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ANALYSIS OF THE FINITE PRECISION 
BI-CONJUGATE GRADIENT ALGORITHM 
FOR NONSYMMETRIC LINEAR SYSTEMS 

CHARLES H. TONG AND QIANG YE 

ABSTRACT. In this paper we analyze the bi-conjugate gradient algorithm in 
finite precision arithmetic, and suggest reasons for its often observed robust- 
ness. By using a tridiagonal structure, which is preserved by the finite precision 
bi-conjugate gradient iteration, we are able to bound its residual norm by a 
minimum polynomial of a perturbed matrix (i.e. the residual norm of the exact 
GMRES applied to a perturbed matrix) multiplied by an amplification factor. 
This shows that occurrence of near-breakdowns or loss of biorthogonality does 
not necessarily deter convergence of the residuals provided that the amplifica- 
tion factor remains bounded. Numerical examples are given to gain insights 
into these bounds. 

1. INTRODUCTION 

Since its introduction by Lanczos [16] and later re-discovery by Fletcher [7] in 
its present form, the bi-conjugate gradient (BiCG) algorithm has evolved many 
variations (e.g. CGS, BiCGSTAB, QMR, CSBCG [22, 25, 8, 2]), each of which was 
specially designed to overcome some of its inherent difficulties (the need for adjoint 
matrix vector product, potential breakdowns, erratic convergence behavior, etc.). 
However, it has been observed by Bank and Chan [2] and Tong [23] that, in many 
cases, BiCG may still be competitive (in terms of convergence and convergence 
rates), especially when coupled with no or relatively poor preconditioners. 

One major concern in using BiCG is two types of potential breakdown problems, 
which can cause numerical instability. In addition, in finite precision arithmetic the 
biorthogonality is lost, as is experienced by other Lanczos-type algorithms. As a 
result, the finite precision BiCG iteration can deviate significantly from the exact 
one. However, in many cases where such difficulties arise, BiCG exhibits,exceptional 
numerical robustness in practice as far as the convergence of the residual norm 
is concerned [2, 23]. Specifically, very often, occurrence of near-breakdowns or 
loss of biorthogonality does not deter convergence of the residuals. On the other 
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hand, it has been observed by Golub and Overton [9, 10] that the preconditioned 
conjugate gradient method with inexact preconditioner, which amounts to relatively 
large perturbations to the CG recurrence, could still converge. These phenomena 
suggest that the residual convergence property of BiCG (or CG) may be relatively 
insensitive to perturbations in the recurrence, even though many other properties 
such as biorthogonality are sensitive to them. However, there is no theoretical result 
to explain such robustness. It is the purpose of the present paper to study the 
sometimes surprising convergence behavior of BiCG in finite precision arithmetic. 
We remark that our intention is not to suggest that BiCG will be robust in all 
cases, as there are plenty of divergent examples of BiCG, but rather to understand 
when and why BiCG iterations show more stability than expected. 

In exact arithmetic, bounds on approximation errors (or residuals) of the BiCG 
iteration have been obtained by Bank and Chan [2], showing the fast decrease of the 
errors under certain conditions. Furthermore, it was also shown recently by Barth 
and Manteufel [3] that the BiCG residual indeed gives optimal approximation from 
Krylov subspaces, considered in a certain metric. Since proving these results [2] 
relies on the Galerkin condition (i.e., bi-orthogonality) of BiCG, which is usually 
lost in finite precision arithmetic, it is difficult to apply or generalize these analyses 
to the finite precision case. Furthermore, occurrence of near-breakdown could cause 
BiCG to generate completely different sequences for exact arithmetic and for a finite 
precision arithmetic. Nevertherless, we will show in this paper that the convergence 
property of residuals may still be preserved. 

We shall prove a posteriori residual bounds similar to those in [2] for the exact 
case, using an approach that is based on a tridiagonal structure implicit in the 
algorithm. This approach was also used by Ye [27] to analyze convergence of the 
Lanezos algorithms for eigenvalue problems. An advantage of analyzing BiCG using 
its tridiagonal structure is that our results include the finite precision case and the 
near-breakdown case, and explain its sometimes observed convergence under quite 
general conditions. 

Finite precision analyses of conjugate gradient-type and Lanezos-type algorithms 
have played an important role in understanding these algorithms. The pioneering 
work is due to C. Paige [19, 20] and A. Greenbaum [12]. Paige showed in [19, 20] 
that the loss of orthogonality comes with but does not prevent convergence of the 
Ritz values, i.e., useful results can still be obtained from the algorithm even when 
the iterates deviate significantly from what would have been produced in exact 
arithmetic. A generalization to the nonsymmetric case was given by Bai [1], and the 
near-breakdowns and loss of biorthogonality were discussed by Day [5]. Greenbaum 
established backward stability results in a generalized sense [12], showing that the 
iterative residuals produced by the finite precision conjugate gradient algorithm are 
equivalent to what would have been produced by applying the exact CG to a larger 
matrix. Some estimates on the larger matrix were given, which may vary from step 
to step. It would be interesting to see if Greenbaum's backward stability results can 
be generalized to BiCG; we are not aware of any such generalization. One analysis 
is given by Cullum and Greenbaum [4], which relates BiCG type methods to QMR. 
We note that a recent work by Greenbaum, Druskin and Knizhnerman [15] on the 
finite precision CG also uses the approach of bounding the residuals. Other recent 
works on the finite precision CG include [13, 14, 18, 25]. 

The paper is organized as follows. In section 2, we review the BiCG algorithm 
and discuss its theoretical properties. We then present our results in section 3, with 
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a roundoff error analysis in section 3.1, then various approximation bounds on the 
BiCG residuals in sections 3.2 and 3.3. We present our numerical experiments in 
section 4 and concluding remarks in section 5. 

Notation. We shall use the standard notation in numerical analysis. In particular, 
for the roundoff error analysis, absolute values and inequalities of matrices are 
componentwise, i.e., I (aij) I = 0 aij 1), and (aij) < (bij) means aij < bij. A 0 B 
denotes the Kronecker product of A and B, and A(A) denotes the spectrum of A. 
A+ denotes the Moore-Penrose generalized inverse of A. In is the n x n identity 
matrix [el, ... , en] = In. PPn denotes the set of polynomials of degree not exceeding 
n. 

2. THE BiCG ALGORITHM 

The BiCG algorithm for solving the linear system Ax = b is implemented as a 
pair of coupled two-term recurrences as follows. 

Input initial approximation xl; 
Initialize r, = Pi = rj = P= b - Ax,; 
Pi =r r1; 
For n = 1, 2, ...... 

r71+ = -n O!7Ap 

P7n nAP 

an= Pn 

rn+1 = rn- +lnAPn 

Xn+1 = Xn + lnpn 

rn+l = fn - anAT Pn 
Pn+1 = rn+l rn+l; 
,3 1 = Pn+1 

Pn+ 1 = rn+1 + A3n+lPn 
Pn+ 1 = fn+l + A3n+lPn 

end for 

The algorithm breaks down if either orn = 0 (called pivotal breakdown) or Pn = 0 
(breakdown in the underlying Lanczos process). Instability may be expected when 
the iteration is close to breakdown (called near-breakdown). We shall assume in 
this paper that no exact breakdown occurs. 

The sequence generated by the algorithm satisfies the following biorthogonality 
and biconjugacy conditions: 

inTrm = i3 
PT Apm = 0, for m #4 n. 

rn+1 is called the computed residual, and in exact arithmetic, it is equal to the 
true residual b - Axn+1. The biorthogonality of the residuals implies that rn+1 is 
orthogonal to the dual Krylov subspace 

Kn(AT, rl) = span{r1, ATri, ... , (AT)n- ri}. 

This is also called the Galerkian condition. 
Writing Rn = [rl,... , rn] and Pn = [p1,... , Pn7 , we can derive from the recur- 

rence the following matrix relations: 

(1) APn=RnLnA-1 n1r+1e T and Rn =PnUn7, 
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where A, =diag[cal, * , a],enT = [O, ... . O 1] and 

(2) 

1 ~ j~ 133 1 u-j2 

Ln = 'A Un= . ' 

Combining the two equations in (1), we obtain the governing equation 

1 T 
(3) ARn = RnTn--rn+len 7 

where Tn = LnAn-1Un is an invertible tridiagonal matrix such that 

TT- l =T Un- lA L-le = e TA_v - 

where v = [1 1 ... I]T. Similar results hold for the dual sequences Pn and rn. 

3. ANALYSIS OF THE FINITE PRECISION BiCG 

In this section we present the main results in several subsections. We begin with 
an outline of the main ideas of this paper. 

It is well known that the biorthogonality (or orthogonality in the symmetric 
case) in a Lanezos-type algorithm is usually lost in finite precision arithmetic, and 
thus the iterates computed in a finite precision arithmetic may differ significantly 
from the corresponding exact quantities. In addition to this difficulty, BiCG may 
encounter near-breakdowns, and as a result, large roundoff errors may occur at two 
possible places. One is in the computation of a's and 3's, and the other is in the 
computation of r's and p's. However, the errors in the computation of a's and 
13's do not translate into errors in the governing equation (3), which depends on 
computations in the local vector recurrence only, not on how accurate the a's and 
dl's are. This is demonstrated in Sec. 3.1 by showing that (3) is still valid to within 
a small perturbation. So roundoff errors may cause the iterates to deviate from the 
exact ones and loss of biorthogonality; but they may not destroy the underlying 
tridiagonal structure in the BiCG algorithm. The importance of (3) was originally 
pointed out by Paige for the Lanezos algorithm and by Greenbaum for the CG 
algorithm. 

We claim that the existence of this tridiagonal structure also plays a major role 
in the convergence of the BiCG residuals in a finite precision arithmetic. We shall 
prove in Sec. 3.2 some bounds on the computed residual rn based on a perturbed 
(3) (see equation (11) below). The bounds are of a posteriori type and are in terms 
of the residual norm of the exact GMRES applied to a perturbed matrix multiplied 
by an amplification factor. 

We mention that in finite precision arithmetic, the computed residuals rn differ 
from the true residual b - Axn; however, they have the same magnitudes before 
roundoff error accumulation dominates (cf. [12, Theorem 2]). In investigating the 
robustness of BiCG, we are only interested in the convergence of rn because it is 
the convergence of rn that drives the convergence of the true residual b - AXn. This 
is also consistent with the analysis of the CG case [12]. 
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3.1. Roundoff error analysis of BiCG. We provide in this section a roundoff 
error analysis of the BiCG algorithm in finite precision arithmetic. A similar anal- 
ysis for the Lanezos algorithm has been given in [1]. Our analysis is based on the 
following simplified model of roundoff errors in basic matrix computations [11, p. 
66] (recall that inequalities are componentwise) 

(4) fl(ax + y) = xX + y + ue with lel < 2kxl + yI + 0(u), 

(5) fl(Ax) = Ax + ug with lgl < NIAlIxI + 0(u), 

where u is the machine precision unit, x, y E RN, and ca E R. Note that 0(u) 
denotes a term containing u and can be bounded rigorously. 

For ease of notation, we shall use rn, xn, p7, Pn, I3n? etc. directly to denote the 
computed quantities in finite precision arithmetic in the rest of the paper. 

Theorem 3.1. Let u be the machine precision unit and let rn, Xn7 Pnc , I,3n be the 
computed quantities in the finite precision BiCG algorithm. Then 

(6) ARn = RnTn- + u- Xrl 

where Rn = [ri,.. ,rr], Tn = L A`jUr (given in (2)) and Arn = [61,... ,6rn] with 

(7) 16il < ((N + 6)JAJ + -1 + i I + (2N + 7)JAIlpiI + 0(u). 

Proof. At the nth iteration, to compute rn+1, we first compute APn and have 
fl(Apn) = APn + 9 with lgl < uN1AllpnI + O(u2) by (5). Then 

rn+l = fl(rn - anfl(Apn)) = rn - anfl(Apn) + 9 

= rn-OanAPn + ang + 9 gX 

where, by (4), 

lg'1 < u(Irnl + 2JanJJfl(Apn)J + O(u)). 

Letting 6rn = (ang + g')/(uI nl, we obtain 

(8) -(rn+l - rn) = -Apn + u6rn 
aln 

with 16rnl < NJAJJPnJ+JrnJ/JanJ+2JAPnJ+O(u) < Irnl/lanl+(N+2)IAHIPnl+O(u). 
Similarly 

(9) Pn+l = rn+l + fn+lPn + U6Pn+l 

with 16Pn+lI < Irn+l + 213n+lIlpnI + O(u). Writing ARn = [?6r1 ,6rn] and 

\Pn = [0'6P2 ..v 6Pn]), we obtain from the above 

(10) APn = R LnAT1 -rn+ leT+uARn and R, = Pn Un + uAp pn, 

where Rn , etc., are defined in the same way as in section 2. Combining the two 
equations, we obtain 

1=R n nlT ARn = RnTr, - n-l~en + UAn, 
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with An = AA p, + ARnUnTh Write An = [61k... 6,]. Then we have 6i = A6dp + 
6ri- 6r_i3i. So for i > 2, we have (with N' = N + 2) 

kJil ? AJJri++2JAJI3piJJpi_lJ+ ill + N'AIlpiI 

+loil(- 1r1- + N'/AHlpi-D ) + O(u) 

? (JAI + a I+ )Jrij + N'JAJJpiJ + (N'+ 3)JAJ(JpiJ + Iril) + O(u) 

1a___l 

? ((N'+4)IA + 
I 

+ 
1 
li 

I 
)Irij + (2N'+ 3)JAJJpiJ + O(u), 

where we have used Iri-l < iril + cai-1 lApi-1| + O(u) and 13:ipi-ll < ?Pi + 
iri + O(u). The same bound holds for the case i = 1, and hence the theorem is 
proved. F 

Remark. We can conclude from bound (7) that the accuracy in the computations of 
the coefficients ca and i does not directly affect the perturbation uA\L. In particular, 
occurrence of near-breakdowns may cause the computed a or i and hence the 
iterates to be inaccurate, but it does not necessarily cause a large error 6i (see 
Example 2 in Sec. 4), and thus the fundamental equation (6) is still nearly satisfied. 
Also note that lpil < IA-11(jril + Jri+lJ)/JaiJ + O(u), and therefore the relative 
magnitude of the perturbation 6d/llrill does depend on the magnitude of I/ci and 
di- 

In our later analysis, it is more convenient to work with an equivalent form of 
(6) with ri scaled to the unit norm. It will also become clear that only the relative 
perturbation 6i/HriII is of importance. Let 

Dn = diagf 1 lri 11 7 ll )|rn II } and Zn = [zi, .. * Zn] = RnDn1 

Then we obtain scaled (6) with lzil = 1 as 

(11) ~~~AZn = ZnTn- 
I rn + le T + UA\n7 a' Ilrill1 

where Tn = DnTnD-1 is an invertible tridiagonal matrix, a' = llrnlan/Irl = 

elTn-1e1 and 

An = _ nD_l = [61/llrlll, .. X * n/JJrnJ1]. 

This will be the only equation that we assume for BiCG in the rest of this section. 

3.2. Bounds on JJrn+1lJ for the finite precision BiCG. In this section, we 
present the main result on bounding the computed residual (Theorem 3.6). We 
first give a few lemmas. Recall that PPn denote the set of polynomials of degree not 
exceeding n. 

Lemma 3.2. Assume AZn = ZnTn- 
' nl en with enTn-le1 = a' and ri = 

lir1 Ilz1. Then, for any polynomial p(x) = En=O ?/)kXk of degree not exceeding n, 

(12) p(A)zl = Znp(Tn)el + Cnrn+l, 

where cn = -'n(al .. . anJ JrlJ )1. 
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Proof. We first prove by induction that for any k with 1 < k < n-1 

(13) AkZne ZnT el. 

Clearly it is true for k = 1. Assume that (13) is true for some k < n- 2. First, we 
have enTTnke, = 0 (see [27, Lemma 3.1]). Then 

A +lZnei = AZnTT el = (ZnTn- 1 Tn n a' Il~rirIIn+len)~ 
= ZnTnk+lel. 

Therefore (13) holds. Consider now 

AnZne, = AAn-1Zne = AZnTnn-1el 

= (ZnTn a/ crrn+lenn)T 'iel 

n 
~Te, - r~+ ZnTn 

a, . .. anlrll rn+l) 

where eaTn>1ei = -r |(ag1 **m-1ri1)1 (see [27, Theorem 3.2]). Combining 
the above with (13), we obtain (12). F 

Note that the above lemma also holds if Tn is Hessenberg. In particular, if p is a 
polynomial of degree n - 1 (i.e. Ibn = 0), then (12) becomes p(A)zl = Znp(Tn)el, 
a case that has been proved in [17, 21]. 

From this lemma, we have the following identity concerning rn+l. 

Lemma 3.3. Assume 

(14) AZn = ZnTn rn+l eT 
n lirill1 

with enTTn-lei = a' and r1 = llrillzl, and assume that VT E RnxN is a matrix 
such that VTZn = I and VTrn+l = 0. Then for any polynomial p(x) of degree not 
exceeding n with p(O) = 1, we have 

(15) rn+1 = (I - AZnTn-1VT)p(A)rl. 

Proof. First, multiplying (14) by Tn-lel, we obtain 

(16) rn+l/l/rl |I = z- AZnTn-lel. 

Write p(x) = 1 + xq(x), with q(x) = k=O bk+1x+ a polynomial of degree not 
exceeding n - 1. Then 

rn+l/IIrl1 = - AZnTn-le -p(A)zl + p(A)zl 

= -Aq(A)zl - AZnTn-el +p(A)zl 

= -AZnq(Tn)el - AZnTn-el +p(A)zl 

= -AZn(q(Tn) + Tn -')el +p(A)zl 

(17) = -AZnTn-lp(Tn)el + p(A)zl, 

where we note that by Lemma 3.2, Aq(A)z1 = Aq(A)Zne1 = AZnq(Tn)e1 with 

deg(q) < n. 
Now, for the polynomial p, equation (12) holds. Multiplying it by VT, we obtain 

(18) VTp(A)z1 = p(Tn)e1. 
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Finally, substituting p(Tn)el into the equation above, we have 

rn+1 = (I - AZnTn-lVT)p(A)zl. 

Now, the lemma follows from using r1 = rillzl. ili 

Note that the matrix V above exists if and only if zi,.. ,nznZn+j are linearly 
independent. In the case of exact BiCG, this is the case because of biorthogonality. 
Indeed, a natural choice for V is VT = (RfTRn)-1RT, since by the biorthogonality 
condition RnRn = D is a diagonal matrix, and Rnrn+1 = 0. Using this V, the 
lemma leads to the known results for the exact BiCG [2]. 

When an biorthogonal basis is not explicitly available, the next lemma gives a 
construction of V. 

Lemma 3.4. Assume that zl, Z2, ... * Zn, Zn+1 E RN are linearly independent, and 
write Zk = [Zl Z2 ... Zk]. Then VOT = [In 0]Z+ 1 (i.e. the matrix consisting of 
the first n rows of Z+ 1) has the property 

(19) VOTZn = I and VOTZn+l = 0. 

Fubrthermore, its spectral norm is minimal among all the matrices having this prop- 
erty. 

Proof. FRom the definition of Vo, Zn+ = [Vo, V]T for some v. Since z1, v zn +i 

are linearly independent, [V0, V]T[Zn Zn+i] = Z+ lZn+l = I. Then VOTZn = In 
and VOTZn+l = 0. 

Now, if V is another matrix having property (19), then VT[Zn Zn+1] = [I 0]. 
Thus VTZn+iZZ+i= [I O]Z++ = VOT. Hence I Voll < ? IVII IIZn+1Z++ 1 < 

VI. -L.1I 

We now present our main result on bounding the residuals. 

Theorem 3.5. Assume equation (11) and let VT - [In O]Z4+ E RnxN (the 

matrix consisting of the first n rows of Zn+1) If Z1, Z2, , zn, Z are linearly 
independent, then 

(20) IIrn+lII < (1+Kn) mim Ilp(A+6An)rl , 
pE'Pn,P(O)=l 

where Kn = II(AZn - UAn)Tn-fVOT II and SAn = -UAn Z+. 
Furthermore, as n increases, en = minPEnP(o)=1 Ilp(A + 5An>ri%1 decreases 

monotonically. 

Proof. Since z1, ,zn,Zn+, are linearly independent, Zn+Zn = I. Then SAn = 

-uAZnZ E RNXN satisfies SAnZn = -uzn. Thus (11) can be rewritten as 

(21) (A + ?An)Zn = ZnTn - 1 rn+ eT 

Now for any p E 'Pn with p(O) = 1, we use Lemmas 3.3 and 3.4 to obtain 

rn+1 = (I- (A + 6An)ZnTn OVjT) * p(A + ?An)ri 

= (I - (AZn - UAn)Tn1VjOT) * p(A + 5An)rla 

Thus 

llrn+ 11 < (1 + 11 (AZn - UAn)TnOVT ||) I|p(A + 5An)r 
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Since this is true for any p(x) with p(O) = 1, the inequality is true for the minimizing 
polynomial, which leads to the bound. 

For the second part, we show that for any polynomial p with deg(p) = k <in, 

p(A + 5Am)Zl = p(A + 5Ak)zl, 

which leads to the monotonicity result 

min lIp(A+ Am)zilI < min IIp(A+6Ak)ZlII. 
PE'Pm,P(O)=l pEPk,p(O)=l 

For any i with 0 < i < k- 1, T4el = ( Tk1 ) (see [27, Lemma 3.1]). Then using 

Lemma 3.2, (A + 6Am)izi = ZmTmei = ZkTkel = (A + 5Ak)izl. F'urthermore, 

(A + MAm)kZl = (A + SAm)ZmTk-lel 

=(ZMTM - 
/ lr+e)Tk le, 
k1 

= ZmT Th el) 

k IIrk+1I ZklTTk-1 
= ZkTk - 1 Zk+le T e 

=(Zk Tk- kl ek )Tk el 
c4kIIriII rk+ek)Tke 

= (A + 6Ak)ZkTk1el 

= (A + Ak)kZl. 

Thus, p(A + 6Am)zl = p(A + SAk)zl, and the proof is complete. LI 

Remark. For each n, en = minpEPn,P(0)=l Ilp(A + 5An)rl 11 is the nth residual norm 
of exact GMRES applied to the perturbed matrix A + MAn. Explicit bounds on 
en have been discussed extensively in the literature; see [24] for example. Our 
numerical experiments show that the perturbation term 6An has little effect, i.e. 
usually en - minPEPn,P(O)=l IIp(A)rl 11. 

Remark. If Tn is not too close to being singular, and the elements of the basis 
Z, ... , Zn) Zn+1 are not too close to being linearly dependent, i.e. IITn- and IVo < 
IZn++ are bounded, then it follows from 

(22) Kn < (fiIIAII +UllAnI1) lTn-jII IIVoII 

that the residual norm IIrn+l 11 is within a moderate factor of en. Hence, convergence 
of the BiCG residual can be achieved provided Kn increases at a rate slower than 
the rate at which en decreases (see the examples in Sec. 4). In particular, this is still 
possible even when IlAnll is large (Example 1 in Sec. 4). We note that Kn could 
grow out of bound; but this simply reflects the situations when BiCG diverges. 
Unfortunately Kn cannot be determined a priori. 

Remark. If Tn is close to being singular at some step n, then rn+l becomes (rela- 
tively) large in that step; but if at the next step Tn+1 becomes well conditioned, 
rn+2 will be small. So occurrence of a nearly singular Tn would cause local spikes 
in the convergence curve but may not affect the global convergence trend even in 
finite precision arithmetic, assuming that not all Tn are nearly singular. 
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Remark. The above bound assumes linear independence among the rn, and IlVoll 
is a measure of the linear independence. It suggests the possible effect of the 
linear dependence on the convergence, which is known, for example, for the exact 
QMR (see [8]). However, this dependence on IlVoll is not essential, and in the next 
subsection we give some results that avoid such an assumption at the expense of a 
more complicated bound. 

3.3. Bounds for the linearly dependent case. While it is well-known that loss 
of linear independence among the rn could cause deterioration of convergence in 
BiCG, there are cases where the convergence has been observed even when the linear 
independence of the rn is completely lost (the case n > N being one such example). 
We next present two bounds that avoid the linear independence condition and may, 
therefore, partially explain the convergence in such situations. 

First, recall that for A E RNXN and B E Rnxn, the matrix equation AE - 

EB = Z corresponds to a linear system with A 0 In - IN 0 B as the coefficient 
matrix. It has a unique solution if and only if A(A) n A(B) = 0 or sep(A, B) = 

II(A 0 In - IN 0 B)- 1j1- > 0 [11, p. 389]. Note that sep(A,B) depends on the 
spectral gap of A and B. 

Theorem 3.6. Assume equation (11) and let ,u be a complex number such that 
sep(A - ,uI, Tn) >> 0. Then 

(23) IIrn+1 | KI <:K min (Ilp(Tn) 11 + IIp(A -[J)'II) ) lri 1, 
PEPn7,,P(O)=l 

where 

K_ = (Ii J +sep(A -p I, Tn))Vn+UIAn IIF max{l, IIA-,pIII IITn1II} 
sep (A - ,I,J Tn) 

Proof. First, we rewrite (11) as 
1 

(A - jI)Zn = ZnTn- rn+je + UAn Zn 

Since sep(A - I,I, Tn) > 0, the matrix equation 

(A - /-I)En = EnTn-.U/\n + AZn 

has a unique solution En [11, p.389] with 

U| -UAn + ,uZnl IF UIIAn||F + AI,'n 
lEnJIF- <sep(A- l,TI,) - sep(A- tI,Tn) 

Then 

(A - -J) (Zn + En) = (Zn + En) Tn _r ln+1lenT 

Thus, for any p E PPn with p(O) = 1, we have by (17) 

rln+ =p(A-I>I)(Zn +En)el-(A-1iI)(Zn +En)Tnlp(Tn)el, 

and hence 

irnll 
11 < 

(-lZnll + |l Enll) Ilp(A- I)II 

+ IIA - ,III (IlZnll + IJEnII)IITn111I IIp(Tn)ejII, 

which leads to the theorem, since I|Zn|I + IIEnII <? /n + IIEnIIF. * 
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Again the bound contains two parts. Kn depends mainly on IIT,-1lI if the pa- 
rameter ,u has been chosen to create a large sep(A - i,I, Tn). The second part now 
depends on minimization of p(Tn) in addition to p(A - i,I). Note that if ,u is simply 
chosen to be 0, then we have a simpler bound depending on sep(A, Tn); but this 
gap is usually small because of convergence of the eigenvalues of Tn to those of A. 

We further consider a simplified special case where ri becomes nearly linearly 
dependent because of the appearance of spurious Ritz values and Ritz vectors (in 
the underlying Lanczos process). It is known, in the symmetric case, that gradual 
appearance of spurious Ritz vectors leads to linear dependence [19, 20]. Our next 
result will be formulated in terms of the Ritz basis, rather than in terms of the 
basis Zn. 

An eigenvalue 0 of Tn is called a Ritz value and Znu is called a corresponding 
Ritz vector if Tnu = Ou. By considering the basis of Ritz vectors rather than 
Zn, the pattern of loss of linear independence becomes clear, i.e., the Ritz vectors 
corresponding to the spurious Ritz values become nearly linearly dependent on the 
others. For this reason, we divide Ritz vectors into two groups, one consisting of 
n- 1 Ritz vectors (ZnU1 in the theorem below) that are well linearly independent, 
and the other consisting of the rest, which are nearly linearly dependent on the first 
group. 

Theorem 3.7. Assume equation (11) and that zl, Zn are linearly indepen- 
dent. Let Tn = USU* be a Schur decomposition ordered such that the columns of 
[ZnU U, Zn+i] are linearly independent, where 

n-I I n-I I 

s = (511 S12 )nI U = (Ul, U2) 

Let VOT E R(n-1) xN be the first n - 1 rows of [ZnUl, Zn+i]+ v Then 

(24) IIrn+lII < (1 + Kn) min IIp(A+ 6An)rlIi, 

where ?l = (I - (A + 6An)/Ol). (I - (A + 6An)/Ol)rl, A(S22) = {0ol .. oily 

Kn = II(AZn - ULTn)UiSj1V0II < (VlllAl + ullA II)IITn- 11 IIVoll 

and SAn = -U/An Zn 

Proof. Let q(x) = (1 - x/01) ... (1 - x/01). Then for any polynomial p E 1Pn-l with 
p(O) = 1, p(x) = p(x)q(x) is of degree n and p(0) = 1. Then P(S22) = 0, and thus 

A(S) =(i(S11) 1(S22) 
) I' = (( M ) I 

where M is some matrix. Now, as in the proof of Theorem 3.5, we rewrite (11) as 

(A+ dAn) Zn = ZnTn - 
I 

rn+ eT 

Applying Lemma 3.2 (12) to the above with p, we obtain 

p(A + SAn)Zl = Znp(Tn)el + crn+l 

[ZnUi, ZnU2]P(S)U*el + Crn+l 

= [ZnUi, O]P(S)U* el + crn+l. 
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Multiplying the above by V0T, we obtain 

V0 p(A + 6An )z1 = [ 0]p(S)U*el, 

where VOTZnU1 = In-, and VoTrn+i = 0 by Lemma 3.4. Also, noting that S-1 is 
block upper triangular of the same structure as S, we have 

(A + 6An)ZnTn-jP(Tn)el = (A + SAn)[ZnUi, ZnU2]Sl1p(S)U*el 
= (A + 6An)[ZnUlU ZnU2]diag[Sjj1, O]P(S)U*el 

= (A?+ An)[ZnU1S5lj, 0]P(S)U*el 
= (A + 6An)ZnUlSi1l[In_, 01(S)U*el 
= (AZn - uAn)UiSjljVTP(A + 6An)Zl. 

Now, by (17), we have 

+ = p(A + 6An)z1 - (A + An )ZnTn 1P(Tn)el 

= (I - (AZn - uAn)U1S1lVo)P(A + 6An)zl 

Hence 

11rn+l 11 < (1 + Kn) lp(A + 6An)Zl || 11rl 11 = (1 + Kn) Ilp(A + 5An)il 11 

which leads to the theorem by taking p to be the minimizing polynomial. LI 

Essentially, the above bound replaces Zn (containing n vectors) in Theorem 3.5, 
which may become nearly linearly dependent, by ZnU1 (containing n - 1 vectors). 
This eases the dependence of the bound on loss of linear independence among the 
zi. In doing so, however, the degree of the minimizing polynomial is reduced to 
n- 1 and thus the convergence is expected to slow down. 

4. NUMERICAL EXPERIMENTS 

We present some numerical examples in this section. The purposes of these 
experiments are to verify the bounds, and to observe how the different parameters 
in the bounds affect the convergence behavior. All quantities in the bounds are 
computed with quadruple precision. 

We examine the following residual bound (Theorem 3.5) in our numerical exper- 
iment: 

(25) 1 1rn+ 1 1 1 <_ (1 + Kn)En7 

where en = minPEPn,P(0)=1 Ilp(A + 5An)rl 11 is the residual norm of GMRES applied 
to A + 5AMn Kn = I(AZn - UAn)Tn-VOT II and SAn = -uAnZ+. 

Example 1. Our first example is a diagonal matrix A (N = 32) with A(i, i) = 

1.01. We consider injecting respectively 1% and 10% random perturbations in the 
computation of rn+l (but not in fn+i) and compare the residual norms with the 
unperturbed case. Note that most known properties of BiCG except the perturbed 
equation (11) have been lost under the perturbations of this magnitude. In Figure 
1, we give the convergence curve for the perturbed (solid) and the unperturbed 
(dashed) cases and the bound (the + sign) for the perturbed case. To further 
analyze the various quantities in the bound, we give the magnitudes of Kn and the 
minimum polynomials en in Figure 2, and the values IITn-1 1 and IIVo 1, which bound 
Kn, in Figure 3. 
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We first observe that the given bound is satisfied (see Figure 1). We also observe 
that with 1% injected error, the BiCG residual still converges to the desired pre- 
cision, while it diverges for 10% injected error. Since en, converges monotonically 
to 0 at essentially the same rate for both cases, the reason for the divergence in 
the latter case is that the Kn term grows faster than the GMRES contraction EnL. 
A further study on Kn (Fig. 3) reveals that IlVoll, which is a measure of loss of 
linear independence among the ri, plays a major role in determining convergence 
or divergence. Therefore, it appears that with the smaller injected error (1%) and 
relatively short iterations, the loss of linear independence is modest and IIVo0l grows 
slowly, so that the GMRES reduction en can still drive the residual to convergence. 
However, with the larger injected error (10%), the loss of linear independence is 
much more severe and fast (IlVoll increases to 1012), which results in divergence. 

In a separate experiment, we inject artificial perturbations in the computation 
of ai instead of ri. Similar behavior was observed. We omit the details. 

Example 2. The second numerical example investigates the effect of near-break- 
downs on the convergence of BiCG. The matrix used here is the following convection 
diffusion equation discretized on a 31 x 31 uniform rectangular grid: 

-A u + 50(xu? + yuy)-25u = f(x,y) on Q= [0,112. 

Near-breakdowns occur in this example, and we run BiCG in double and quadruple 
precisions to show the impact of the roundoff errors. Figure 4 (left) shows the 
convergence curves of BiCG in double and quadruple precisions, and Figure 4 (right) 
shows the magnitude of the Lanczos pivots 

cos(rn, f,) = r11r1r/(IIrfhI2 IIrflhI2) 

and the rounding error term u IIn JF for the double precision case. 
We observe that the two convergence curves start to deviate at around iteration 

60, after a near-breakdown occurs (the Lanczos pivot drops to about 10-14; see Fig. 
4). Indeed, the residual vectors as generated by the double and quadruple precisions 
are completely different after this point. Despite this drop in the Lanczos pivot, 
however, /3n remains small throughout, and so is the Frobenius norm of the error 
term uAn. This confirms the analysis of Theorem 3.1, namely, occurrence of near 
breakdown does not necessarily cause large error uAn in the fundamental equation 
(11). Thus, it does not come as a surprise that the iteration counts required to 
achieve convergence are very close for the double and quadruple precision cases. 
In other words, the residual vectors in double and quadruple precision may be 
completely different, but their norms, bounded by similar quantities, may still be 
comparable. 

5. CONCLUSION 

The analysis presented in this paper attempts to shed some light on the impor- 
tant computational issue of how roundoff errors affect convergence of the BiCG 
algorithm. In particular, we show that even in the presence of roundoff errors, the 
BiCG residual bound can still be formulated in a way similar to the exact case in 
terms of a GMRES residual norm. There is, however, an amplification factor Kn, 
which cannot be bounded analytically without any a posteriori information. We 
remark that this is also the case even in exact arithmetic (see [2]), and it seems to 
be the nature of BiCG type algorithms that convergence cannot be determined a 
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priori. The BiCG residual bound given here also suggests and explains that it is still 
possible to achieve convergence even with relatively large errors in the recurrences, 
as confirmed by some numerical results. 
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