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STABILITY AND B-CONVERGENCE PROPERTIES 
OF MULTISTEP RUNGE-KUTTA METHODS 

SHOUFU LI 

ABSTRACT. This paper continues earlier work by the same author concerning 
the stability and B-convergence properties of multistep Runge-Kutta meth- 
ods for the numerical solution of nonlinear stiff initial-value problems in a 
Hilbert space. A series of sufficient conditions and necessary conditions for a 
multistep Runge-Kutta method to be algebraically stable, diagonally stable, 
B- or optimally B-convergent are established, by means of which six classes 
of high order algebraically stable and B-convergent multistep Runge-Kutta 
methods are constructed in a unified pattern. These methods include the 
class constructed by Burrage in 1987 as special case, and most of them can 
be regarded as extension of the Gauss, RadauIA, RadauIIA and LobattoIIIC 
Runge-Kutta methods. We find that the classes of multistep Runge-Kutta 
methods constructed in the present paper are superior in many respects to the 
corresponding existing one-step Runge-Kutta schemes. 

1. INTRODUCTION 

During the past twenty years and more, considerable progress has taken place 
in the stability and convergence theory for discretizations of nonlinear stiff initial 
value problems. In 1975, Dahlquist [9] was among the first to introduce the concept 
of one-sided Lipschitz continuity into the analysis of numerical methods for stiff 
systems and the concept of G-stability for one-leg and linear multistep methods. 
In the same year, Butcher [7] developed the theory of B-stability for Runge-Kutta 
methods. To unify and extend these results, Burrage and Butcher [6] presented 
the concept of monotonicity and established the algebraic stability criterion for 
general linear methods in 1980. Using one-sided Lipschitz continuity and B-stability 
theory as bases, Frank, Schneid and Ueberhuber [10, 11, 12] introduced the concept 
of B-convergence in 1981, and established B-theory for Runge-Kutta methods in 
1984. The author of the present paper [14, 15, 16, 17] developed B-theory for 
general linear methods in 1988, also based on the one-sided Lipschitz continuity, and 
established much more extensive B-theory for nonlinear general multivalue methods 
for stiff problems in Banach spaces in 1990, based on the characteristic vectors of 
the problems considered. Note that the characteristic vector is a new concept much 
more general than that of one-sided Lipschitz constant (cf. [16, 17]); however, it is 
beyond the scope of this paper and we shall not explain it in detail. B-theory based 
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on one-sided Lipschitz continuity still suffers from considerable restrictions, since 
it is only suitable for stiff problems satisfying a one-sided Lipschitz condition with 
a one-sided Lipschitz constant not strongly positive. Since 1990, Auzinger, Frank 
and Kirlinger have published a series of papers [1, 2, 3, 4] to this topic and have 
given an important extension of B-convergence theory for Runge-Kutta methods. 
It turns out that B-theory based on one-sided Lipschitz continuity is only a special 
case of modern quantitative convergence theory (cf. [3]), such as B-theory based on 
the characteristic vector mentioned above; however, it is still of great importance as 
a guideline to select methods for the solution of many nonlinear or nonautonomous 
stiff problems, such as stiff dissipative systems arising after initial/boundary value 
problems in certain partial differential equations have been discretized in space. 

Multistep Runge-Kutta methods are an important subclass of general linear 
methods which includes many commonly used methods, such as linear multistep 
methods, one-leg methods, Runge-Kutta methods, hybrid methods and multistep 
collocation methods, and also many new classes of methods which are still not 
investigated. It had been thought that the algebraic stability, as well as B-stability 
and B-convergence, of general linear methods, especially of multistep Runge-Kutta 
methods, was too difficult to study in a rigorous way because of the necessity of 
finding a stability matrix which should be nonnegative definite. However, in 1987, 
Burrage [5] constructed a class of high order multistep Runge-Kutta methods and 
proved it to be algebraically stable. After that the present author [20, 21] studied 
this class of methods further and proved that most of them are also B-convergent, 
and some other classes of algebraically stable multistep Runge-Kutta methods of 
high order were also constructed. In the present paper, we continue these works. In 
Section 2, a series of sufficient and necessary conditions for a multistep Runge-Kutta 
method to be algebraically stable, diagonally stable, B- or optimally B-convergent 
are established, by means of which, six classes of high order multistep Runge-Kutta 
methods are presented and proved to be all algebraically stable and B-convergent. 
They include the aforementioned classes as special cases, and most of them can be 
regarded as extension of the Gauss, RadauIA, RadauIIA and LobattoIIIC Runge- 
Kutta methods. In Section 3, we give a general approach for the construction of 
the six classes of multistep Runge-Kutta methods mentioned above, and a series of 
examples and related results. We point out at the end of this paper that the classes 
of multistep Runge-Kutta methods constructed here are superior in many respects 
to the corresponding existing one-step Runge-Kutta schemes. 

Consider the multistep Runge-Kutta method 

(1.1) Jfy(n) 
- 

hCylF(tnvy(n)) 
? 

C12y(n1), 

y(n) hC2,F(tn, y(n)) + C22y(n-1), n =3y(n) 

for solving the initial value problem 

f y'(t) = f (t, y(t)), t E [0, T], 
(1.2) yQ)=Y,Y 

ty(O) =yo, YO E X, 

where X is a real or complex Hilbert space with the inner product (,.) and the 
corresponding norm 11 11, f: [0, T] x X X is a sufficiently smooth mapping 
satisfying a one-sided Lipschitz condition 

Re(u - v, f(t, u) - f(t, v)) ? v u -v 112, u,v E X,t E [0,T], 
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and the problem (1.2) is assumed to have a unique solution y(t) on the interval 
[0, T]. For the method (1.1) we assume that h > 0 is the fixed stepsize, 

y(n) . (y(fl) y(n) y n( )z Xs, y(n) = (Y(n) (n),... ,y$f)) c Xr, . C X 

are approximations to 

Y(tn) = (Y(tn + /u 1h), Y(tn + ,u2h), Y * y(tn + 1ush)) c Xs, 

H(tn) := (y(tn + h), y(tn + 2h), , yn(tn + rh)) c Xr, Y(tn + rh) c X 

respectively, 

F(tn,Y(n))i (f(tn + 1h, (fl)) f (tn+ A 2h, y2(f)).,. , f(tn + I-h, y(n))) c Xs, 

C11, C12, C21, C22 and f are linear mappings corresponding to the real 
matrices 

( C1 = [C%1] c RSXS, C12 = [Ce?] c RSXr, C21 = [0l c Rrxs 

1C22 = [0 r-1] c Rrxr, f = [0,... ,0,1] c Rlxr, 

respectively (cf. [15]), where a = [a1,,a2 ar]T, I = Ly1IY2,"s ]T IIm (m > 

1) denotes the m x m identity matrix, t,, = to + nh, to and ,ui (i = 1, 2, ..., s) are 
real constants chosen appropriately. Furthermore, throughout this paper we always 
assume that 

{ ~ ~ ~~~~~~r r 
I(1.4a) aj j=1, ECij2=1,i=1,2, ,s; 

j=1 j=1 

(1.4b) a, > O, ai > O,j =2,3, ..,r; 
(1.4c) /ti / ,uj whenever i $- j, 

where the relation (1.4a) is called the preconsistency condition. For simplicity, write 
I = [-1, /2,I _s]T, = [0,1, ,r -. ]T introduce the simplifying conditions 
(cf. [5]) 

B (r) : bi :=i-aT Ii-1 _ ri + aT4i =ol i =1, 2, .., T; 
C(T): Ci :=iCjl,i-l _ i+Cl2 i = O, i =1,2, ..., T; 
D(T): d iC:Tdiag(gy)1 -ri- + diag(iy) = 0, i = 1, 2,... 
E(Tr) ei := iCjT'diag(-y),-? - r'a + diag(a)( = 0, i = 1,2,... , , 

and make the following notational conventions. 
(1) For any vector x = [x1,x2, XN ,XN]T, Ixi = [xiI ,xxxi . 
(2) For a real vector x = [X1,X2,.. , XN]T, x > 0 (resp. > 0) means that all the 

elements xi > O (resp. > 0), i = 1, 2, ..., N. 
(3) For a real symmetric matrix M, M > 0 (resp. M > 0) means that M is 

nonnegative definite (resp. positive definite). 
(4) For r = 0 the simplifying conditions B(r), C(r), D(r) and E(r) do not, by 

definition, impose any restriction on the method. 
(5) We shall frequently make use of the following quantities in the remainder of 

this paper: 

G: diag(al, a, + a2, Ejr=1 aj), Q := diag(-y), 
C:= [c,c2, .. ,cs], D [d1,d2, . ds] I 
U := [uli,u2, . Us] V := [VlV2,. . Vs] 

us * 
i 

Vi _ /I- i ,.. *I 
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Cf .[c,c2, ...,cp] RsxP for p > 0, 
P \0 c RSX1 for p=O, 

C - _ [Cp+1ICp+2, ,cs] C RSX(8-P) for 0 < p < s, 
P lo E Rsxl for p = s, 

Dp, Ep, Up and Vp are defined in a similar way as Cp, and Dp, Up and Vp in a 
similar way as Cp. 

For the convenience of the reader, we now recall some definitions and results 
which have been presented in [15, 17, 20] and will be used later. 

Definition 1.1. Let W denote a real symmetric, positive definite r x r matrix, B 
a nonnegative diagonal s x s matrix. The method (1.1) is said to be algebraically 
stable for the matrices W, B if the corresponding matrix 

W -C22WC22 C2B - C22WC2l > 

BC12-C2TjWC22 C11B+BC11-C'jWC21 > 

With Definition 1.1 we see that the method (1.1) is algebraically stable for the 
matrices G, Q if G > 0, Q > 0 and the matrix 

(1.5) 

M [ Mll M12 ]> 0 

where 

(1.6) Ml l = G - C2T2GC22, M12 = M2T= 1Q C22GC21, 

M22 = CT'jQ + QCii - C2T1 GC21 

Definition 1.2. The method (1.1) is said to be diagonally stable if there exists 
an s x s diagonal matrix B > 0 such that CT B + BC11 > 0. 

Definition 1.3. The method (1.1) is said to be B-stable if there exist a real number 
6 > 0, a nonnegative bounded function q : (0,6] -> R, and a real symmetric, 
positive definite r x r matrix W = [wij], where 6, q and W depend only on the 
method, such that for any given problem (1.2) and any two parallel calculating 
steps (tn1l Y(n-l)) > (tn, y(n), y(n), .n) and (tn X1, Z(n-1)) (tn, Z(n I 

Z 4n I n) 

we have 

y( Y( - ) 11w < (1 + hvo(hv)) - 0 < 4w < 6, 

where . w denotes a norm on Xr defined by 

II U 11W= (U(WU E wi (uiUj)) U = (UlIU2i ... I Ur) E XrX 
i,j=l 

where each uj C X. 

Definition 1.4. The method (1.1) is said to be optimally B-convergent of order 
p if the approximation sequences {y(nf)} and {E.n} (produced by the method (1.1) 
applied to any given problem (1.2) with starting value y(O)) satisfy 

11 n- y(tn + rh) || < CO(tn) y(O) - H(to) 11 +C1(tn)hP, 0 < h < ho, 

and 

11 y(n) - H(tn) 0 Co(tn) 11 y()- H(to) 11 +Cl(tn)hP, 0 < h < ho, 
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where the functions Ci(t) and Ci(t), i = 0, 1, depend only on the method, the one- 
sided Lipschitz constant v of the right-hand side function f(t, y) and some bounds 
Mi for the true solution y(t): 

dy(t)tE 0T] dti 1l< Mi, [,] 

the maximum stepsize ho depends only on v and the method. Here and later, the 
norm on XN(N > 1) is defined by 

l 
U 

1= ( 2|| ||) VU = (ul,U2,... ,UN) c xN. 

Furthermore, the method (1.1) is said to be B-convergent of order p if Ci(t), Ci(t) 
and ho are allowed to depend, in addition to the quantities mentioned above, on 
bounds rij for certain derivatives of the right-hand side f (t, y) (but not on zoj): 

i+if (t, Y) t < z E [O, T], y E X. 

It should be pointed out that in most early published papers, such as [10, 12, 
14, 15], the starting perturbation y(o) - H(to) was not considerd in the definition 
of B-convergence. 

Definition 1.5. The method (1.1) is said to have generalized stage order p if p is 
the largest nonnegative integer which possesses the following properties: 

For any given initial value problem (1.2) and stepsize h E (0, ho], there exist 
mappings yh and Hh (from some subinterval of [0, T] into XS and Xr respectively), 

yh (t) = (Yh (t), y2h (t),*** , yh(t)) E Xs, 

_Hfh (t) = (_ffh (t), H2h ()v ,Hh (t) ) E Xr, 
such that 

Hh(t) - H(t) < ? dohP, A Ah(t) 11 < djhP+1, 

11 6h(t) 11 < d2hP+1, h(t) 11 < d3hP, 
where ho > 0 is only required to be so small that for h E (0, ho] all the time 
nodes belong to the integration interval [0, T]; each di (i = 0, 1, 2,3) depends only 
on the method and bounds Mi for certain derivatives of the exact solution y(t); 
/Ah (t), 6h (t) and jh (t) are determined by the equations 

{yh(t) = hCiiF(t, yh(t)) + C12Hh(t -h) + Ah(t), 

Hh(t) - hC21F(t, yh(t)) ? C22Hh(t -h) 6h(t), 

y(t + rh) = 3Hh.(t) ? jh(t) 

Furthermore, if the quantities di (i = 0, 1, 2, 3) are also allowed to depend on bounds 
Kij for certain partial derivatives of the mapping f (but not on o0,), then the 
aforementioned integer p is known as generalized weak stage order of the method. 
For the special case where Hh (t) = H(t), the generalized stage order and generalized 
weak stage order are simply called stage order and weak stage order, respectively. 

Theorem 1.1. Suppose a multistep Runge-Kutta method of the form (1.1) is al- 
gebraically stable and diagonally stable. Then this method is B-stable, and fur- 
thermore, this method is optimally B-convergent (resp. B-convergent) of order p 
provided that it has generalized stage order p (resp. generalized weak stage order 
P). 

For the proof of Theorem 1.1 we refer to [15, 17]. 
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2. MAIN RESULTS AND THEIR PROOFS 

Lemma 2.1. Let 

(2.1) S = 
[ V Y = [Ir, -U]) Z = [zij] = (D + diag(,-y)C)'V. 

Then B(s) and E(s) yield 

(2.2a) VT M22V = UTM11U + Z, 

(2.2b) STMS = YTMllY + [ o ] 

where the matrices M, M11 and M22 are defined by (1.5) and (1.6). 

Proof. From (1.3), (1.5), (1.6) and (2.1) we get 

(Mul = diag(a) - aaT, 

I M12 = M21 = CT diag(-y) - aT, 

(2.3) M22 - 0T diag(y) + diag(y)Cu -_ tyOyT 

STMS M[, ] 

[WT R] 
with 

(2.4) {W = [W1,W2, ... , WS] = M12V, 
(R= [rl,r2,... ,rs] = VTM22V. 

Because of B(s) and E(s), (2.4) and (2.3) lead to 

wi = -ia - diag(a)(i - a(ri - a Ti) 

= -(diag(a) - aa T)i = _Mlli 

ri = VT [iCT7diag(,y) i 1 + idiag(,y)Ci,u1-1 - y(r i)] 

= VT(di + diag(-y)ci -MT2(i) 

and therefore 

(2.5) 
w =-M11U, 
R =XVT(D + diag(-y)C - MjT2U) = _UTW + Z = UTM1lU + Z. 

Thus the conclusion follows from (2.4), (2.5) and substitution of (2.5) into the last 
equality of (2.3). 2 

Lemma 2.2. The (i,j)-elements of the matrix Z defined by (2.1) can be expressed 
by 

Zij = (deT + cTdiag(y))j/,ud1 
(2.6) = cTdiag(-y)j/-,1 + cTdiag(-y)4i-t1 + bi+j - bjri -J 

= dTjij-1 + dTil-1 - bi+j + bir+e , i,j = 1, 2,... , s. 

In particular, 

zii= ( + cTdiag(-y))i--1 = 2cTdiag(-y)4i-t1 + b2i - bir' - Ji 
(2.7) = 2d[T_i-1 - b27 + bir' + eJ(, i = 1, 2,. .. s. 
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Furthermore, if B(s) and E(s) hold, then 

= ci diag(1y)jHiJ + cTdiag(-y)ij/-t1 + b 

(2.8) 
- ~dTjpj-1 + dj _ b+ i, j = 1, 2,. , s, 

(2.9) zii = 2c7Tdiag(-y)i4Lt-1 + b2i = 2dTii,lu1 - b2i, i = 1, 2, * * , s. 

Proof. Since 

djTu 1 = (j,iil)Tdiag(y)Ciyi)i1C - riyTi,i-1 + YTi/i+j-1 

= (jMil1)Tdiag(7)(ci + ,t- C12(i) - r(bi + r' - aT(i) 
T i+j-1 

= (i + j)jy'7Jl - (jC,2diag(-y)Ml3)T(i - r + rJaTC 

+ (j,iil)Tdiag(-y)ci - ribi 

= bi+j -rbi + cTdiag(Qy)j&j1-l-eT(i 

we have 

(2.10) 

bi=+j ribi - cTdiag(-y)j,ti-1 + dTi 1i-1 + eT(i ij j 1, 2, 3r 

Thus the conclusion follows directly from (2.1) and (2.10). El 

Lemma 2.3. Let p, q be positive integers. Then the following implications hold: 

B(p), C(p), E(p) with p < s -?Zij = bi +j i, j =1, 2, * ,p; 
B(p), D(p), E(p) with p < s Zij =-bi+j, i, j =1, 2,* ,p; 
C(p), D(p) with p < s == Zi = 0 for i < p; 
B(s), C(p), D(p), E(s) with p < s > Zij = 0 for either i < p or j < p; 
B (p), C (p), D (q), E (q) -= B (p + q); 
B(p + q), C(p), E(q), DqVP = 0 with p < s => D(q); 

B(p + q), D(q), E(q), CpTdiag(-y)Vq = 0 with q < s and rf Yi 74 0 -=> C (p); 
i=l 

B(p + q), C(p), D(q), Eq'Up = 0 with p < s and r < s + 1= E(q). 

Proof. All the results in Lemma 2.3, except the last one, can be derived directly 
from (2.6) and (2.10). To prove the last statement, we note that the equality (2.10) 
together with B(p + q), C(p), D(q), EqTUp = 0 and p < s leads to 

UT ej = 0, j = 1, 2, * * *, q, 

the preconsistency condition (1.4a) together with B(q) leads to 

e^rTej = 0, j = 1, 2, ** q, 

and therefore 

(2.11) [U, r]Tej = 0, j = 1, 2,. q. 

Since r < s + 1, rank([U, er]) = r. Thus (2.11) implies that E(q) holds. El 
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Remark 1. The following results can be directly derived from the last three impli- 
cations in Lemma 2.3: 

B(s + q), C(s), E(q) =?> D(q); 

(2.12) B(s + p), D(s), E(s) with J yti 74= 0 = 0(p); 

B(s + q), C(s), D(q) with r < s + 1 E(q). 

Theorem 2.1. Suppose B(s) and E(s) hold. Then the method (1.1) is algebraically 
stable for the matrices G, Q if and only if >y 0 and Z > 0. Here the s x s symmetric 
matrix Z is defined by (2.1). 

Proof. Since G > 0 is guaranteed by (1.4b), algebraic stability of the method (1.1) 
is equivalent to ty > 0 and M > 0 with M defined by (1.5) and (1.6), and we only 
need to prove that M > 0 is equivalent to Z > 0. According to Lemma 2.1, B(s) 
and E(s) yield the equality (2.2b). Since u1, /2 -* , X t, are distinct, the matrices V 
and S in (2.2a), (2.2b) are obviously nonsingular. Since _=1 aj 1 and aj > 0, 
j = 1,2,- ,r, it is easy to verify that M11 > 0. Thus, in view of (2.2b), Z > 0 
leads to STMS > 0 and M > 0. For the converse, we assume that M > 0. For any 
given ( G R', write ? = [(U4)T, IT]T; we thus have 

TSTMS2R > O, YJ = 0, 

and therefore together with (2.2b) 

TZf > 0. 

This means that Z > 0 and completes the proof of Theorem 2.1. 2 

Theorem 2.2. Suppose B(s), E(s) and C(p) with 1 < p < s hold. Then the 
following statements are equivalent: 

(a) the method (1.1) is algebraically stable for the matrices G, Q; 
(b) D(p - 1) holds, Zp-1 > 0, >y 0; 

(c) B(2p -1) holds, D l_vp = O, Zp-l > O, t > O. 
Here and later, we define for 0 < j < s 

Zj+l,j+l Zj+l,j+2 ... Zj+l,s 

(2.13) Zi = Zj+2,j+l Zj+2,j+2 Zj+2,s 

Zs,jf+ Zs,j+2 ... Zs's 

Proof. Since B(s) and E(s) hold, according to Theorem 2.1 algebraic stability of 
the method (1.1) (for G, Q) is equivalent to ty > 0 and Z > 0 with the symmetric 
matrix Z defined by (2.1). Thus for p = 1 the conclusion follows trivially, and 
without loss of generality we can now assume that 2 < p < s, so that B(s) and 
C(p) yield 

(2.14) b1 = b2 = O, cl = c2 =*=cp = 0. 
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In view of Lemma 2.3, B(s), E(s) and C(p) lead to 

(2.15) 
r b2 b3 ... bp bp+l zl,p+l ... Zi,s 

b3 b4 ... bp+l bp+2 Z2,p+l *-- Z2,s 
..*. . . . . . . . . . . . . . . . 

z= bp bp+l ... b2p_2 b2p-1 Zp-l,p+l Zp-1,s 
bp+l bp+2 ... b2p_1 b2p zp,p+l ... zp s 

Zp+l,l Zp+l,2 ... Zp+l,p-1 Zp+l,p Zp+l,p+l ...Zp+l,s 

... ... ... ~... ... ... ... ... 

Z8,i Zs,2 ... Zs,p-1 ZS,P Zs,p+l ... Zss 

and therefore, together with (2.14), Z > 0 is equivalent to 

(2.16) 

Zp-l > 0, 
J [ b2 b3 ... bp+l Zl,p+l .. Zs 

D pT_l b3 b4 ... bp+2 Z2,p+l . .. Z2,s = . 
... ... ... ... ... ... .. 

t ~~~~bp bp+l -.. b2p-1 Zp-l,p+l . Zp-l,s j 

This leads to the required conclusion, since it is easily seen that the statements (b), 
(c) in Theorem 2.2 are equivalent to (2.16) together with -y > 0, respectively. D 

Theorem 2.3. Suppose B(s), E(s) and D(p) with 1 < p < s hold. Then the 
following statements are equivalent: 

(a) the method (1.1) is algebraically stable for the matrices G, Q; 
(b) diag(-y)Cpl = 0, ZP-i >- , y > 0; 
(c) B(2p-1) holds, CPldiag(-y)VP = 0, Zp_i > 0, Y > 0. 

Proof. In view of Theorem 2.1, the statement (a) is equivalent to Z > 0 and -y > 0 
because of B(s) and E(s). Thus for p = 1 the conclusion follows trivially, and 
without loss of generality we can now assume that 2 < p < s, so that B(s) and 
D(p) yield 

(2.17) b1 = b2 = O, d1 = d2= = dp = 0. 

By Lemma 2.3, B(s), E(s) and D(p) lead to 

(2.18) 
-b2 -b3 ... -bp -bp+l zl,p+l ... Zi,s 
-b3 -b4 ... -bp+1 -bp+2 Z2,p+1 ... Z2,s 
... ... .... .. . ... ... ... 

z- -bp -bp+1 -b2p-2 -b2p-1 Zp-l,p+l ... Zp-l,s 

-bp+l -bp+2 -b2p-1 -b2p Zp,p+l ... Zp, s 

Zp+1,1 Zp+1,2 ... Zp+l,p-l zp+l,p zp+l,p+l ... Zp+1,s 

... ...Z. ... ... ... ... ... 

Zs,l Zs,2 ... zs,p-1 Zs,p Zs,p+l ... Zs's 
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and therefore, together with (2.17), Z > 0 is equivalent to 

(2.19) 

zp-l > 0, 

CT L1diag(-y)V 

-b2 -b3 ... -bp+l Z ... ZZ,1 1 

-b3 -b4 ... -bp+2 Z2,p+1 . Z2,s = 0. 

L-bp -bP+l . -b2p_1 Zp-l,p+l ... Zp-l,s_ 

This leads to the required conclusion, since it is easily seen that the statements (b), 
(c) in Theorem 2.3 are equivalent to (2.19) together with -y > 0, respectively. Cl 

For algebraically stable methods satisfying the assumptions of Theorem 2.2, 
we have b2p = zp,p > 0. Thus we can separate these methods into two classes, 
depending on whether b2p > 0 or b2p = 0. Similarly, algebraically stable methods 
satisfying the assumptions of Theorem 2.3 can also be separated into two classes, 
depending on whether b2p < 0 or b2p = 0. For the methods satisfying b2p = 0 we 
have the following results: 

Theorem 2.4. Suppose B(s), E(s) and C(p) with 1 < p < s hold. Then the 
following statements are equivalent: 

(a) b2p = 0, and the method (1.1) is algebraically stable for G, Q; 
(b) D(p) holds, -y > 0, and either p = s or Zp > 0; 
(c) B(2p) holds, DP Vp = 0, -y > 0, and either p = s or Zp > 0. 

Proof. Following a similar line as in the proof of Theorem 2.2, we find that in this 
case the relation (2.15) also holds, and algebraic stability of the method (1.1) (for 
G, Q) is equivalent to -y > 0 and Z > 0. Therefore together with B(s) and C(p) it 
follows that the statement (a) in Theorem 2.4 is equivalent to 

[ b2 b3 ... bp+ z1,p+1 ... z1S 

DTV - 
b3 b4 ... bp+2 Z2,p+l ... Z2,s =0, 

(2.20) L bp+l bp+2 ... b2p Zp,p+l ...Zp 

-y ? 0, 
either p =s or Zp > 0. 

This leads to the required conclusion, since it is easily seen that statements (b), (c) 
in Theorem 2.4 are also equivalent to (2.20), respectively. C 

Theorem 2.5. Suppose B(s), E(s) and D(p) with 1 < p < s hold. Then the 
following statements are equivalent: 

(a) b2p = 0, and the method (1.1) is algebraically stable for G, Q; 
(b) diag(-y)Cp = 0, -y > 0, and either p = s or Zp > 0; 

(c) B(2p) holds, Cp diag(-y) Vp = 0, -y > 0, and either p = s or Zp > 0. 

Proof. Following a similar line as in the proof of Theorem 2.3, we find that in this 

case the relation (2.18) also holds, and algebraic stability of the method (1.1) (for 
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G, Q) is equivalent to -y > 0 and Z > 0. Therefore together with B(s) and D(p) it 
follows that statement (a) in Theorem 2.5 is equivalent to 

(2.21) 

CTdiag(-y)V 
[ -b2 -b3 ... -bp+l z1,p+1 ... Z1,s 

-b3 -b4 ... -bp+2 Z2,p+1 ... Z2,s - 0, 

-bp+l -bp+2 ... -b2p Zp,p+l ... Zp,s _ 

y > 0, 

either p = s or Zp > 0. 

This leads to the required conclusion, since it is easily seen that the statements (b), 
(c) in Theorem 2.5 are also equivalent to (2.21), respectively. Cl 

For the application of Theorems 2.1-2.5, we are now interested in investigating 
the following special classes of multistep Runge-Kutta methods given by (1.1) and 
(1.3) with coefficients satisfying (1.4a), (1.4b) and the following conditions: 

Class 1: 

(2.22) B(s), E(s), C(s) and D(s); 

Class 2: 

(2.23) B(s), E(s), C(s) and D(s - 1) with b2s > 0; 

Class 3: 

(2.24) B(s), E(s), D(s) and C(s - 1) with b2s < 0; 

Class 4: 
(2.25) 

B(s), E(s), C(s - 1), D(s - 1), -y > 0, zs,s > O, IcsIIds8 I8 0; 

Class 5: 

(2.26) 

B(s), E(s), C(s - 1), D(s - 2), -y > 0, Zs-2 > 0, b2s-2 '7 0; 

Class 6: 

(2.27) f|B(s), E(s), D(s - 1), diag(y)Cs-2 = 0, 

'y > 0, Zs-2 > 0, b2s_2 
4 

0. 

Note that in view of Lemma 2.3 and Theorems 2.2-2.5, the condition (2.22) is 

equivalent to either of the following: 

(2.28a) B(2s), E(s) and C(s), 

(2.28b) B(2s), E(s) and D(s), 

and if r < s + 1, also to 

(2.28c) B(2s), C(s) and D(s), 

the condition (2.23) is equivalent to 

(2.29) B(2s - 1), E(s) and C(s) with b2s > 0, 
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(2.24) to 

(2.30) B(2s - 1), E(s) and D(s) with b2, < 0, 

(2.25) to 

(2.31a) JB(max{2s - 2, s}), E(s), C(s - 1), D,jL1V81 = 0, 
P>?0, zs,s >?0,csjldsI 

= 0, 

and if -y > 0, also to 

(2.31b) fB(max{2s - 2, s}), E(s), D(s - 1), Cs'Ljdiag(-y)Vs_ = 0, 
-Y > 0, ZS,S > 0, IcsIIdsI + 0, 

(2.26) to 

(2.32) f B(max{2s - 3, s}), E(s), C(s - 1), DsL2V81 = 0, 

Y > 0, Zs-2 > 0, b2s-2 h 0, 

and (2.27) to 

f B(max{2s - 3, s}), E(s), D(s - 1), 0sL2diag(iy)V8 = 0, 

(23>) O, Zs-2 > 0, b2s-2 ? 0. 

The methods of classes 1, 2, 3 and 4 can be regarded as extension of the Gauss, 
RadauIIA, RadauIA and LobattoIIIC Runge-Kutta methods, respectively, since for 
the special case r = 1 it is easy to verify that E(s) is equivalent to B(s). 

Note also that in view of Lemma 2.3 we have zs,s = b2s for class 2, and Zs,s = -b2s 
for class 3, and that For the classes 1-3, -y > 0 is guaranteed by (1.4a), (1.4b) and 
B(2s - 1) (cf. [5]). Thus, specializing Theorems 2.1-2.5 to the cases of p = s, s - 1, 
we obtain immediately 

Theorem 2.6. The methods of classes 1-6 are all algebraically stable for the ma- 
trices G, Q. 

It should be pointed out that algebraic stability of the methods of class 1 has 
also been presented by Burrage [5] and Li [21]; in [21] the results for classes 2 and 
3 have also been obtained. 

Theorem 2.7. Suppose the method (1.1) satisfying (1.4a), (1.4b) is algebraically 
stable for the matrices G, Q, and satisfies B(s), E(s) with -y > 0 and a having at 
least m positive elements. Then this method is diagonally stable provided s < m. 
Furthermore, if the additional condition 

(2.34) z [0 I], p>o, 

is also satisfied, then this method is diagonally stable provided p < m, where 0 < 

p < s, and where Z and Zp are defined by (2.1) and (2.13), respectively. 

Proof. Since -y > 0 and ,a1, A2,... , v<s are distinct, for the diagonal stability of the 
method (1.1) we only need to prove that 

(2.35) H := 77TVT(C1diag(-y) + diagQ(y)Cll)Vr7 > 0 
*~~~~~~~~~~~7 n= [71i 7 i.. 17 ]RT ERs, 7 nG . 
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Let 

(2.36) {~Prq(X) =E 'qjXj l, =[12,-r]T = U'q7 

V V/a-** ]T, a = diag(6)>. 

In view of Lemma 2.1, B(s) and E(s) lead to (2.2a), (2.2b), and therefore together 
with (2.3), (2.35) and (2.36) 

=2.37) Hn =y(Tvy)2 + CTM11 + rTZ? 
= (rpn(r) - aTV)2 + CTM11 + ,TZq. 

Here 
T 

Zq > O 

due to algebraic stability of the method (cf. Theorem 2.1). From (1.4a), (1.4b) 
(2.3), (2.36) and application of Schwarz inequality we get 

(TM11f = 11 6 11211 a 1o - (dTo)2 0, 

which vanishes only for 6 and a linearly dependent, or equivalently, for 

(2.38) (i = constant, i CQ,:= {i: i = 1,2, ,r; ai 5 0}. 

Hence, the three terms in the right hand side of (2.37) are all nonnegative, and 
the only remaining work is to prove that for any given rq 5 0 there exists at least 
one term which is positive in the right hand side of (2.37). Suppose on the contrary 
that the three terms are all equal to zero for some rq 5 0. Then (2.38) and 

rp,(r) = aT 

hold, and therefore together with (2.36) and (1.4b) we have 

(2.39) {pn(i - 1) = 0, i E Qc\1}, 
p(r) = lT = 0. 

Since a has at least m positive elements, (2.39) implies that the polynomial p,(x) 
has at least m distinct real roots, and consequently, we have 

(2.40) m < s1 1m = [r7m+l,7rm+2 *. 7,Ts] 7 0. 

This contradicts the assumption that s < m, and shows that the method is diago- 
nally stable for s < m. For the more restricted case where the additional assumption 
(2.34) is also satisfied with p < m, combination of (2.34) and (2.40) leads to 

T 
Zq = ni'z T> 0 

where 71p = [71p+l, 1p+2, ... 7,s]T 5 0 since p < m and 5rn $ 0. This contradicts 
the assumption that the three terms in the right hand side of (2.37) are all equal 
to zero, and shows that the method is diagonally stable for p < m. D 

Applying Theorem 2.7 to the methods of classes 1-6, we immediately obtain 

Theorem 2.8. Suppose a has at least m positive elements. Then 
(a) a method of class 1 is diagonally stable provided m > s; 
(b) a method of class 2 or 3 is diagonally stable provided m > s -1; 
(c) a method of class 4 is diagonally stable provided either m > s and 'y > 0 or 

m = s - 1, z5,, > 0 and -y > 0; 
(d) a method of class 5 or 6 is diagonally stable provided either m > s and -y > 0 

or s - 2 < m < s, Zs-2 > 0 and -y > 0. 
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Remark 2. For the methods of classes 1-6 the (i, j)-elements zij of the matrix Z 
can be computed by (2.8). However, using (2.2a), (2.3) and B(s) we can easily 
deduce that 

Zij = (jp71)T(CT1diag(y) + diag(ay)Cll)jtuL 

- [(ri - aT(i)(ri - aT(j) + aT(i+j - aTciaTTj] 

(2.41) = (ijL )T(CT1diag(y) + diag(y)Cjj)jtu-1 
r 

Z 
k(r' - (k - l)i)(rJ - (k-)j). 

k=1 

The formula (2.41) seems to be simpler than (2.8). 
In the following theorem, we recall some results about stage order of the method 

(1.1), which have been presented in [20]. 

Theorem 2.9. The method (1.1) satisfying (1.4a) has stage order at least r if 
B(r) and C(r) hold, has weak stage order at least r + 1 if B(r + 1) and C(r) hold, 
and has generalized stage order at least r +1 if B(rT+ 1), C(r) hold and there exists 
a real number Iv such that c,+ = vye8. 

Let m denote the number of positive elements of a. Then a combination of 
Theorems 1.1, 2.2-2.4 and 2.6-2.9 yields the following results. 

Theorem 2.10. Suppose the method (1.1) satisfying (1.4a), (1.4b) satisfies B(s), 
E(s), C(p) and one of the statements (a)-(c) in Theorem 2.2, 1 < p < s, -y > 0, 
and either m > s or m > p-I and Zp-1 > 0. Then 

(a) this method is B-stable and optimally B-convergent of order p; 
(b) if s > 2, then this method is B-convergent of order p + 1; 
(c) if s > 2, and there exists a real number Iv such that cp+l = ves, then this 

method is optimally B-convergent of order p + 1. 

Theorem 2.11. Suppose the method (1.1) satisfying (1.4a), (1.4b) satisfies B(s), 
E(s), D(p) and one of the statements (a)-(c) in Theorem 2.3, 1 < p ? s, 'y > 0, 
and either m > s or m > p-I and Zp-1 > 0. Then 

(a) this method is B-stable, optimally B-convergent of order p - 1 (for p > 1) 
and B-convergent of order p; 

(b) if in addition there exists a real number Iv such that cp = v'es, then this 
method is optimally B-convergent of order p. 

Theorem 2.12. Suppose the method (1.1) satisfying (1.4a), (1.4b) satisfies B(s), 
E(s), C(p) and one of the statements (a)-(c) in Theorem 2.4, 1 < p < s, -y.> 0, 
and either m > s or min(m, s-1) > p and Zp > 0. Then 

(a) this method is B-stable, optimally B-convergent of order p and B-convergent 
of order p + 1; 

(b) if in addition there exists a real number Iv such that cp+1 = ves, then this 
method is optimally B-convergent of order p + 1. 

Theorem 2.13. For the methods of classes 1-6 we have the following results. 
(a) A method of class 1 is B-stable, optimally B-convergent of order s and B- 

convergent of order s + 1, provided m > s. 
- (b) A method of class 2 is B-stable, optimally B-convergent of order s and B- 
convergent of order min(s + 1, 2s - 1), provided m > s - 1. 
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(c) A method of class 3 is B-stable, optimally B-convergent of order s - 1 (for 
s > 1) and B-convergent of order s, provided m > s - 1. 

(d) A method of class 4 is B-stable, optimally B-convergent of order s - 1 (for 
s > 1) and B-convergent of order s, provided that -y > 0 and either m > s or 
m = s - 1 and z8,8 > 0. 

(e) A method of class 5 with s > 3 is B-stable, optimally B-convergent of order 
s - 1 and B-convergent of order s, provided that -y > 0 and either m > s or 
s-2<m<s andZs-2>0. 

(f) A method of class 6 with s > 3 is B-stable, optimally B-convergent of order 
s - 2 and B-convergent of order s - 1, provided that -y > 0 and either m > s or 
s - 2 < m K s and Zs-2 > 0- 

Furthermore, these methods have optimal B-convergence order one higher than 
that mentioned above if, in addition, cl = Ive's for some real number v, where I = s+1 
for classes 1 and 2, 1 = s for classes 3, 4 and 5, 1 = s - 1 for class 6, s > 2 for 
class 2 and s > 3 for classes 5 and 6. 

Note that similar results for methods of class 1 have also been obtained in [20]. 

3. CONSTRUCTION OF B-CONVERGENT METHODS 

Methods of class 1 have been constructed by Burrage [5]. In this section we 
examine mainly the construction of methods of classes 2-6. These methods all 
satisfy the simplifying conditions B(s) and E(s), which are equivalent to 

(3.1) tyTV = R- aTU 

and 

(3.2) CT2diag(-y)V = aR - diag(a)U 

respectively, where R = [r, r2, , rs]. Let 

s 

p(X) = fl(X - k). 
k=1 

Then it is readily shown that for any given integer q E [0,s - 1], the simplifying 
condition B(2s - q) holds if and only if, in addition to (3.1), the equation 

r r 3j-1 

(3.3) j xklp(x)dx = a j xklp(x)dx, k = 1,2, , s- q, 
? ~~~j=2 ? 

is satisfied (cf.[5]). For q = 0 equation (3.3) together with (1.4a), (1.4b) leads to 

hi h2 ... hs+l 
h2 h3 ... hs+2 

p(x) = det ... ... ... ... 
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and, for 0 < q < s, to 

hi h2 ... hs+l 
h2 h3 ... hs+2 

hs-q hs-q+1 ... h2s-q 

(3.4) p(x) = det 1 A .il [LW 
1 Hi2 ... HIi2 

. .. . .. . .. .. . 

1 /iq ... qii 
X . .. xs 

where 

(3.5) hi = [r - (r- 1)'+Z j((r- 1)-(j- 1))], =1,2,3, 
j=1 

Note that, here and later, some constant factor of p(x) is ignored for simplicity. 
Note also that for the case of q > 0, the real numbers il i2 -... ,iq which 
are q distinct roots of p(x), and ai,a)2),.- , aXr should be appropriately chosen in 
advance so that the polynomial p(x) defined by (3.4) and (3.5) is of degree s and 
has s distinct real roots. 

For simplicity, we may write 

q 

(3.6) p(x) = (x) fl (x - i) 
m=1 

Then (3.3) leads to 

91 92 ... gs-q+l 

92 93 ... gs-q+2 
(3.7) p^(x) = det ... ... ... ... 

gs-q gs-q+l ... 92(s-q) 
1 X ... Xs-q 

where 

(3.8) 
r q r-1 rr-1 q 

91 = xl-i 11 (x-1 im)dx + ?Zaj xl-l ]l (x- pjm)dx7 
m=n j=l m=1 

1 = 1,2,3, . 

The polynomial p(x) can also be determined by (3.6), (3.7) and (3.8), which seems 
to be simpler than by (3.4) and (3.5). 

To construct methods of classes 2-6, we thus first choose aX1,, ,(Xr... &a appro- 
priately to satisfy (1.4a), (1.4b), and ,iu, i2.. )iq which are real and distinct, 
where q = 1 for classes 2 and 3, q = 2 for class 4 and q = 3 for classes 5 and 
6. Then compute the roots ull, 12,.. * * *s of the polynomial p(x) defined by either 
(3.4) and (3.5) or (3.6), (3.7) and (3.8), and compute -y from (3.1) and C12 from 
(3.2). Finally, the coefficient matrix C1l can be determined by other conditions 
which the methods should satisfy. 
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Example 1. For r = 2 and s = 1, the methods of classes 1-4 are 

(3.9) { Y = hcf(tn + uh, Y) + la Yn + 1+-a 

Yn+2 = h(1 + a)f(tn + uh, Y) + ayn + (1-a)yn+i, 

where O < a < 1, c > (1 + 3a)/[2(1 + a)], and 

c = 21+a), u = 2-c = c + 1a for class , 

>1+3a u =c?+ 1-a for class 2, 
(3-10) ~~2(1+a)'7 1+a 

(3.10) )c > 1+3a u=2 - c for class 3, 

c? 2(1+a)' u$ 2 2-c, u$h c + i for class 4. 

It follows from Theorems 2.6, 2.8 and 2.13 that these methods are all algebraically 
stable, diagonally stable, B-stable and B-convergent of order 1, and that the meth- 
ods of class 2 are optimally B-convergent of order 1; the methods of class 1 are 
optimally B-convergent of order 2 since for the methods of class 1 the condition 
B(2) holds and we have C2 = ve1 provided choose V = c2. Note that for the special 
case a = 1, (3.9) specialized to 

(a) c= u = 1, (b) c=u=2, (c) c= 2, u = O 

leads to the one-stage Gauss, RadauIIA and RadauIA Runge-Kutta methods with 
stepsize 2h respectively. Note also that the simplifying condition C(1) does not 
hold for the methods of classes 3 and 4. 

Example 2. Consider the methods of classes 2 and 3 with r = s = 2. Let 

{(3.lla) a1 = a, 2 =1-a, 

(3.1 lb) A1l = u, p(x) =(x) (x - u), 

with 0 < a < 1 and the real number u to be determined. Then it follows from (3.7) 
and (3.8) that 

3 +a 7 +a 3 +a 
A(X) = 91X-g2, 9 91= 2 -(1 + a)u, 92 3 - 2 u 

and consequently we have 

7 +a 3 3+a 3 +a 
(3.12) ll = u, A2 = ( ~3 - 2 u)/( 2 -(1+ a)u). 

To guarantee pi(x) having degree 1 and 1il 5$ [2 it is necessary and sufficient that 

(3.13) u $4 
3 + a 

(1 + a)u2-(3+a)u+ 
a 

7$ 0. 
2(1 + a)3 

Thus -y can be uniquely determined by (3.1), i.e. 

(3.14) 
1 ~~~~~3 +a -13+ a 

/9L2=/{ 1 ((1?+ a)I2- 2 ) 2= ((1 + a)[l - +2) 

Since B(2s- 1) holds, we have -y > 0, and C12 can be uniquely determined by (3.2), 
i.e. 

[ 4a(A2-1 ) (1-a) (2A12-3) 
'3 15) C12 2(1+a)tL2-(3+a) 2(1+a)tL2-(3+a) 

4a(pt-l) (1-a)(2p1-3) . 

2(1+a)t1i-(3+a) 2(1+a)tL1-(3+a) J 
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Finally, for methods of class 2 Cl, can be uniquely determined by C(2), i.e. 

(3.16) Cii = ([,u, 2] - C12U)V-17 

and for class 3 by D(2), i.e. 

(3.17) Ci1 = ('yyR - diag(-y) [,u, t2])V- 1 [diag (-y) 1. 

Furthermore, it is easily seen from (3.1) that 

(3.18) 
b2 =b4 = 4(R-aTU)V-l,a3 - 16 + a2 

=2(3 + a) ('42 + AlA12 
+ 822) - 4(1 + a)pjA2 (Al + A2) -15- a 

In view of Theorems 2.6, 2.8 and 2.13 we can thus state the following proposi- 
tions: 

Proposition 3.1. For any given a C (0,1] and u satisfying (3.13) and yp(a, it) > 0, 
there exists a two-value two-stage multistep Runge-Kutta method of class 2 given by 
(1.1), (1.3), (3.1la), (3.12), (3.14), (3.15) and (3.16), which is algebraically stable, 
diagonally stable, B-stable, optimally B-convergent of order 2 and B-convergent 
of order 3. For the special case a = 1 and u = 2, the corresponding method is 
equivalent to the two-stage RadauIIA Runge-Kutta method with stepsize 2h. 

Proposition 3.2. For any given a E (0, 1] and u satisfying (3.13) and p(a, ,u) < 0, 
there exists a two-value two-stage multistep Runge-Kutta method of class 3 given by 
(1.1), (1.3), (3.11a), (3.12), (3.14), (3.15) and (3.17), which is algebraically stable, 
diagonally stable, B-stable, optimally B-convergent of order 1 and B-convergent 
of order 2. For the special case a = 1 and u = 0, the corresponding method is 
equivalent to the two-stage RadaulA Runge-Kutta method with stepsize 2h. 

Example 3. Consider the methods of class 4 with r = s = 2. Let 

(3.19) ce1 = a, Ce2 = 1-a, O < a <1, 

and let tLl, /-A2 be real numbers satisfying I-L < /2. Then ay and C12 can be deter- 
mined by (3.14) and (3.15) respectively. To guarantee ty > 0 it is necessary and 
sufficient that 

(3.20) A, < 3 + a 
2 > 

3 
+ a 

The conditions C(1), 2dT/1 = 0 and Z2,2 > 0 are equivalent to 

Clle2 = - C12(, 2^T 411/ = - 2zyT, 

8-y diag(jL)Cll = 16= _- 16+ Ce2 + 6 > E 0, 

and therefore, together with B(2), 

(3.21) Cl = [d, a]V-l7 
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where 
- ( 1-a)(212-3) 

2(1-a)(2jt-(3) (3.22) 6=/1Cl2(6 2 (1+a)(2-3) 
2(1 + -2(1+a)jti-(3+a) 

"Y 
Y2 J[ 

- 
2&e2 - 2,-T1i2 

(3.23) 2F 2(6+2a-2-yTvA)21 (9+7a+E) 

2(1+a)tL2-(3+a) 

with E > 0. In order that Ic2IId2l 7 0, we only need b3 7 0, i.e. 

(3.24) 3(-yli + -Y2 _L2) #& 7 + a. 

In view of Theorems 2.6, 2.8 and 2.13 we thus obtain the next proposition: 

Proposition 3.3. For any given ,u1, U2, 6 > 0 and a G (0,1] satisfying (3.20) 

and (3.24) with -Yi and 7Y2 defined by (3.14), there exists a two-value two-stage 
multistep Runge-Kutta method of class 4 given by (1.1), (1.3), (3.19), (3.14), (3.15), 
(3.21), (3.22) and (3.23), which is algebraically stable, diagonally stable, B-stable, 
optimally B-convergent of order 1 and B-convergent of order 2, provided that either 
a < 1 or E > 0. For the special case a = 1, ,a1 = 0, A12 = 2 and E = 16, 
the corresponding method is equivalent to the two-stage LobattoIIIC Runge-Kutta 
method with stepsize 2h. 

Example 4. Consider the construction of methods of class 5 with r = 2 and s = 3. 

Let 

(3.25) a [a,I - a]T, IL = [/1, A2 1 
T 

where 

(3.26) 0 < a < 1, IL1 < A2 < A3- 

Using B(3), we get 

1 2tLl 3p 1 -T 1+a 
(3.27) y = y(a, ,u)= 1 2A2 3/tL2 3 + a 

1 2A13 3jp2 7+ a 

We also assume that -y(a, ,A) > 0, so that E(3) leads to 

(3.28) C12 = [diag(y)]-lV-T(R - diag(ca)U)T, 

where 

(3.29) V= [32t, 31-2], R= [2,4,8], U= [ ? ? 
0 

The elements of the matrix 

= [ Z22 Z23 1 
Z32 Z33 

are 

{Z22 = b4 = 4yTL3 _15-a, 

Z23 = Z32 = (2C011)Tdiag(y)3/2 + 2yTdiag(/1)C1l3/12 - 21 - Ila, 

Z33 = 6yTdiag(/_2)C113A2 - 49 - 15a. 
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Thus the conditions C(2), 3dMT, 2 = O, Z1 > 0 and b4 $ 0 lead to 

(3.30) b4-= 4-yT-L3_15-a > 0 

and 

C11 [e3,p] = [IL - C12(, 2 - C12(2], 
J yTC,3 = 6A2 T 12 -3-T 

I 6-yTdiag(a2 )C113 p2 = 49 + 15a + E1, 

2-yTdiag(tL)Ci13,2 = 21 + Ila - 3Tdiag(2 -C1242),u2 ? 1lb4 -2, 

where 

(3.31) E1 > 0, 0 <_ 2 < 61b4, 

and therefore, together with B(3) and E(3), 

(3.32) C11 = [,u- C12( L2- C1242,6]V-1, 

where 

zY1 zY zY3 1/ -1 
(3.33) = [0, 1]T, 6 = 2^Yl,L 2Y2/'2 2y 31-3 77 

6-y 1 /-26' p 212 6^Y3 p2 

with 

14 + 2a - 31Ty3 
71= 21 + Ila - 3-a I4 + 8ce( _ cT4 lb 6 b . 

49+ 15a++E1 
Thus, in view of Theorems 2.6, 2.8 and 2.13 we obtain 

Proposition 3.4. For any given jtL, ,U2, ,LL3, a, El and 62 satisfying (3.26), (3.30), 
(3.31) and -y(a, A) > 0, there exists a two-value three-stage multistep Runge-Kutta 
method of class 5 given by (1.1), (1.3), (3.25), (3.27), (3.28), (3.29), (3.32) and 
(3.33), which is algebraically stable, diagonally stable, B-stable, optimally B-conver- 
gent of order 2 and B-convergent of order 3, provided e1 > 0 and 62 > 0. 

The methods of class 6 with r = 2 and s = 3 can be constructed similarly, but in 
this case we have Z2,2 = -b4, and the coefficient matrix Cl, should be determined 
by the conditions D(2), 3c diag( y),L2 = 0, Z1 > 0 and b4 : 0. 

Example 5. To construct methods of class 4 with r = 2 and s = 3, we let 

(3.34) ce1 = a, 2 =1-a, 

and 

p(X) = p^(X)(X-1)Q(X-[2), 

where 

(3-35) 0 < a < 1, /11 < /12- 

In order to satisfy B(4), the relations (3.7) and (3.8) with s = 3 and r = q = 2 
must hold, which lead to 

I X(X) = 91X-92, 

g91 = i (X- l)(X- 2)dx+a (X-81)(X- 2)dx, 
2 
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and consequently 

(3.36) 
=f2 x(x-1lu)(X-tt2)dx + a x(x--il)(X- 2)dx 

?(x-f 1)(X - 12)dx + a f (x - /,)(X - L2)dx 

Here we assume that 

(3 37) 91 7& 0, As3(a, ILl, A12) 7+ /l, /23 (a, tLl /1, 2) 7& A2 - 

The only remaining task now is to calculate y, C12 and Cll; but this is the same 
as mentioned in example 4 except that in this case we have b4 = 0 and 62 = 0, and 
require 

(3.38) b5=-57 ,TI 31-a#O0 

instead of (3.30). Thus, in view of Theorems 2.6, 2.8 and 2.13 we obtain 

Proposition 3.5. For any given ,ui, I'2, a and 61 satisfying (3.35), (3.37), (3.38), 
y(a, ,u) > 0 and 61 > 0, there exists a two-value three-stage multistep Runge-Kutta 
method of class 4 given by (1.1), (1.3), (3.34), (3.36), (3.27), (3.28), (3.29), (3.32) 
and (3.33) with 62 = 0, which is algebraically stable, diagonally stable, B-stable, 
optimally B-convergent of order 2 and B-convergent of order 3, provided that 61 > 0 
and a < 1. For the special case a = 1, ,al = O, ,u2 = 1 and 61 = 52, the corre- 
sponding method is equivalent to the three-stage LobattoIIIC Runge-Kutta method 
with stepsize 2h. 

The nonlinear stability and B-convergence theory for multistep Runge-Kutta 
methods established in the present paper enrich the theoretical foundations of stiff 
computation, and without doubt of importance. However, in practice, it is natural 
to ask whether there exist multistep Runge-Kutta methods of classes 1-6 which 
are superior in some respects to the well-known one-step Runge-Kutta schemes. 
Fortunately, the answer is indeed positive, due to the following facts. 

(1) Any one-step Gauss Runge-Kutta method has a stability function R(h) whose 
value at infinity satisfies IR(oo) = 1. In contrast, the multistep Runge-Kutta 
methods of class 1 allow the spectral radius of the stability matrix S(h) at infinity 
to be smaller than 1: p(S(oo)) < 1, which improves stability at infinity, and ensures 
that the errors of the extremely stiff components are damped out qiuickly. For 
example, for the 2-step 3-stage multistep Runge-Kutta method of class 1 with 
coefficients 

a= [0.0254294608860966,0.974570o53911393]T9 
a = [0.0292020628426463,0.578611565044865,0.417615832998585]T, 
, = [0.388710707597604,1.27430628101834, 1.82951690035238] T, 

0.337337979617462 -0.292009898095809 0.108941719003734 

C1=l 0.0488493196803534 0.289675767260957 -0.0331596021107289 I 

L0.0214005894331623 0.624526898213954 0.208808290132131 
[ 0.765559092927782 0.234440907072218 

C12= 0.0310592038122419 0.968940796187758 

0.0252188774268619 0.974781122573138 
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it is readily checked that p(S(oo)) 0.34. Furthermore, Hairer and Wanner [13] 
have also pointed out that there exists a 2-step 2-stage multistep Runge-Kutta 
method of class 1 for which p(S(oo)) = - 1 0.41421. 

(2) The coefficient matrices of the one-step s-stage Gauss, RadaulA and Radau- 
IIA Runge-Kutta methods all have complex eigenvalues for s > 1. In contrast, there 
exist multistep Runge-Kutta methods of classes 1-6 whose coefficient matrices only 
possess distinct real eigenvalues; these are called multistep Runge-Kutta methods 
with real eigenvalues in [18]. For example, the 2-stage multistep Runge-Kutta 
method 

IY = [5Yn-3 + 9Yn-1 + h(15f (tn - h, Y1) - 5f(tn + h, Y2))], 

Y2 = 2 [-Yn-3 + 3Yn-1 + h(-f (tn - h, Y1) + 3f(tn + h, Y2))], 

Yn = [2yn-3 + 18Yn-1 + h(21f(tn- h, Yi) + 3f(tn + h, Y2))] 

constructed in [18] is of class 2 and has a coefficient matrix 

15 -5 

011= B4 14 
1 3i 
2 2 

whose eigenvalues A1,2 = 7(9 ? VI) are two distinct real numbers. this can 
essentially improve the computational efficiency. In fact, for s-stage whole implicit 
methods applied to m-dimensional stiff problems, nonlinear systems of dimension 
sm arise. Applying a simplified Newton process leads to linear systems of the 
same dimension. If we use Gaussian elimination to solve such a linear system, then 
this would cost 2 s3m3 arithmetic operations for the LU-decomposition, which can 
be very expensive for large sm. In order to reduce these costs, we usually bring 
the Newton iteration matrix to block diagonal form by a Butcher transformation 
(cf. [8]). For the aforementioned one-step Runge-Kutta methods, each complex 
eigenvalue pair of the coefficient matrix corresponds with a block of size 2, for which 
the LU-costs can only be reduced to 8m3. However, for multistep Runge-Kutta 
methods with real eigenvalues, all the blocks are of size 1, and for each such block 
the LU-costs can be reduced to 2Mm3. Therefore, if we use an appropriate number of 
processors to compute a large-scale stiff problem in parallel by a multistep Runge- 
Kutta method with real eigenvalues, then for each processor the computational cost 
per step is almost the same as for the serial computation by a widely used BDF 
method, whereas the stability and convergence properties are far better than that 
of BDF. On the other hand, it is easily seen from the above discussion that for large 
scale parallel stiff computation the aforementioned one-step Runge-Kutta methods 
are about 4 times more expensive than the corresponding multistep Runge-Kutta 
methods with real eigenvalues. 

Recently, we have found a family of multistep Runge-Kutta methods with real 
eigenvalues, such as 2-stage 3-step third-order methods of class 2, 2-stage 4-step 
fourth-order methods of class 1, 3-stage 4-step fifth-order methods of class 2, 3-stage 
8-step sixth-order methods of class 1 and 4-stage 7-step seventh-order methods of 
class 2, which will be published in a separate paper [19]. Since these methods 
not only possess very good stability and convergence properties, but also can be 
performed in parallel at high speed, it is expected that for large scale parallel stiff 
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computations a code based on these methods will be superior in many respects to 
the existing codes based on traditional methods. 

Furthermore, although the s-stage Gauss and Radau type one-step Runge-Kutta 
methods with s > 1 cannot be singly implicit, we have also found some 2-stage singly 
implicit multistep Runge-Kutta methods of classes 1 and 2 which can improve the 
efficiency for serial computation, and will also be published in [19]. 

(3) It is well known that the 1-step 3-stage LobattollIC Runge-Kutta method is 
not diagonally stable (cf. [11]) and not B-convergent for problems with an optimal 
one-sided Lipschitz constant v > 0 (cf. [22]). In contrast, there exist many three- 
stage multistep Runge-Kutta methods of class 4, determined by Proposition 3.5 of 
this paper which are all diagonally stable, B-stable and B-convergent of order 3. 
This means that there do exist multistep Runge-Kutta methods, constructed in the 
present paper, whose stability and convergence properties are all better than those 
of the corresponding traditional Runge-Kutta methods. 
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