section 3 can be applied 
here. But there are also some differences: the appearance of nonlinear error terms 

.Vh (en, Un) and Kh(ub, en) and the local truncation error terms appearing in 

(4.29) are of higher order than those of (3.18). We make higher order expansions in 
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the spatially discrete case so that we can establish the W1 ,o estimate for numerical 
u'. This estimate is needed for nonlinear error terms so that part (v) of Lemma 4.1 
can be applied. Using higher order expansions as we did in the consistency analysis 
part, the only thing we need to do is to apply the a priori estimate (4.27). 

Taking the inner product of the equation in (4.29a) with 2en, we obtain 
n A5 2 - II 2 + IIen I 2 2At n, 

(4.30) At51fn 2 ? At n 2 
- 2At (eT,Afh(en, Un)) 

-2At (en,\ h(un, en)) -2At (n, Vh/Ahq )n. 

By Lemma 4.1, parts (iv) and (v), and the a priori estimate (4.27), we get 
llenll 2 - llmnHl 2 ? llen _-e 2 + At |lVheThl 2 + At |lVh*eTnI 2 

(4.31) ?< At5Ifnll 2 + CAt(jThnjj 2 + II,nII 2) 

+ -At enVh II 2 - 2At (en, Vhz\hqn) 

Once again, as can be seen, to use Lemma 4.1(v), we must have an a priori estimate 
(4.27). This requires us to do second order expansions in the spatially discrete case. 

By the triangle inequality for the discrete L2 norm, 

(4.32) ||e || < I en- ll + ?IenII 

we have 

II,,n 1l2 _II,enII2 +7 lln _ nll 2 +'L tt|| n || 2 n II 2|h*e| H~~ThH 2 2 ? ~~- 2 ? tHh +h At Il 2 

(4.-33)8 
(3) t5IAfnII 2 + CAtllenll 2 + 'At |VhnII 2 n 2At (nt, Vhz\hq ) 

Taking the inner product of the first equation in (4.29b) with 2en+1 and applying 

Lemma 4.1 (iii) yields 

(4.34) 2|e 11 - ||e 112 + 11 n+1 _ -n|| 2 < At jgen+1l 2 + At5gllgn 2 

Combining (4.33) and (4.34), we get 

(4.35) 

2| 
2 en 11 2 + 7 n _ -n 1 2 + 1 Tn+1 -nI 2 

?2 AtlVhei 112 ? At 11Vh*en 1 2 

< At5(If nll 2 + llgnll 2) + CAt(IIenII 2 + |lln+11 2) 
n 

2At (n, Vhz\hq ). 

Estimating the last term in (4.35) is similar to (3.22): 

I -2At(U , Vh/AhqT) 

- 2At(Vh .'n, Ahq ) 

-2At(Z\h(q+ - q )Ahq)- 2At-(Vh gn /\ n) 

(4.36) =-At(I| hq n+1 1 2 _ 11 Ahqn II 2) + AtIIAh(qn+l 
n _1- qn) 2 

- 2At (Vh gn /\hqn) 

- t(| /q 2l - L hqn I 2) ? AtVh.nll 2 + At7IIgnII 2 

+ 2At (Vh. n, Vh gn) -2 (Vh gn /\ n) 
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Then (4.36) gives us 

I K< -At(IjAhq 
n+1 2- 

_IlAhqn|I 2) + AtIIVh.hn-1 
2 + At2 IlAhqnh1 

2 

(4.37) ?n2At IIVh*gn 2 ? At2 |Vh.n 2 ? At7IIgnI 2 

Going back to (4.35), we obtain 

lie |2 - |2 ? VhenH 2 ? At(IzAhqf+ll 2I- H zlhq H 2 

(4.38) < CAt(Ichen 1 2 + 1e n+1 11 2) +At2 / nl 2 

+ CAt5(LfnII 2 + llgnll 2 + AtIIgn 
2 1). 

Grownwall's Lemma gives 

(4 39) || enl ||+t |enI|| + Atl /2 |/\hnl|| < C Att2 (4.39) lieh ? AtllVhTh ? 1 A Ah2z~qT ?CA 

By the inverse inequality (4.4) we have 

(4.40) lienCILO + hll enIIw1,o +? 't1/2IlAhqnIL- <- Ci h 

Under the CFL constraint 

(4.41) At < 1Ax, 

where Ci only depends on the exact solution (uo, 00) and the a priori constant C 
for the estimate of IIUnIIW1,. in (4.27), we have 

(4.42) Cn+1ILI ? CnAt, v-+ IIW1 1. 

Therefore in (4.27) we can choose 

(4.43) 0=1? max ~Un Wl.)Hi 
n< I I\ 

t I 

so that C depends only on the exact solution (uo, 00). This gives 

(4.44) lUO- UhIILoo < CAt. 

By Lemma 4.2, we have 

(4.46) |U - UhIIL? < C(At + h 2). 

This completes the proof of Theorem 4.1. 

5. ANALYSIS AND ERROR ESTIMATE 

OF THE DIRICHLET GAUGE FORMULATION 

Finally we look at the gauge method with Dirichlet boundary condition for q. For 
simplicity, we will concentrate on the spatially continuous case for Stokes equations: 

aaA~~=Aan+1 in Q 

(5.1) t _ n 

a +n a 'r-0 onaQ 
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and 

AXn+l - _V.a n+1 in Q, 
(5.2) q$fn+l =-0 onaQ, 

(5.3) - 
n+1 = an+l ?+ v$n+1. 

Next we state our theorem for the Dirichlet gauge formulation: 

Theorem 5.1. Let (u, q$) be a smooth solution of Stokes equation (2.1) with smooth 
initial data uo(x), and let (uAt, OAt) be the numerical solution for the semi-discrete 
gauge method with Dirichlet boundary condition for the gauge variable (5.1)-(5.3). 
Then 

(5.4) IIU-UAt IL-(o,T;L2) < At. 

Proof. The analysis carried out in Section 2 can be applied to this formulation 
similarly. First we make a transformation. If we introduce jTh = an+l ? Vq$n, 
(5.1)-(5.3) can also be reformulated as 

A tb 'l + Avo n =A &n in Q, 
(5.5a) I At 

In =0, on DQ, 

f n+1 _ &n + V(?on _ >+l) =Ov inQ u1 on in Q, 

(5.5b) j v.un+'=O, inQ, 
(? n -$n+1) =Ov on aQ. 

Note that (5.5) is the same as (1.14) except for the boundary condition for q. 
We will repeat the procedure of Section 2. Let Ue(X,t),pe(x,t) be the exact 

solution of the Stokes equations 

atUe + VPe = AUe 7 in Q, 

(5.6a) j VUe=0, inQ, 

Ue=0, on aQ, 

and let q$e(X, t) be a solution of the following heat equation with Dirichlet boundary 
condition: 

( te = Aqe -Pe 7 in Q, 
(5.6b) q$e=O, on&Q 

However, there is some trouble when we try to construct u1 in the expansion of 
the numerical scheme. As can be seen, (3.5) does not necessarily have a solution 
in the Dirichlet gauge formulation. Since atVq0o is not orthogonal to the normal 
vector at the boundary, this leads to the incompatibility of the boundary condition 
for u1. Yet, to continue our analysis, we can still construct an arbitrary field ul 
such that 

(5.7) U =atV1e, on aQ. 
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We still adopt the notation in Section 2. Let it, = ul + atae, and construct 

(5.8) U*= Ue +Atitl, U = Ue +AtUl, i = Oe 

It must be mentioned here that U is not divergence free up to an order O(At): 

(5.9) V.U = Ath, where h = Vul. 

This fact will reduce a V1t factor in our estimate, as we can see later. Using similar 
arguments as in Lemma 3.1, we have the following system analogous to (3.9): 

{5lO)- U U + AV(D n = AU*n + Atfn, in Q, 
At 

U(*n = o, on aQ, 

un+ - u*n + V((Dn - 4Dn+l) = At 2g9n in Q, 

I V.Un+l = Ath n+1 in Q, 
(5.lOb) -Dn _Dn+1 = -0 on aQ 

I U 0=u + Atwo in Q, 

where fn, gn, hn+l and wo are bounded functions. 
Using the same notation as in (3.17), i.e. 

(5.11) en = Un _ un e~n = U*n _ jn qn = (?n - ogn, 

and subtracting (5.10) from (5.5), we get the system of error equations 

en-_ en e tn+Af nQ 

(5.12a) ( At 
n 

- Vzq 
n 

+ Atfn in Q, 

( 
en =O on aQ, 

I en+1 n + Vl (qn qn+l) = At2gn in Q, 

V en+1 = Athn+l, in Q, 
(5.12b) n 

q -qn+ =) O, on aQ, 
eo = Atwo, in Q. 

We will continue to do energy estimates as in Section 2. Applying the same 
procedure, taking the inner product of the first equation of (5.12a) with 2Un, we 
get 

IIj,nII 2 _ lnll 2 + Ilin _ en II 2 n 2AIIvel 2 

(5.13) < At3 llfnll2 + C/At Ilenll2-2/At j n. V\qn dx 

Taking the inner product of the equation of (5.12b) with 2en+1 yields 

IIen+1 11 2 _ I|enll 2 + IIen+1 - enI 2 
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Next, we estimate the last term of the right hand side, which is caused by the fact 
that Ul is not divergence-free: 

I --21 en+l.V(qn- q+l) dx = 2 j(V. en+)(qn - qn+l) dx 

(5.15) 
( 2Atj hn+1(qn -qn+1) dx < CAt2Ih n+ 1I2 + Cllqn - qn+l 1 2 

Since qn - qn+l - 0 on the boundary, by the Poincare inequality we have 
lqn - qn+l 1 2 n C2 lV(qf - qn+l) 11 2 

(5.16) < C2 1(0n+1 -en) + At2gnfII 2 

< C2||en+1 - 2 + CAt4(gllgnI2 

Since we can always adjust Ci so that C0C2 < 1, we have from (5.14)-(5.16) that 

(5.17) 
110n+1 2 - 11 2 + en+1 _ n- 2 < AtIIn+e II 2 + CAt2Ih n+ 11 2 + At3 lgn 11f 2 

The estimates (3.22) and (3.23) are still valid here. Finally we obtain 

lie +11 llenll 2 2 AtIIVeTI 2A+t(IIAqn+l 2 q- |Aqn|2 

(5.18) < CAt (Ile nll 2 + llen+ll 2) + At2 1Aqnll 2 

+ CAt2 h~2n+1I 2 + CAt3(llfnll2 + ((g n12 + At(Ig(nII2) 

Applying the discrete Grownwall lemma to the last inequality, we arrive at 

(5.19) lIetmIn + Atl/2 iIVe II + Atl/2 nlAqT C < C At, 

where only the At error estimate for the velocity field is available. Theorem 5.1 
is now proven. O 
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