
MATHEMATICS OF COMPUTATION 
Volume 69, Number 232, Pages 1457-1480 
S 0025-5718(00)01223-0 
Article electronically published on March 15, 2000 

APPROXIMATING THE EXPONENTIAL 
FROM A LIE ALGEBRA TO A LIE GROUP 

ELENA CELLEDONI AND ARIEH ISERLES 

ABSTRACT. Consider a differential equation y' = A(t,y)y, y(O) = yo with 
yo C G and A: R+ x G -* g, where g is a Lie algebra of the matricial Lie 
group G. Every B E g can be mapped to G by the matrix exponential map 
exp (tB) with t C R. 

Most numerical methods for solving ordinary differential equations (ODEs) 
on Lie groups are based on the idea of representing the approximation yn of 
the exact solution y(tn), tn C R+, by means of exact exponentials of suitable 
elements of the Lie algebra, applied to the initial value yo. This ensures that 
Yn C G. 

When the exponential is difficult to compute exactly, as is the case when 
the dimension is large, an approximation of exp (tB) plays an important role in 
the numerical solution of ODEs on Lie groups. In some cases rational or poly- 
nomial approximants are unsuitable and we consider alternative techniques, 
whereby exp (tB) is approximated by a product of simpler exponentials. 

In this paper we present some ideas based on the use of the Strang splitting 
for the approximation of matrix exponentials. Several cases of 0 and G are 
considered, in tandem with general theory. Order conditions are discussed, 
and a number of numerical experiments conclude the paper. 

1. INTRODUCTION 

Consider the differential equation 

(1.1) y/ = A(t,y)y, y(O) E G, 

with 

A: R+ x G , 

where G is a matricial Lie group and g is the underlying Lie algebra. hI this case 
y(t) E G, and for sufficiently small t it can be written in the form 

y(t) = e'(t)y(O), 

where a is a suitable function, a(t) E g. A Lie group is a differentiable manifold 
endowed with group structure. The Lie algebra g of G, its tangent space at the 
identity, is a linear space, endowed with an anti-symmetric binary operation (called 
commutation) [I, ]: g x g -> g and a natural mapping exp: g > G. In the case 
of matricial Lie groups and algebras the commutation is [A, B] AB - BA, the 
standard matrix commutator, and exp is the matrix exponential. 
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Differential equations on Lie groups are well known as models of several problems 
arising in physics. Some of them can be directly written as differential equations 
on Lie groups; others are given with respect to manifolds that are invariant under 
the transitive action of a Lie group (homogeneous spaces). 

Problems of mechanical systems and robotics are modeled using the special or- 
thogonal group SO(m), problems of volume conservation and fluid dynamics can 
be expressed in terms of the special linear group SL(m), and the conservation of 
the symplectic form in Hamiltonian systems involves the symplectic group Sp(m). 

Numerical methods considered here are designed so that approximations Yn of 
the solution y(tn), tn E IlR+, stay inside G. For this reason, here and in the remainder 
of the paper we call them Lie-group methods. In [10] the authors show how Lie- 
group methods can be extended to homogeneous spaces by means of a transitive 
action of a Lie group. 

The solution of (1.1), y(t) = e(t)yo, is such that a(t) E g obeys the equation 

c =A?+ [A, a]+ 1 [[A,l],a] - [[[[A,a],a],a],a] + 

with a(O) = 0. 
Given a suitable approximation to a in the Lie algebra, exponentiation produces 

an approximation of y(t) in the Lie group G. That is why virtually all Lie group 
methods are realized by writing the approximation Yn of the solution y(t,), tn E R+, 
by means of exact exponentials of suitable elements of the Lie algebra, applied to 
the initial value yo. Significant examples of such techniques are given by the method 
of Crouch and Grossman [2], based on rigid frames, the Runge Kutta-type methods 
of Munthe-Kaas [9], the method of iterated commutators of Zanna [18] and the 
method of Magnus series of Iserles and N0rsett [7]. 

All these methods need to evaluate (or suitably approximate) the matrix expo- 
nential once (and often repeatedly) in each time step. This can be a very challenging 
task when the dimension is large. 

Suppose that we embed the equation (1.1) in Rmxm. Conventional methods to 
approximate exp (tB) may lead to a final approximation, Y yId that departs 
from G. Hence, such methods may obviate the advantages in the conservation of 
invariants and symmetries that have motivated Lie-group methods at the first place. 
The aim of this paper is to present and study approximations F(tB) exp(tB) 
such that Yn E G, in other words to ensure that F: g > G. 

Standard approaches for large matrices, e.g. polynomial or rational approxi- 
mants, do not guarantee that in general Yn belongs to a Lie group. Polynomial ap- 
proximants are typically based on the construction of approximations of exp (tB)v 
(v E Rm) belonging to some Krylov subspace Kn(B, v) = span{v, Bv,.. ., Bn-1v}. 
If v is the i-th column of some matrix V E G and B E g, then Pn_l(tB)V E 
Kn(B, V) n G if and only if Pn_i(tB) E G, but in general it is not true that 
Pn-1 : g -> G. Rational approximants, e.g. Pade approximants, replace the ex- 
ponential by a suitable rational function: again, there is no guarantee that the 
outcome lies in G. An important category of Lie groups lends itself to suitable 
rational approximations. This follows from the following theorem on analytic ap- 
proximants. 

Theorem 1. Consider the Lie group G := {y E GL(m) = p}, where P is 
a nonsingular m x m matrix and the corresponding Lie algebra g = {x E gr(m) 
xP + PxT = 0}. Let 0 be a function analytic in a neighbourhood Uo of 0, with 
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q(O) = 1 and 0'(O) = 1. If 

(1.2) 0(Z)0(-Z) -1 

Vz E Uo, then 

(1.3) Vx E g, 0(tx) C G 

for t E R+ sufficently small. Moreover if 3 x E g such that u(x) # {O}, where u(x) 
denotes the spectrum of x, then (1.3) implies (1.2). 

Proof. Let q$ be a function analytic in a neighbourhood Uo of 0, with q(0) = 1 and 
0'(0) = 1. Given x E g, the condition b(tx) E G means that 

0(tx)P0(txT) = p; 

hence, by virtue of the analyticity of b, 

0(tx)q(tPxTP-1) = I. 

Note now that x E g if and only if PxTP-1 = -x, and hence 

(1.4) q(tx)q$(-tx) = I, Vx E VI 

i.e. (1.4) is equivalent to (1.3). Since (1.2) implies (1.4), the first part of the 
theorem is proved. For proving the converse, suppose that (1.3), i.e. (1.4), holds. 
By considering the Schur decomposition of x it is easy to realize that 

A E u(x) X q(tA)q(-tA) = 1 

for tA E Uo. Suppose that 3x E g such that 3A e u(x), A t 0. Then 3t > 0, t e R, 
such that t E [0,t) X tA E Uo and 0(tA) $ 1 for t t 0. Then 0(z)0(-z) = 1 for 
z = tA and t E [0,t]; but then 

q(Z)0(-z) = 1 

Vz C Uo. 

Concrete examples of such Lie groups are for instance O(m), in which case P = I, 
and SP(m), in which case 

p 
- 
OI a 

In the complex case, replacing the transpose with the conjugate transpose, the same 
result holds for G = U(m). Diagonal Pade approximants are analytic functions that 
fiulfill (1.2). 

On the other hand this result is not true for every subgroup of GL(m), and in 
particular the following theorem is relevant to the case of the special linear algebra 
and group. 

Theorem 2 ([3]). The only function 0 analytic in a neighbourhood of 0 with 0q(0) = 

1 and 0'(0) = 1, such thatVx C 6r(m) q$(tx) E SL(m), m > 3, for t E I+ sufficently 
small, is the exponential map. 

Proof. Our proof differs from [3]. We show that there exists D e st(m) such that 
0(tD) E SL(m) only if Sb is the exponential map. Consider a diagonal matrix D 
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belonging to sr(m) but such that Dk s sr(m) for k > 2. Then b(tD) c SL(m) if 
and only if 

m 
(1.5) det(q (tD)) = I| 0(tdi) 1, 

i=l 

where di for i = 1,... ,m are the eigenvalues of D. Let us consider the function 
+O(z) := log q(z), which is analytic in a neighbourhood of the origin, and let +L(z) = 

Zk=o VPzk. Now from (1.5) 
m 

(1.6) ZO(tdi) = 0. 
i=l 

Consequently 

Z/kt k dk =o. 
k=0 

Then, since Em di = 0 but trDk = Em di 7$ 0 for k > 2, necessarily k = 0 for 
k > 2 and +(z) = b1lz. This implies q(z) = exp(4'lz). Moreover, q'(0) = 1 implies 
4'i =1. D 

It turns out that, for B E st(m) any approximation of etB should be expressed 
by means of exact exponentials of elements in st(m) in order to belong to SL(m). 

Note that the above restriction does not hold for every subgroup of SL(m), an 
example being the subgroup SO(m), whose elements are the orthogonal matrices 
with determinant equal to 1, since for any function 0 fulfilling the hypothesis of 
Theorem 1, continuity of the determinant implies that 0(x) E SO(m) Vx E so(m). 

In the following we will consider the idea of splitting the matrix B E g into a 
sum of low-rank matrices Bi belonging to g for the approximation of etB. 

Splitting methods have been considered by various authors in different contexts: 
for constructing symplectic methods [11], for constructing volume-preserving al- 
gorithms [3], and in the PDE context [12]. An extensive survey of the theory of 
splitting methods can be found in [8]. 

The idea is as follows: given an Tn x n matrix B E g, we split it in the form 
k 

(1.7) B = EBi, 
i=1 

the exp(tB) is then approximated by F(tB), and 

F(tB) exp(tBi) ... exp(tBk). 

In general the computation of each of the exponential terms exp(tBi) for i = 1, ... , k 
implies the same cost of computing exp(tB) directely. For general splittings (1.7) 
this procedure can hardly be competitive with direct calculations of exp(tB). How- 
ever, we will show in this paper that splitting B E g into appropriate low-rank 
terms Bi belonging to g, such that the exponentials exp(tBi) are easy to compute 
exactly and can be cheaply multiplied together, makes this approach competitive 
with classical techniques. The computational costs that we obtain are of the type 
Cm3, where C is a constant depending on the order of the approximation and m is 
the dimension of B. Standard classical techniques such as diagonal Pade approxi- 
mants normally require computational costs of the same order of magnitude (mi3), 

with different constants C depending on the order required. 
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However, the main motivation of our work is obtaining approximations to the 
exponential that, given a matricial Lie group G and its corresponding Lie algebra 
g, map elements of a neiborhood of the origin of g to a neighborhood of the identity 
of G. Low-rank splitting methods fulfill this requirement, because, provided that 
Bi E g, the approximation F(tB) resides in the Lie group G. 

If g = st(m) and m > 3, diagonal Pade approximants can be used only if the 
approximation is accurate to machine epsilon. The Matlab function expm imple- 
ments a diagonal Pade approximation of exp with a scaling and squaring technique; 
running this function on randomly generated matrices, it is possible to verify that 
obtaining an approximation of exp(tB) to machine accuracy yields C in the range 
between 20 and 30, depending on the eigenvalues of B. In the case of the approxi- 
mation of exp(tB)v and v E Rm the costs of low-rank splitting methods drop down 
to Cm2 and are then comparable to those obtained by polynomial approximants 
[6], [5]. In Section 5 we present the values of the constants we obtain with the tech- 
niques proposed in this paper for different orders. Under the above considerations 
the values obtained confirm that it is cheaper to use such approximations instead 
of the built-in function of Matlab when machine accuracy is not required in the 
final approximation. 

In Section 2 the problem of how to perform the decomposition of B E 0 into 
low-rank matrices Bi Ec will be considered in the cases g = so(m) and = st(m). 
In Section 3 we will discuss the order conditions and consider the so-called Strang 
splitting, which is the optimal second-order splitting within our framework. In 
Section 4 techniques for increasing the order of the methods will be discussed. In 
Section 5 some numerical experiments are presented. 

2. LOW-RANK SPLITTINGS 

Given an m x m matrix B E g, we split it in the form 

k 

B = EBi, 
i=1 

such that 

1. Bi E p, for i = I,..,k. 
2. Each exp(tBi) is easy to evaluate exactly. 
3. Products of such exponentials are cheap. 

We approximate 

(2.8) exp(tB) F(tB) = exp(tB,) exp(tB2) ... exp(tBk). 

Similar types of approximation have been considered in [11], [13], [12], although not 
in the context of Lie group methods. It is well known that (2.8) is an approximation 
of order one. In [13], [12], order analysis is developed extensively. In Section 4 our 
observations on the order of the methods follow a similar path. Given a splitting 
B = k=3 Bi, for obtaining approximations of order higher then one, in general 
the number of exponentials to be multiplied together is r > k. 

Suppose now that C = Bi is a low rank matrix, i.e. 
p 

(2.9) c = alT = a3T 

1=1 
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with a1,f31 E R', where p > 1 is a small integer and a = [ai,. . . . ,a], 03 = 

[)31 ...* 7 3p] are m x p matrices. 

Definition 1. Let rc := rank(C), C E Mm,m[I.R]. We say that the decomposition 
(2.9) of C is optimal if p = rc. 

The decomposition of C is optimal if and only if a and ,3 are full-rank matrices. 
The following proposition gives an explicit formula for computing exp(tC). 

Proposition 3. Setting D = 3Ta and C = a,3T, the function exp(tC) can be 
calculated by the explicit formula 

(2.10) exp(tC) = I + tap(tD)/3T, 

where Wp(z) := (ez - 1)/z is an analytic function. 

Proof. Note that for n > 1, Cn = (a/3T)n = C(63TC)n-13T - aDn-13T. Then, 
since p(z) = EZ I 

I zn-I we have 

exp(tC) = I? a E n! tnDn-13T = I + taip(tD)f3T. 
n=l 

D 

Note that C = aIX3T is an optimal decomposition if and only if D is nonsingular, 
whence tp(tD) = D-1 (etD - I). Under the hypothesis of Proposition 3, computing 
exp(tC) via the formula (2.10) is very cheap. We approximate each exp(tD) with 
a diagonal Pade approximant at the cost of q . p3 flops for a p x p matrix, where q 
is the degree of the polynomials in the rational function. 

The cost of evaluating exp(tC) is 
* 2p2m flops for computing D; 
* qp3 + 5p3 + p flops for computing D1(exp(tD) - I); 

and 
* 2pm2 + 2p2m + m flops for multiplying a, D (exp(tD) - I) and '3T and 

adding I. 
In total, we get 2pm2 + 4p2m + (q + 5/3)p3 + p + m flops. 

The cost of evaluating the product of r of such exponentials when every Bi can 
be expressed in the form (2.9) is 

r[2p2m + (q + 5/3)p3 + p] + 2p2m + 2pm2 + m + (r - 1)(m2 + 4pm2 ?t2p2m) 

= 4rmp2 + 2(2r - 1)pm2 + (r - 1)m2 + m + r[(q + 5/3)p3 + p]. 

We separate the cost of computing the first factor of the product. The factorization 
of exp(tC) - I given in terms of a and /3 in (2.10) allows significant saving in 
computations: the cost of multiplying an m x m matrix by exp(tBi), given in the 
factored form (2.10), is m2 ? 4pm2 + 2p2m flops, which is lower than 2m3, the usual 
cost for a product of two m x m matrices. 

Subject to the extra assumption that rp is a multiple of m, we can simplify the 
previous expression by considering only the leading term, and we get 

2(2r - )pm2 (r-1)m2. 

If r = k and we take kp = m, this leads to a count of about 5m3 flops in the 
order-one approximation. 
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Note that in the case of differential equations whose solution evolves on an homo- 
geneous space M of dimension m, subject to the transitive action of matricial Lie 
group G C GL(m), the approximation of the exponential map is an easier compu- 
tational issue, because in this case we are interested in finding exp(tB)v F(tB)v, 
where v E M is m-dimensional. In this case the factors that, composed together, 
give F(tB) can be applied directly to v at a cost of m + 4pm + 2p2 flops, and in 
total 

(2.11) r[2p2m + (q + 5/3)p3 + p + m + 4pm + 2p2] 

flops, and the cost for r = k and kp = m drops down to about 5m2. In this context 
the computational costs of our approach are comparable to the costs obtained with 
polynomial approximations (e.g. Krylov subspace methods [6], [5]). In the following 
we will refer to the count of flops only in the former case, considering that the latter 
can be recovered by dividing by m. 

In the next section we will show that it is possible to obtain even lower costs in 
the actual implementation of these methods. 

We observe that the optimality both of the decomposition of the Bi's and of 
their sum B requires that kp is minimal. 

In the following proposition we consider the problem of converting a nonoptimal 
decomposition in an optimal one. 

Proposition 4. Let C = aC!3T be a decomposition of C of type (2.9) and suppose 
that rc = rank(C) < p. It is possible to construct & and O3 such that 

C O!p 

is an optimal decomposition. 

Proof. We will prove the assertion by constructing & and O3, distinguishing between 
two cases: 

1. r: rank(a) < p; 
2. rQ =p but r,3 := rank(/3) < p. 

Case 1. Consider the factorization a = QQRQ, where Q, mx rQ is a matrix with 
orthogonal columns and RQ = QTa, is a rQ x p matrix. Consider the m x rQ matrix 

/3Ra. If rank(/3R.) = rQ, then take & := Q, and 3:- /ROf; otherwise redefine 
a :=QO,/3 := O/3R, r := rank(/3), and consider an analogous factorization for 
/3 = Q8R,8 with Q8 an mx r, matrix with orthogonal columns and R,B = QT 3 an 

r, x rQ matrix. Now if rank(aRl) = r,8, take /3 := Q,B and a := aR,; otherwise 
redefine B := Q8, a : aRT, r,: rank(a), and repeat the procedure. It will 
terminate in a number of steps less than or equal to rC - rQ. 

Case 2. Finally, if rQ := rank(a) = p, but r, := rank(/3) < p, start the process 
by factoring ,3, rather than a. L 

The proof of Proposition 4 is an algorithm for converting a nonoptimal decom- 
position of C into an optimal one. For computing the factorizations a = QQRQ 
and ,B = Q,8R,3 it is possible to use a modified Gram-Schmidt algorithm at the cost 
of mp2 flops, or to use a Householder transformation at the cost of 2(mp2 - p3/3) 
flops. Subsequently, computing ~o(tD), it is possible to carry out such an algorithm 
and to use the inverse of D in (2.10), although, alternatively, one can consider a 
rational approximant for p(tD) or perform the spectral decomposition of D. 
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2.1. Splitting in a Lie algebra. The issue of this section is, given B c 0, to find 
a splitting of B into low-rank matrices Bi c g. We give now an example of optimal 
and another of a nonoptimal decomposition of B c so [i, R]. 

1. Columnwise decomposition. The simplest choice corresponds to p = 2, k = 

m - 1. Taking B[o] := B, we let 

B1 = b[Ol ]eT - elb[O]T Cso(m) 

where b[l is the first column of B[?] and el is the first vector of the canonical 
basis of lRtm; in general take BWI] := B[I- -Bi and 

Bj+l = b[i+ei+lT _ ei+lb ij1 C so(m) 

where b[+ is the first nonzero column of B'l] and ei+l is the i + 1-th vector i+1 
of the canonical basis of Rm. A different way of obtaining the same decom- 
position is 

1 T1 T Bi = -bie _-eib i = 1, 2, ... m 

where b1, ... , bm are the columns of B, and k = m in this case. 
Regardless of the sparsity of the vectors that define the decomposition, the 

computational costs given by (2.11), putting r = k and kp = 2m, amount 
to lOm3. More careful analysis, based on the fact that inner products with 
respect to vectors of the canonical basis are very inexpensive and that the 
vectors b[1 have m - (i - l)p/2 nonzeros, results in the following count of 
flops for the product of the exponentials: 

k 

Z {2m[m - (i - l)p/2]p + 2p2M + m[m - (i - 1)p/2]} 

After straightforward calculation this sums up to 

(2p + 1)m[km - pk(k - 1)/4] + 2kp2M. 

For kp = 2m we obtain a leading term of 2m3 + mi3/p for the order-one 
method. 

In the case p = 2 an extra saving in the multiplication by the m x 2 matrix 
a reduces the cost of the product to 2m3. 

This decomposition is not optimal. Although in principle it is possible to 
convert it to an optimal one, it might be possible that the Bi's will no longer 
belong to g in that case. 

A similar strategy can be used for decomposing matrices B E s ((m). Taking 
B[] := B -diag(B), we let 

=[0] T [OIT 
B1 = b1 el + eial C ES(m), 

where b[?] is the first column of B[?] a,[a is the first row and el is the first 
vector of the canonical basis of lRm; in general take BWI] := Bi-']- Bi and 

= e T [i]i1i1+e+a+ T Ji) Bj+l -- bi[+'lei+l + ei+lai+l E -61(m)7 

where b,i+ is the first nonzero column of BI, ai'] is the first nonzero row and e i+l s the i + 1-th vectorofthecanonicalbais+1 

ej+l is the i + 1-th vector of the canonical basis of lRm. Then Bm = diag(B). 
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2. Optimal decomposition. More interesting is the case p = 2, k = Lm/2J. 
Subject to the assumption that b[] = b2,1 7 0, we commence by letting 
B[?] = B and 

B, (b] b[1 - b[?]b E) c o[m, R]. 

Therefore 

b[?] b[?] - b[01 b[,] J bI, k 1, Bkl 2,k 1,1 1, k 2,1 11 1 
(Bl = b[?] lb2,1, k =2. 2,1 

Next we set B[11 = B[?] - B1 and denote its columns by b[1,.. ., b1]. Note 
that b[1 b[1] = 0 and nonzero entries are confined to the lower (m -2) x (m -2) 
principal minor. We let 

1] (b 1]b - b[1]b ) E so [m,IR] 
b4,3 

and continue in a similar vein up to Bk, where k = [m/2J. In this case the 
decomposition is optimal, but it could cause instability due to the division by 
the values b[j -]-l for j=1,..., k. In order to overcome these problems the 
decomposition can be implemented using a pivot strategy that allows us, at 
every step, to divide by the element of largest absolute value. 

The cost of computing such a decomposition can be estimated as about 
m3/2 operations. The cost of computing the product of the exponentials 
resulting in F(tB) is 

k 

S {4m[m - (i - 1)p]p + 2p2m + m[m-(i- 
i= 1 

which leads to a leading term of 2kp2m + (4p + 1)m[mk - pk(k - 1)/2], or, 
taking kp = m, 2m3 + m3/2p. For example, p = 2 yields 2.25m3. 

In the following section the optimal decomposition will be extended to the 
case of the Lie algebra st(m). 

2.2. General bordered matrices. Let B E so[m,IR]. In columnwise decomposi- 
tion every matrix Bi reconstructs one row and one column of the matrix B, and two 
rows and columns in the optimal decomposition. We generalize these techniques to 
the case of p rows and columns for any B E Mm,m[R]. 

To this end we consider a bordered matrix 

(2.12) C [G I 

where E E Mr,r[IR], G E Mm_r,r[IR], F E Mr,m-r[IR] and 0 E Mm_r,m_r[IR]. The 
interesting case is, of course, when r is considerably smaller than m. The matrix 
C might belong to a Lie algebra, although this will not play a central role in our 
discussion. If we rewrite C as a sum of rank-one matrices, we can apply formula 
(2.10) for computing exp(tC). Suppose that 

G2 where 2 
F=[F E F2], 

where GI, F1 ? Mr,r,[R]. 



1466 ELENA CELLEDONI AND ARIEH ISERLES 

Proposition 5. Given a bordered matrix (2.12), if det(FI) 7? 0 it is possible to 
decompose 

2r 

C = a)3T = S 

1=1 

where a, and ;31 1 = 1, 2,... , 2r, are the columns of a and of /3, respectively. 

Proof. Supposing that 

.a[1J )[3' 

where &,(/ /E M2r,2r [IR], the proposition will follow from (for det 3? 0) 

LT E F1 T 

&/3 = G, O ]5 
3 

[ 
T _~~~~~T 

q3 = [cG2 0] , _3 =0. 

We let 

x=[G2 ?]T 

where the nonsingular matrix ,l3 is arbitrary. An obvious choice is /35 = I. L] 

Note an alternative course. of action, namely to L U-factorize: 

and set & = L, /3 = U, whence 

(2.13) a [ [ G2 O] U-1l, ' = [L-1[ ] I X 

In this case, however, the decomposition of C is not optimal. 
1. Columnwise decomposition. When we consider the decomposition of the ma- 

trix B = Zk=1 Bi such that every Bi is a bordered matrix, then putting 
Bi= C and writing C as a sum of rank-one matrices for i-=1, ... ., k, we 

obtain a nonoptimal decomposition of B as a sum of rank-one matrices. For 
r = 1 we have a generalization to the case of B E Mm,m [IR] of the columnwise 
decomposition described in the previous section. 

2. Optimal decomposition. An alternative way of proceeding in order to obtain 
an optimal decomposition for B is the following. Suppose that 

and det F 7 0. Defining B[?] - B, we consider 
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where ck,,3 ? Mm,r [IR]. Thus 

Bl= 3T= [ G GE-1F] 

and taking B[1] = B[?] - B1 we have 

B[1I [ o 0] 

with S := H - GE-1F e Mm-r,m-r[IR], so that we obtain an analogous 
problem of reduced dimension that we can reduce further using the same 
technique. 

The case r = 2 corresponds to a generalization to the case of B e Mm,m [R] 
of the optimal decomposition described in the previous section. 

Note finally that if B E so[m,R], then GE-1F e so[m,R]; therefore also B[11 e 
so[m, R]. Moreover, as we will see in the next section, in the case of B e sf[m, R] 
the condition Bi E sr[m, R] is not necessary for exp(Bi) ... exp(Bk) E SL(m). 

A different way of addressing the problem is to compute exp(tC) directly, using 
the technique based on the following observations. 

Proposition 6. Consider the bordered matrix C (2.12), define the (2r) x (2r) ma- 
trix 

p _ 0 Il 
ljFG E ], 

and suppose that its exponential is 

Then if det(FG) :A 0, the exponential of C is 

etc 
= [(t) (t) 

[ lF(t) @J(t)J] 

where - = 1, E = EF, 4 = GE and T = I + G(J - I)(FG)1F. 

Proof. We denote powers and the exponential of C by 

ck [ Fkk ek 1, k E Z etC= 
[ 

(t) (t) 1 

Multiplying Ck by C on the right, we derive the recurrences 

Fk+1 = rkE + ?kG, 

Ak+1 = ZkE + QkG, 

Ek+1 = FkF, 

Qk+1 = AkF7 

while multiplication by B on the left yields 

Fk+l = EFk + FAk, 

Ak+1 = GFk, 

Ek+1 = EEk + FQk, 

Qk+1 = GEk. 
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From all this we deduce the differential equations 

(2.14) ' - E + EG, 
(2.15) D' =E + 'G, 

(2.16) E' = BF, 
(2.17) @' = F7 
(2.18) ' =E? + F, 
(2.19) = GE, 
(2.20) E' = EE + FxJ, 

(2.21) T' = GE. 

We commence by differentiating (2.14) and substituting (2.16). The outcome is 

(2.22) B"-B'E-FG = O, 

given with the initial conditions B(O) = I, '(0) = E. Alternatively, we may 
differentiate (2.18), substitute (2.19), and conclude that 

(2.23) "-E'- FG- =0. 

Let 

p =[ I ] 

Setting 

we see from (2.23) that the function obeys the linear system Y' = PY, hence 

Y =etP [ I] 

Thus, integrating, 

Howvr iiT)d(t 1 
+ (e - 

t-I)P-1[ 

However, it is easy to verify that 

[FG E [E ]=[I 
7 

and we deduce that 

[ J%O(rVd 2 =exp (t F G E 

Let 

Therefore 
-, jt 
= @) / ~(-r)d-r 
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It follows from (2.16) and (2.19) respectively that 

E = ZF, 4D = GE. 

Finally, to derive ', we integrate (2.21). Hence 

t 

@ = I + G Z (T)dTF. 

Note however that 

*,l e7dt[0 ](e -IP [0 ] ? @I][(FG) 

therefore 

(2.24) 'I = I + G('J - I)(FG)1 F. 

Finally, we demonstrate directly that (2.22) and (2.23) have the same solution. In 
principle, there is no need to do so, since the assertion follows from our construction. 
Yet, a direct proof is nice, and it sheds light on the importance of the initial 
condition B(0) = I, B'(0) = C. We thus substitute 

B(t) = ESlk 
k=o 

in (2.22) to derive the recurrence relation 

(2.25) k+2 = Ek+l + Rk, k e 

Therefore 

0= I, 

=1 E, 

= E2 + R, 
= E3? (ER+ RE), 

4= E4 (E2R+ERE+RE2) +R2, 

and so on. We claim that, in general, 

(2.26) k= S E2RE"'R ... REt', k Z 
21<k io,ij,...,ij>o 

io+ +ii=k-21 

The proof is by induction. Suppose thus that (2.26) is correct for k and k + 1, and 
substitute in (2.25). Therefore 

k+2 E Ei+l REi R ... RE 
21<k+1 i0,ij,...,ij>O 

io+ +il=k+1-21 

+ E E RE20RE"R. .REi" 
21<k io0ij,...,ij>O 

io+ +ii=k-21 



1470 ELENA CELLEDONI AND ARIEH ISERLES 

But 

>IE E%O+lRE" R ... RE" 
21<k+l io,ij,...,ij>O 

io+ +ij=k+l-21 

EZ >1 E%o+lRE%RR... REi 
21<k+l i0>1, jj,...,ij>O 

io+ +1ij=k+1-21 

and 

S S RE'? RE" R .RE 
21 k io ,ij ,.. .,ij >O 

io+ +%il=k-21 

= E E E%ORE%lREi2R...RE"+ 
21<k 'j=0 ijj,...,jj+j >O 

io+ +il+l?=k-21 

E. E E'OREi'R. ... REi 
21<k+2 i0=0 jj,... ,ij0 

io+ **+il=k+2-21 

Adding the two expressions affirms the validity of (2.26) for k + 2. 
Substituting the expansion in (2.23) gives the recursion 

k+2 = k+1 E + kR, k e Z+ 

and comparison with (2.25) demonstrates that the two expansions are symmetric 
mirror images of each other. However, (2.26) is symmetric, hence its own mirror 
image. This concludes the proof. 

Note that directly from the previous proposition it follows that the exponential 
of a bordered matrix can be espressed in the following way: 

etc =[ [ ] + CQP)3T 

where a and ,3 are m x (2r) matrices and ,o is a (2r) x (2r) matrix. More precisely, 

0R [ G ' 0[ F T, 

and 

9 L S(IF -I)(FG).-l U 

As already pointed out, this formulation lets us save computations in performing 
the products between the computed exponentials of the terms of the splitting. 
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2.3. Implementation. We commence from the case B e so[m, IR] and set 

0 al,2 2al,3 * * al,m 

a2,1 ? 1a2,3 * *a2,m 

BD = a3,1 2a3,2 0 ... 0 

L 2 am, 1 2am,2 0 0 
2 12 
o o ~a,2 3 2 a14 0 * 0 

o o 2a2,3 2 a2,4 0 ... 0 

2a3,1 2a3,2 0 a3,4 2a3,5 * * a3,m 

B2= 1a4,1 la4,2 a4,3 0 2a4,5 . a4,m 

O O la5,3 la5,4 0 0 O 

1 1 

O O lam,3 1am,4 0 ... 0 

and so on. Each Bi is skew-symmetric and, up to a trivial permutation, bordered 

with r = 2. Moreover, if m is even then k = m/2, while if m is odd then we are 

left at the end with (m - 1)/2 bordered matrices with r = 2 and a single one with 

r = 1. Hence, altogether k = L(m+ 1)/2J. 

Next, let us consider B e s([m,7 R]. The only impediment to a construction as 
above is that taking two rows and corresponding columns of B fails to produce a 
matrix in sI[m, R]. 

Note, however, that in this case if Bi e Mm,m[R] are general matrices, then 

k k 

detetBletB2 . . . etBk = JJdetetBi = JlJexp(ttrBi) 
i=1 i=1 

= exp (?ttrBi) = exp(ttrB) = 1, 

and therefore 

e tBi etB2 . . . etBk Ce SLI[m, RI.] 

We conclude that the optimal decomposition can be performed when B e s([m, R], 

disregarding the fact that B1, . . . , Bk may be outside the Lie algebra. 
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Alternatively, it is possible to consider 

p1 al,2 2a1,3 ... al,m 
i 2 12 

a2,1 -'1 a2,3 ... * a2,m 

B1 2a3,1 la3,2 U... U 

1 
m, 

1a 
2am,1 2am,2 0 0.. O 

o o 2a1,3 2al,4 0 ... 0 

o o 'a2,3 1a2,4 0 0 

2a31 Ia3,2 12 a3,4 2a3,5 * * a3,m 

B2 = 1 a4,1 1a4,2 a4,3 -/32 a4,s * * a4,m 

o O I a573 , a54 0 0 * 

o o ~2am,3 2 am4 0 ... 0 

and so on, where i13, /22,... . .3k- 1 are arbitrary real scalars, kL(m+ 3) /2], and 

Bm = diag (ai,, -1, a2,2 + 1, a3,3 - 2 ,a4,4 + 32 ...) 

Note that B1, B2, ... , Bk E S[m,I R]. 
To choose 31,... ,7 k-1, the most natural strategy is to let 

13i = 2(a2i-1 ,2i-1 - a2i,2i)- 2i < m, 2 

since this projects the vector [ a2i-1,2i-1 a2i,2i ] onto the one-dimensional sub- 
space spanned by [ 1 -1 ]. Note that, in that case, 

a2i- 1 ,2i- 1f-3i = a2i,2i + fi = 2(a2i- 1,2i- 1 + a2i,2i). 

If m is odd, we let /3(m+l)/2 = am,m. 

3. ORDER CONDITIONS 

Comparison of the Taylor expansions leads to the following order conditions for 
the approximation of exponentials by splitting methods: 

k 

(3.27) p > l: ZBi = B, 
i=1 

Ik k-1 k 

(3.28) p > 2: - B + E E = BiBi = BB2 
i=1 i=1 l=i+l 

Ik k-1 k 

P>3: 6EB3+ 2E E (Bi B,+ BiBl2 
(3.29) i=1 i=1 l=i+l 

k-2 k-1 k 

+E E E Bi = BIBj = -B3. 
i=1 l=i+l j=l+1 
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Substituting (3.27) in (3.28), we obtain, after brief algebra, the order-two con- 
dition 

k-I k 

(3.30) E E[Bi, B,] = O. 
i=l l~=i+l 

Given Bl,... ,Bk, 

exp(tBi) ... exp(tBk) = exp(C(t, BI,.. , Bk)), 

for t sufficiently small, where C(t, BI,... , Bk) can be expressed as an expansion 
in powers of t whose coefficients are given in terms of iterated commutators of 
B1,-.. , Bk via the Baker-Campbell-Hausdorff (BCH) formula, [16] p. 114, [1]. Equa- 
tion (3.30) and futher order conditions for the methods are a direct consequence of 
the BCH formula. However, after only a few terms in the expansion, the explicit 
expression for the coefficients becomes very complicated and in practice useless for 
computational purposes. 

If B = Ej=k B., the sequence 

B1,). . .) 1Bk-1) Bk) 
1 

Bk-l . ... 2B, 

satisfies order-two conditions and is known as Strang splitting [14]. 

3.1. Optimality of the Strang splitting. Let us examine a splitting 
k 

B = EBi 
i=1 

of order 1, assuming that the matrices B. do not commute. We will consider 
splittings 

r 
(3.31) B = AIBw() 

1=1 

suchthatAl#O0forl=1,...,r,andthemapw:Ir, -Ik,whereIk:={1,...,k} 
and Ir {1, ... , r}, is surjective and defines the splitting (3.31). For the Strang 
splitting we have r = 2k - 1, Al = 2 I # k and Ar = 1. We wish to determine the 
smallest value of r such that the splitting (3.31) is of order 2. 

Proposition 7. If the splitting (3.31) is of order 2, then r > 2k - 1. 

Proof. Recall that a second-order splitting requires 
r-1 r 

(3.32) E E AlA [ Bw (1),Bw (j)] =? 
_1= j=I+l 

Suppose that there exists a splitting (3.31) of order 2 with r < 2k - 2. Then for at 
least two indices j, I e Ir with j #& 1 it is true that if 

w(j) = j*, Vi e Ir \ {j} w(i) 7# j*, 
w(l) = 1*, Vi E Ir \ {I} w(i) #& 1*, 

then j* # 1*. We will suppose without loss of generality that j < 1. Then the term 

A)Aj [Bw(,), Bw(j)] = AlAj [Bi,B) ] # 0 

appears only once in the left hand side of (3.32), and the sum cannot be equal to 
zero. Li 
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Since for the Strang splitting we have r = 2k - 1 and 

Bw(l) = Bw(2k-l) = 2Bk+1l, I1 = 1, 2,... ,k - 1, Bw(k) = B1 

it fulfils the requirements of optimality stated in the previous proposition. 

4. HIGHER ORDER SCHEMES AND OTHER COMPUTATIONAL ASPECTS 

Suppose that 

(4.1) F(t) = etA + EtP+1 + O (tP+2), 

where E E Mm [[R] \ {O}. It is trivial to verify that the approximant 

(4.2) 'G(t, y) F F(yotA)F(yitA) ... F(yrtA) 

is of order p + 1 if and only if 
r r 

(4.3) E a = 1, El 1 = 0. 
1=0 1=0 

Note that (4.3) has no solution if p is odd. On the other hand, it is easy to verify 
that p = 2, r = 2 has a real solution and that this is the least value of r that is 
adequate for p = 2. As a matter of fact, using Lagrange multipliers, it is possible 
to show that the solution of (4.3) which is least in the ?2 norm is 

2 X ' (1+ _)2 
O = 2 = - 6 ' ( IY i 70 = 72 - + - + - 

v 71 =- - 

This technique has been used by Yoshida [17] in the case of symplectic integrators 
for Hamiltonian systems. Here, as in Yoshida analysis, the following definition plays 
a central role. 

Definition 2. We say that a mapping ot: V -* V, defined for all sufficiently small 
Itl and an arbitrary Euclidean space V, is time-symmetric if 

50-t 0 t = Id. 

Lemma 8. The Strang splitting is time-symmetric. 

Proof. Let 

F(t) = e tBketBk1 ... e B2etBle2 ...e e 

be the Strang splitting. It is trivial to verify that F(-t)F(t) = I. Hence the 
splitting is a time-symmetric map. O 

The above result is important by virtue of the following theorem. 

Theorem 9. If Sot is time-symmetric and analytic (as a function of t), then 

OtX = etYo2t3Yl?t5Y2?, X EV 

an expansion in odd powers of t. 

In the special case m = 2 we can use the extended BCH formula (equation 
(12.12) in [11], p. 161), namely 

etX etYetX = eW(t) 
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where 

W(t) = t(2X + Y) + It3[Y [Y X]] - 6t3[X, [X, Y]] + 370t5[X, [X, [X, [X, Y]]]] 

- 360t5[Y [Y [Y, [Y,X]]]] +?1 t5[XI [Y, [Y, [Y,X]]]] +?1 t5[Y, [X, [X, [X,Y]]]] 

- k0t5[X [XI [Y, [Y,X]]] t [YI [X, [X,Y]]]] +?o(t7) 
to prove that, for the Strang splitting, B = B1 + B2, X = 'B2, Y = B1, 

W(t) = t(B1 + B2) + 1 t3[2B1 + B2, [B1, B2]] + 5 60t5{-7[B2, [B2, [B2, [B1, B2]]]] 
- 8[B1, [B1, [B1, [B1, B2]]]] + 16[B2, [B1, [B1, [B1, B2]]]] 
- 16[B1, [B2, [B2, [Bi, B2]]]] - 12[B2, [B2, [B1, [B1, B2]]]] 

- 48[B1, [B1, [B2, [B1, B2]]]]} + 0 (t7). 

Let us suppose that 

F(t) = exp {tB + E t2k+lEk} 
k =q) 

and 

H(t) = F(-yot)F(Qyit)F(-yot), 

where 

2-Yo + Y1 = 1, 22ql + 2lq = -o 

Then, using again the extended BCH formula, we see that H(t) - eV(t), where 

V = tB,+ t2q3{(2~q 2q+3 + y2q+3)Eq+l + 67071Q o + 2q)(7oq- yq)[B, [B, Eq]]} 

+ .o(t2q+4). 
Therefore the outcome, H(t), represents a method of order 2q + 2. Moreover, it 

is trivial to observe that the time-symmetry of F implies that H is time-symmetric, 
since 

H(-t) = F(--yot)F(--y1t)F(--yot) = F-1(yot)F-1(yit)F-1(yot) 
= [F(yot)F(yit)F(yot)]-1 = -1 (t). 

Therefore this procedure can be iterated, increasing the order by two in each nested 
application and with perfect analogy to what Yoshida observed in the case of sym- 
plectic methods. 

Note that Yoshida had two different techniques for increasing the order. Letting 
F stand again for the Strang splitting, the other method reads 

(4.4) F(-rt)F(ry-lt) ... F(yit)F(y0t)F(y1t) ... F(yr-it)F(-yrt). 

The coefficients yo, ... . yr are chosen to maximize order. We already know that 
r = 1 leads to order 4. Likewise, r = 3 results in order 6 and r = 7 yields order 8. 
It is tempting to conjecture that r = 211 - 1 gives order 21. 

At any rate, our claim is that we need precisely 4(k - 1)r + 2k - 1 exponentials 
to evaluate a Yoshida enhancement of type II for a Strang splitting into k matrices: 
Each Strang splitting requires 2k - 1 exponentials, and we have 2r + 1 Strang 
splittings. However, 'endpoint' matrices can be amalgamated, 

eyitBleyi+ltBl = e(-i+Yi+')Bl 
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and this allows us to arrive at the lower count. This, as a matter of fact, is a 
phenomenon which is exclusive to our application, precisely because our exponentials 
are exact. It has no counterpart in the original Yoshida-Suzuki-Forest [17], [15], 
[4] application to separable Hamiltonian flows. 

A moderate saving in the number of exponentials takes place also in the context 
of Yoshida type I: For order 4 we have 3(2k - 1) -2 = 6k -5 exponentials - in this 
case type I and type II coincide. For order 6 we obtain 3(6k - 5) - 2 = 18k - 17 
exponentials, and for order 8 the count is 3(18k- 17) -2 = 54k-53. In comparison, 
the number of exponentials for type II is 14k - 13 (r = 3, order 6) and 30k - 29 
(r = 7, order 8). Type II is invariably better. 

5. NUMERICAL EXPERIMENTS 

We present numerical experiments for computing exp(tB) with splitting methods 
in the cases B E so(m) and B E si(m). 

The methods are implemented both with and without the Yoshida technique for 
improving the order, and we restrict ourselves to the case in which the first and 
second Yoshida techniques coincide, i.e. r = 1 in (4.2) and (4.4) respectively. 

The computations are made in Matlab. We evaluate the the error computing 
le-tBF(tB) - IIF, where F(tB) is the approximation with the splitting methods, 

the exact exponential e-tB is computed by the Matlab built-in function expm and 

11 HF denotes the Frobenius norm. 
The matrices are generated randomly using the Matlab function randn and scal- 

ing the Frobenius norm in such a way that JIBIIF = 10. 
Note that in our experiments the absolute error in the Frobenius norm and 

Ile-tBF(tB) - IIF are almost the same, and the ratio of the latter to the relative 
error is a constant, so the three standard ways of measuring the error are equivalent. 

We decompose B = Z,=1 Bi using the columnwise decomposition and the op- 
timal decomposition in the case of B E so(m). The Bi's are obtained considering 
the sum of an even number of rank-one matrices; otherwise they cannot belong to 
so(m). The exponentials of the Bi's are computed by formula (2.10). 

In all figures the norm of the error is plotted (along the y-axis) to a logarithmic 
scale with respect to the time t. Figure 1 reports the results of the first test: 
we have considered a sparse matrix in so(100), the Bi's are rank-2 matrices. In 
the plots the error norm is indicated with the symbols '*' and '+' for columnwise 
decomposition and with 'o' and 'x' for the optimal decomposition. Note that we 
evaluate 50 rank-2 exponentials exp(tBi) in the first case, and 99 in the second 
case. However, performing the optimal decomposition is more expensive than the 
columnwise one that is obtained directly in terms of the columns of the matrix B. 
The symbols '+' and 'x' pertain to the Strang splitting improved by the Yoshida 
technique, and '*', 'o' refer to plain Strang splitting. 

Figure 2 refers to the case of a full matrix in so(100). The meaning of the 
symbols is the same as in the previous figure; the rank of the Bi's is 2. It turns 
out that the leading term of the error in the case of the optimal decomposition 
is larger in norm than that of the columnwise decomposition. Note that the Bi's 
of the columnwise decomposition are sparse matrices and each commutator of two 
different Bi's inherits the sparsity of the lesser sparse of the two; the Bi's of the 
optimal decomposition are instead full matrices. Since the leading term of the error 
is a matrix obtained by computing commutators between the Bi's, this seems to 
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FIGURE 1. Exponential of a sparse matrix of so(100). 

10- 

1o-1 

102 

o -4 
10 

i0 

10 10 10 

time 

FIGURE 2. Exponential of a full matrix of so(100). 

indicate why the sparsity of the Bi's in the columnwise decomposition leads to 
a lower norm. Note that the difference between the two decompositions is not so 
evident in the previous test, in which, since B is sparse, the Bi's are sparse matrices 
for both approaches. 
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FIGURE 3. Exponential with compact trajectory of a matrix of s[(100). 
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FIGURE 4. Exponential of a matrix of st(10O) with an arbitrary spectrum. 

When B E ?r(m) we take every Bi as a bordered matrix and we compute the 
exponential directly, using the result of Proposition 6, with r = 2 in our tests. Note 
that in our examples the matrix FG is always nonsingular. Where this is not the 
case, it would have been possible to perform one of the alternative decompositions 
(columnwise or optimal) described in subsection 2.2. 
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TABLE 1. p = 2 

order 1 order 2 order 4 
Col. dec. 2.04 4.09 12.27 
Opt. dec. 2.51 5.04 15.09 
Basis dec. 2.10 4.11 12.25 

TABLE 2. p =4 

order 1 order 2 order 4 
Col. dec. 2.38 4.72 14.04 
Opt. dec. 3.04 6.02 17.94 

In the first example of st, Figure 3, we generate a full matrix whose exponential 
has a compact trajectory {exp(tB)lt > 0}. Note that all such matrices have pure 
imaginary eigenvalues. We consider B = V-1SV, where S E so(m) and V is a 
random m x m nonsingular matrix. Note that V-1soV is isomorphic to so and that 
in this case diagonal Pade approximants map V-1soV to the subgroup V-1SOV 
of SL. We report the norm of the error for the Strang splitting ('*') and for the 
same technique with the Yoshida improvement of the order ('+'). 

The last figure, Figure 4, refers to a matrix in st with arbitrary eigenvalues. In 
this case using the diagonal Pade approximant gives an approximation that does 
not belong to SL, emphasizing the need to employ the techniques of this paper. 

Finally we present Tables 1 and 2 displaying the number of flops employed by 
the methods of order 1, 2 and 4 for a full matrix B E so(100). The flops have been 
counted with the built-in Matlab function flops, and the results reported have been 
scaled by a factor m3 in other words, for each value C reported in the tables, the 
real costs of the methods can be obtained by taking Cm3. 

Note that, in Table 1, together with columwise decomposition and optimal de- 
composition we report the results for a decomposition obtained in terms of the 
elements of the following basis of -so(m): 

(5.5) ee _ee, i eJ= e, j eJ ., )m, j=i+1, ... ., m. 

The coordinates of B E so(m) with respect to this basis are the coefficients of 
B corresponding to the same couples of indices. The number of exponentials to be 
multiplied together in this case is m(m - 1)/2. Since each exponential can be eval- 
uated directly using an explicit formula and their product can be implemented very 
efficiently, computational costs in this case are analogous to the previous two. Based 
on this observation, we are at present investigating a new strategy of composition 
methods for the approximation of the exponential matrix that will be described in 
a forthcoming paper. 

Table 1 refers to the case p = 2, and Table 2 to p = 4. It seems that considering 
rank-4 decompositions instead of rank-2 is not any cheaper. The number obtained 
can be compared with the analogous result obtained with the built-in function expm 
of Matlab, namely 20.98m3. 

Based on the construction of low-rank splittings in a Lie algebra, in this paper 
we have proposed a new approach for approximating the matrix exponential. The 
importance of such an approximation of exp is that it is a local map from a Lie 
algebra to a Lie group. This feature turns out to be essential when Lie-group type 
integrators are concerned, and in some cases such techniques offer a valid alternative 
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to the exact calculation of the exponential. Finally, if we disregard the geometric 
advantages offered from the method and we consider simply the bounds obtained 
for the computational costs, and the counts of flops in the numerical experiments, 
we can conclude that the proposed technique is competitive with other classical 
approaches, i.e. Pade approximants, and, in the case of exp(tB)v and v, an m- 
dimensional vector with Krylov subspace techniques. 
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