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A LANCZOS-TYPE METHOD 
FOR MULTIPLE STARTING VECTORS 

J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ 

ABSTRACT. Given a square matrix and single right and left starting vectors, 
the classical nonsymmetric Lanczos process generates two sequences of bior- 
thogonal basis vectors for the right and left Krylov subspaces induced by the 
given matrix and vectors. In this paper, we propose a Lanczos-type algorithm 
that extends the classical Lanczos process for single starting vectors to mul- 
tiple starting vectors. Given a square matrix and two blocks of right and left 
starting vectors, the algorithm generates two sequences of biorthogonal basis 
vectors for the right and left block Krylov subspaces induced by the given 
data. The algorithm can handle the most general case of right and left start- 
ing blocks of arbitrary sizes, while all previously proposed extensions of the 
Lanczos process are restricted to right and left starting blocks of identical sizes. 
Other features of our algorithm include a built-in deflation procedure to detect 
and delete linearly dependent vectors in the block Krylov sequences, and the 
option to employ look-ahead to remedy the potential breakdowns that may 
occur in nonsymmetric Lanczos-type methods. 

1. INTRODUCTION 

1.1. The Lanczos process for single starting vectors. Given a square matrix 
A E (CNXN and two nonzero starting vectors r, 1 E ?N, the classical nonsymmetric 
Lanczos process [27] is an algorithm that uses three-term recurrences to generate 
two sequences of biorthogonal basis vectors for the right Krylov subspace induced 
by A and r, and the left Krylov subspace induced by AT and 1. Furthermore, the 
coefficients of the three-term recurrences define a sequence of n x n matrices T 8n 
n = 1, 2, ..., that constitute approximations to the given matrix A. More precisely, 
the n-th Lanczos matrix T(8) represents the oblique projection of A onto the n-th 
right Krylov subspace and orthogonal to the n-th left Krylov subspace. 

In the Lanczos process in its original form [27], breakdowns or near-breakdowns- 
triggered by division by zero or a number close to zero cannot be excluded. Fortu- 
nately, the problem of potential breakdowns and near-breakdowns can be remedied 
by incorporating so-called look-ahead techniques into the Lanczos process. The 
possibility of such a remedy was first observed by Taylor [38] and Parlett, Taylor, 
and Liu [33], who also coined the term "look-ahead". Since then, there has been 
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extensive research activity in this area, and as a result, the look-ahead Lanczos 
process is now well understood; see, e.g., [6, 14, 17, 24] and the references given 
therein. The basic principle of the look-ahead Lanczos process is to continue the 
algorithm in the event of a breakdown or near-breakdown by relaxing the vector- 
wise biorthogonality of the Lanczos basis vectors to a cluster-wise biorthogonality 
and by resorting, for the next few iteration steps, to recurrences that are slightly 
longer than the three-term recurrences in the classical algorithm. 

When applied to large N x N matrices A, the n x n Lanczos matrices T(S) are 
often very good approximations to A already for n < N, and this makes the Lan- 
czos process a powerful tool for various computational tasks for large matrices A. 
We now briefly mention three such applications in large-scale matrix computations. 

The first application is the computation of approximate eigenvalues of A. Start- 
ing with arbitrary (for example, random) nonzero vectors r and 1, one runs the 
Lanczos process for n steps to obtain T The eigenvalues of T$') are then used 
as approximate eigenvalues of the matrix A; see, e.g., [11]. 

The second application is the solution of large systems of linear equations, 

(1.1) Ax = b. 

The biconjugate gradient (BCG) algorithm [28] and the quasi-minimal residual 
(QMR) algorithm [19, 20] are iterative methods that generate approximations xn 
for the solution of (1.1), starting from an arbitrary initial guess xo and an arbitrary 
nonzero left vector 1. Both algorithms are intimately connected to the Lanczos 
process applied to the matrix A, with starting vectors r := b-A xo and 1. For BCG, 
the n-th iterate xn is defined by a Galerkin-type condition that is mathematically 
equivalent to solving a small n x n linear system with coefficient matrix Tns) X instead 
of the large N x N system (1.1). For QMR, xn is defined by a quasi-minimization 
of the residual norm that is mathematically equivalent to solving a small (n+ 1) x n 
least-squares problem whose matrix is T('), extended by one more row. 

A third application is Pade approximation of transfer functions describing large 
single-input single-output time-invariant linear dynamical systems. Such transfer 
functions are rational functions H: C ? C U {oo} of the form 

(1.2) H(s) = 1T (I -s A)-1 r, 

where A e CNXN, r, 1 e CN are given, and I denotes the NxN identity matrix. An 
n-th Pade approximant, Hn, of the function (1.2) is defined as a rational function 
with numerator and denominator of degree at most n - 1 and n, respectively, such 
that the Taylor expansions of Hn and H about s = 0 match in as many leading 
Taylor coefficients as possible. The Pade approximant Hn can be directly obtained 
from the Lanczos process applied to A, r, and 1; see, e.g., [12, 22, 23]. Indeed, 
assuming for simplicity that no look-ahead steps occur in the Lanczos algorithm, 
the n-th Pade approximant is simply given by 

(1.3) Hn(s) = lTr e T (In - sTTs) el 

where In is the n x n identity matrix and e1 is the first unit vector of length n. A 
formula similar to (1.3) holds when look-ahead steps do occur. 

1.2. Handling multiple starting vectors. All three applications described in 
?1.1 have extensions that involve multiple starting vectors. 
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For eigenvalue computations of a matrix A with multiple eigenvalues or clusters 
of eigenvalues, it is usually preferable to employ a Lanczos-type method that iterates 
on blocks of, say m, vectors, rather than on single vectors; see, e.g., [10, 21, 35]. 
Such a procedure then involves m right and m left starting vectors. 

Some applications require the repeated solution of linear systems (1.1) with the 
same matrix A, but different right-hand sides, b1, b2,... , bi, that are all available 
simultaneously. These m systems can be summarized in block form: 

(1.4) AX=B, where B := [bi b2 bm] 

Applying a block version of an iterative method to (1.4) is often significantly more 
efficient than solving the m linear systems individually; see, e.g., [18, 29, 30, 31]. 
Block versions of BCG and QMR involve a block of m right starting vectors, namely 
R := B - AXO, where Xo E CNxm is an arbitrary initial guess for (1.4). 

- Time-invariant linear dynamical systems with m inputs and p outputs are char- 
acterized by matrix-valued transfer functions H: C --+ (C U {o})PXm of the form 

(1.5) H(s) = LT (Is A)- R, 

where A E (CNxN R E (CNxm, LE ?CNxp. Such transfer functions arise in control 
theory [5, 36, 37] and in circuit simulation [13]. For functions (1.5), H, one can again 
define n-th Pade approximants, Hn, which are now also matrix-valued functions, 
i.e., Hn: C F-+ (C U {00})p>x(m. Extending the Lanczos-Pade connection (1.3) for 
the single-input single-output case, m = p = 1, to the general m-input p-output 
case, m, p > 1, requires a Lanczos-type process that can handle m right and p left 
starting vectors, namely the columns of R and L, respectively. 

These three applications clearly show the need for a Lanczos-type algorithm 
for multiple starting vectors. Such an algorithm should be an extension of the 
classical Lanczos process for single starting vectors, and generate two sequences of 
basis vectors for the right and left block Krylov subspaces induced by the given 
matrix and the blocks of right and left starting vectors. In order to obtain a robust 
algorithm, the following three key difficulties need to be resolved. 

(i) The algorithm needs to include a deflation procedure in order to detect and 
delete linearly dependent vectors in the right and left block Krylov subspaces. 
This is an issue arising only when using multiple starting vectors. In the 
Lanczos process for single starting vectors, encountering a linearly dependent 
right or left vector simply means that the corresponding right or left Krylov 
subspace is exhausted, i.e., it reached its maximal dimension. The hlgorithm 
terminates normally in this situation. 

(ii) The algorithm needs to be able to handle different block sizes in the right 
and left block Krylov subspaces. These different block sizes may be due to 
different sizes of the starting blocks, i.e., m 7& p, or due to deflation. 

(iii) As in the classical Lanczos algorithm for single starting vectors, it cannot be 
excluded that breakdowns or near-breakdowns occur. As a result, in general, 
look-ahead techniques need to be incorporated. 

In this paper, we propose a Lanczos-type algorithm that extends the classical 
Lanczos process for single starting vectors to multiple starting vectors, and that can 
handle all three difficulties (i)-(iii) listed above. Given a matrix A E CNXN, and 
right and left starting blocks R E CNxm and L e ?CNXP, the algorithm generates 
two sequences of biorthogonal basis vectors for the right and left block Krylov 
subspaces induced by the given data. The algorithm includes a simple built-in 
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deflation procedure, and it can handle the most general case of right and left block 
Krylov subspaces with arbitrary sizes m and p of the starting blocks. 

The key property of the algorithm, which allows us to resolve the issues (i)-(iii), is 
the vector-wise construction of the basis vectors for the block Krylov subspaces. The 
vector-wise approach appears to originate with Ruhe [35], where it was applied to 
Hermitian matrices. However, we stress that, for Hermitian matrices, the problem 
of handling multiple starting vectors is a lot easier for the following two reasons. 
First, the right and left block Krylov subspaces are (up to complex conjugation if 
A is complex) identical, and thus the complication due to different right and left 
block sizes does not arise. Second, the possibility of breakdowns can be excluded, 
and hence no look-ahead is needed. We note that, to the best of our knowledge, we 
seem to be the first to extend Ruhe's vector-wise construction of basis vectors for 
the Hermitian case to .the general case of non-Hermitian matrices. 

We remark that early versions of the Lanczos-type algorithm described in this 
paper had been developed independently by Aliaga, Boley, and Hernandez, and by 
FReund, and were presented by Boley [3] and Freund [16] at the same Oberwolfach 
meeting in 1994. It was then that we decided to write this joint paper. However, 
we would like to stress that the algorithm presented in this paper has evolved quite 
a bit from the versions we had in 1994. We also note that, in his doctoral thesis [1], 
Aliaga investigated variants of the algorithm that are tailored to parallel computers. 

1.3. Related work on block Lanczos methods. The problem of extending the 
Lanczos process from single to multiple starting vectors is, of course, not new, and 
a number of algorithms have been developed over the years. With the exception 
of Ruhe's algorithm [35] for the Hermitian case, all previously proposed algorithms 
use a block-wise construction of block-biorthogonal basis vectors for the underlying 
block Krylov subspaces. It is easy to see that any such block-wise approach requires 
all right and left blocks to have the same size. In particular, block Lanczos algo- 
rithms are restricted to the special case when p = m and possible deflation occurs 
simultaneously in the right and left block Krylov subspaces. 

Block Lanczos algorithms for Hermitian matrices were first proposed by Cullum 
and Donath [9], and Golub and Underwood [21, 39]. Further and more recent work 
for the Hermitian case is described in [10, 30, 35] and the references given therein. 
We remark that only the algorithms in [9, 10, 30] and Ruhe's algorithm [35] include 
a proper deflation procedure. 

For non-Hermitian matrices, O'Leary-with her block BCG algorithm [31]-was 
the first to develop a block Lanczos-type method. A block version of the original 
three-term Lanczos algorithm [27] was first presented in [25, 26], and a more recent 
variant was proposed in [4]. As already pointed out above, all these algorithms are 
restricted to the case p = m. Furthermore, none of the existing block Lanczos- 
type methods for non-Hermitian matrices has a built-in deflation procedure, nor 
are there any look-ahead variants to remedy possible breakdowns. 

1.4. Outline. The remainder of this article is organized as follows. In ?2, we 
introduce our notion of block Krylov subspaces associated with multiple starting 
vectors. In ?3, we state some basic properties of the Lanczos vectors. In ?4, we 
describe the construction of the Lanczos vectors. In ?5, we present a complete 
statement of our Lanczos-type algorithm for multiple starting vectors and discuss 
a few implementation issues. In ?6, we establish some properties of the algorithm. 
In ?7, we make some concluding remarks. 
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1.5. Notation. Throughout this article, all vectors and matrices are allowed to 
have real or complex entries. We use boldface letters to denote vectors and matrices. 
As usual, M = [k], MT = [mkj], and MH = M = [i] denote the complex 
conjugate, transpose, and the conjugate transpose, respectively, of the matrix M = 

[mjk]. The vector norm llxll := xHx is always the Euclidean norm, and IIMiI 
maxllxll=l IlMxll is the corresponding matrix norm. The sets of real and complex 
numbers are denoted by R and C, respectively, and N is the set of positive integers. 

2. BLOCK KRYLOV SUBSPACES 

From now on, it is always assumed that A e CNxN is a given N x N matrix, 

R= [ri r2 ... rm] e CNxm 

is a given matrix of m right starting vectors, ri, r2,... ,rm, and 

L =1 12 Ip ]E CNxp 

is a given matrix of p left starting vectors, 11, 12, ... , lp. We stress that mn> 1 and 
p > 1 are arbitrary integers, and in particular, m and p need not be identical. 

In this section, we introduce our notion of block Krylov subspaces induced by 
the data A, R, and L. We start by defining the right and left block Krylov matrix 

K(A,R):= [R AR A2R ... AN-1R] and 

K(AT,L) :=[L ATL (AT)2L (AT)N L], 

respectively. The Lanczos-type algorithm constructs biorthogonal basis vectors for 
the ascending n-dimensional subspaces, n = 1, 2, .. ., spanned by the first n linearly 
independent columns of the matrices K(A, R) and K(AT, L), respectively. To 
properly define these subspaces, we need to delete the linearly dependent columns 
in (2.1). This is done by scanning the columns of each of the matrices K(A, R) 
and K(AT, L) from left to right and deleting each column that is linearly depen- 
dent on earlier columns within the same matrix. This process of deleting linearly 
dependent columns is referred to as exact deflation in the sequel. Applying ex- 
act deflation to (2.1), we obtain the deflated right and left block Krylov matrices 
Kdl (A, R) and Kdl (AT, L), respectively. By the structure (2.1) of K(A, R), a col- 
umn Ai1 ri being linearly dependent on earlier columns implies that all columns 
Ak ri, j < k < N - 1, are also linearly dependent on earlier columns. An analo- 
gous statement holds for the matrix K(AT, L) in (2.1). Consequently, t1e deflated 
Krylov matrices have the following form: 

K dl(A,R) = [R1 AR2 A2R3 ... AJmaxlRjma ], 

(2.2) 
Kdl(AT,L) = [L1 ATL2 (AT)2L3 ... (AT)kmax-lLkmax] 

Here, for each j = 1, 2, . ... J,Jrax7 Rj is a submatrix of Rj_p, with Rj 7& Rjyl if, 
and only if, exact deflation occurred within the j-th right Krylov block Ai1 R 
in (2.1). (For j = 1, we set Ro = R.) Similarly, for each k = 1, 2, ... ., kmax Lk is a 
submatrix of Lk-1, with Lk $8 Lk-1 if, and only if, exact deflation occurred within 
the k-th left Krylov block (AT)k-1 L in (2.1). (For k = 1, we set Lo = L.) 

We denote by Kn(A, R) the subspace of CN spanned by the first n columns of 
the deflated right block Krylov matrix Kdl(A, R) in (2.2). We call Kn(A, R) the 
n-th right block Krylov subspace (induced by A and R). Similarly, the n-th left 
block Krylov subspace (induced by AT and L), denoted by KTh(AT, L), is defined 
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as the subspace of CN spanned by the first n columns of the matrix Kdl(AT, L) 
in (2.2). By construction, the columns of each matrix Kdl(A, R) and Kdl(AT, L) 
are linearly independent, and thus both KCn(A, R) and Cn (AT, L) are subspaces of 
dimension n. 

Note that in our construction of block Krylov subspaces, we have only used 
exact deflation. In an actual algorithm for constructing basis vectors for /CnC(A, R) 
and Kn (AT, L) in finite-precision arithmetic, one also needs to delete vectors that 
are in some sense "almost" linearly dependent on earlier vectors. We will refer to 
the deletion of such almost linearly dependent vectors as inexact deflation. Our 
Lanczos-type algorithm has a simple built-in procedure for both exact and inexact 
deflation. While inexact deflation is crucial in practice, a concise definition of the 
corresponding block Krylov subspaces is necessarily quite involved. For the sake of 
simplicity, in this paper, we use only the notion of block Krylov subspaces based 
on exact deflation. Finally, in the sequel, "deflation" always means that both exact 
and inexact deflation are performed. 

3. BIORTHOGONALITY OF THE LANCZOS VECTORS 

In this section, we formulate some basic properties of the vectors generated by 
our Lanczos-type algorithm. 

3.1. The Lanczos vectors. The algorithm generates two sequences of vectors, 

(3.1) v1,v2, . v,V . vnmax and W1,W2, ...Wn, Wnmax 

We will refer to (3.1) as the right and left Lanczos vectors, respectively. 
In the case of exact deflation only, for n = 1, 2, . . , nmax the first n vectors in 

each sequence (3.1) span the n-th right and left block Krylov subspaces: 

span{ v1, v2, ... , vn } Kn(A, R),j 
(3.2) 

spant W1 v W2... , Wn } = Cn (AT, L). 

Moreover, the integer nmax in (3.1) is defined as 

(3.3) nmax min{rankK(A,R), rankK(AT,L) }. 

In the presence of inexact deflation, instead of (3.2), we have inclusions of the 
following form (provable by induction using the equations (4.6) below): 

span{ vl, v2,.. , vn } V C Cn+d (n) (A, R) 
(3.4) T 

spant w,w2,l . . *Wn} C Kn+d (n) (A I L) 

Here, dr (n) and di (n) depend on the number of inexact deflations that have occurred 
up to stage n. Moreover, the integer nmax in (3.1) is now given by 

nmax := min{ rank K(A, R) - max dr(n), rank K(AT, L) - max d (n) }, 

instead of (3.3). We note that it is also possible to derive a more quantitative 
version of (3.4). However, for the sake of brevity, such a result is not included in 
this paper. 

As in the classical Lanczos process for single starting vectors, the Lanczos vec- 
tors (3.1) are computed in pairs. At pass n of the algorithm, the n-th pair vn and 
wn is built, where vn is the vector that advances the right block Krylov subspace, 
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and wn advances the left block Krylov subspace. Clearly, this pair-wise construc- 
tion has to be terminated as soon as one of the two block Krylov subspaces is 
exhausted. If only one of the subspaces is exhausted, it would be possible to con- 
tinue the construction of single basis vectors for the non-exhausted block Krylov 
subspace. However, this is not done in our algorithm, and we simply stop the 
process as soon as one of the two block Krylov subspaces is exhausted. 

3.2. Vector-wise biorthogonality. As in the classical Lanczos process, the goal 
is to construct vectors (3.1) that are vector-wise biorthogonal, i.e., 

(3.5) w T = 
n if i n for all i,n = 21 ... , n 

10 if iy4n, 

However, enforcing (3.5) is only possible if 6n 74 0 for all n = 1, 2,... ,n X -1. 
Indeed, constructing biorthogonal vectors (3.1) involves division by 6n. In the 
general case, it cannot be excluded that 

(3.6) an = W Vn = 0 for some n < nmax, 

and thus any algorithm that tries to enforce (3.5) may break down due to division 
by zero. The event (3.6) will be referred to as an exact breakdown of the Lanczos 
type-algorithm. In finite-precision arithmetic, one also needs to deal with so-called 
near-breakdowns due to division by nonzero numbers 

(3.7) a n= 0nVn 0 a6n 74 0, for some n < nmax, 

that are in some sense close to zero. 
The key to dealing with possible exact and near-breakdown in the general case is 

to relax the biorthogonality (3.5) of individual Lanczos vectors to a biorthogonality 
of clusters of Lanczos vectors. 

3.3. Cluster-wise biorthogonality. In the general case, the right and left Lan- 
czos vectors (3.1) are grouped into clusters 

v( ) ) v( ) ) . . . ) V(l) V(lmax) 

(3.8) 
W( ), W(2), .. ., W(1) W(1max) 

respectively. Here, for each 1, 

V() :=n[V Vn1+1 ... Vnl+1-1] . 

(3.9) 
W( ) : Wni Wn1+1 ... Wn1+1-1] 

are N x (nl+1 - ni) matrices. Furthermore, 

(3.10) nj := 1 < n2 < *< n < < nlmax < nlmax+1 :=nmax + 

are the cluster indices. Note that nr is just the index of the first vector in the l-th 
pair of clusters (3.9). The size of the l-th pair of clusters is given by n+1 - nl. We 
call V(1) and W(1) true look-ahead clusters if they contain more than one Lanczos 
vector, i.e., if n1+1 - n > 1. The clusters V(1) and W(1) are built as true look-ahead 
clusters if, and only if, an exact breakdown (3.6) or a near-breakdown (3.7) occurs 
at step n = nl. Furthermore, the next cluster index n1+1 is chosen as the smallest 

integer bigger than ni such that the matrices A(') := (W(l))TV(l) are "sufficiently" 

nonsingular, except the last matrix, A(lmax), which may be singular. 
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The Lanczos vectors (3.1) are constructed to be cluster-wise biorthogonal, i.e., 

(3.11) (W,y(k))T Vt~ - J= () if k=1, 7I for all k,I = 1,2,... lrrax. 
0 f k =, 1, 

Note that, in the absence of exact or near-breakdowns, all clusters (3.8) consist 
of single Lanczos vectors only. In particular, in this case, 

nj = 1, V(') = vi, W(') = wi, A(-) = 61 for all I = 1,2,.. ., 1niax = nrnax, 

and the cluster-wise biorthogonality (3.11) reduces to (3.5). 
In the algorithm, we use the cluster indices (3.10) to keep track of the structure 

of the clusters (3.8). Occasionally, we will need to determine the index, denoted by 
l(n), of the clusters V1(n) and W1(n) that contain the n-th pair of Lanczos vectors 
vn and wn. In view of (3.9) and (3.10), for n = 1, 2, ... ., nrriax, 1(n) is given by 

(3.12) I(n) = maxt i E N I ni < n}. 

3.4. Matrix formulation. It turns out to be convenient to use the notation 

(3.13) Vn [v v2 ... vn] and Wn:= [wl w2 ... wn] 

for the N x n matrices whose columns are the first n right and n left Lanczos vectors, 
respectively. Moreover, we define An as the n x n leading principal submatrix of 
the block-diagonal matrix, partitioned conformally with the clusters (3.8), 

(3.14) Anmax := diag (A (1) , A& (2) X..... 
& (I---) 

With (3.13) and An we can state the cluster-wise biorthogonality relations (3.11) 
in compact matrix form as follows: 

(3.15) Wn Vn = An for all n = 1, 2,.. , nniax 

3.5. Normalization. The biorthogonality relations determine the Lanczos vec- 
tors only up to scalar normalization factors. In an actual implementation, proper 
normalization is important in order to avoid possible over- and underflow in finite- 
precision arithmetic. Furthermore, the usual strategies to decide when to perform 
a look-ahead step assume that the Lanczos vectors are normalized; see, e.g., [17]. 
Following [17], we normalize the Lanczos vectors to have unit Euclidean length: 

(3.16) llvnll = llwnll = 1 for all n. 

4. THE CONSTRUCTION OF THE LANCZOS VECTORS 

In this section, we describe the construction of the Lanczos vectors in our algo- 
rithm for multiple starting vectors, by analogy with the Lanczos process for single 
starting vectors. 

4.1. Review of the case of single starting vectors. The Lanczos process [27] 
for single starting vectors r and 1 obtains v, and w, by normalizing r and 1 so 
that (3.16) (for n = 1) is satisfied. For n > 1, vn is obtained by first comput- 
ing v = Avn-1 to advance the right Krylov subspace, then biorthogonalizing v 
against the previous left Lanczos vectors wi, i < n, and finally normalizing the 
biorthogonalized vector v. In exact arithmetic and in the absence of look-ahead, v 
is already biorthogonal to wi, i < n- 2, and so v only needs to be biorthogonalized 
against wn_2 and wn-1. In the case of look-ahead, v is biorthogonalized against 
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the previous two clusters; see, e.g., [17]. Similarly, w, is obtained by first comput- 
ing w = AT w- 1, then biorthogonalizing w against Vn_2 and vn_, respectively 
the two previous clusters, and finally normalizing the biorthogonalized vector w. 
Using the matrix notation (3.13), all these recurrences for the first n right and n 
left Lanczos vectors can be summarized as follows: 

(r if n = 1, 
VnTn-l = 

(AVn-1 if n > 1, 

(4.1) 
(l ~~if n =1, 

WnTn-1 
= 

fA1 W if n 1, 

Here, for n = 1, To and To are scalars that record the normalization of the starting 
vectors r and 1, respectively. For n > 1, Tn_ 1 and Tn-, are n x (n-1) matrices that 
contain the recurrence coefficients. Both matrices are tridiagonal if no look-ahead 
is necessary, and they are simultaneously upper Hessenberg and block tridiagonal 
if look-ahead steps are performed; see, e.g., [17]. 

4.2. Multiple starting vectors, but no deflation or look-ahead. We now 
turn to the Lanczos-type algorithm for multiple starting vectors. In this subsec- 
tion, we describe the procedure for the simplest case, where neither deflation nor 
look-ahead occurs. For n < m, the vector vn is generated from the n-th right 
starting vector v = rn by first biorthogonalizing v against wi, 1 < i < n, and 
then normalizing the biorthogonalized vector v to unit length. For n > m, the 
vector vn is obtained by first computing v = Avnrn to advance the right block 
Krylov subspace, then biorthogonalizing v against the previous left Lanczos vectors 
wi, n - m - p < i < n, and finally normalizing the biorthogonalized vector v to 
unit length. Similarly, for n < p, the vector wn is obtained by first biorthogonal- 
izing w = In against vi, 1 < i < n, and then normalizing the biorthogonalized 
vector w to unit length. For n > p, the vector wn is obtained by first computing 
w = AT wn-p, then biorthogonalizing w against the previous right Lanczos vectors 
vi, n - m - p < i < n. In analogy to (4.1), the resulting recurrences for the first n 
right and n left Lanczos vectors can be summarized as follows: 

Vn Tnm f I[rl r2 rn] if 1<n<m, 

lAVn-m if n > m, 
(4.2) 

f [11 12 ... In] if 1 < n < p, 

WAT Wn-p if n> p. 

Here, the matrices Tn-m and Tn_p again contain the recurrence coefficients used 
in the biorthogonalization of the Lanczos vectors. For n < m, respectively n < p, 
the matrix Tn-r, respectively Tn-p, is an upper triangular n x n matrix, recording 
the biorthogonalization of the right, respectively left, starting vectors. For n > m, 
Tn-r is a banded n x (n - m) matrix with lower and upper bandwidth m and p, 
respectively. For n > p, Tn-p is a banded n x (n - p) matrix with lower and upper 
bandwidth p and m, respectively. 
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0) Initialization; in particular, set ,u = uo = -m and ?b = 00 = -p. 
For n = 1, 2, .. ., buzild the n-th pair of Lanczos vectors Vn and Wn: 

1) Buzild the unnormalized right Lanczos vector v. 
la) Set ,u=,u+1. 
lb) If the right block Krylov subspace is exhausted, then stop. 
ic) Advance the right block Krylov subspace. 
Id) Determine against which clusters v needs to be biorthogonalized. 
le) Biorthogonalize v against these clusters. 
If) Decide if v should be deflated; if so, deflate it and repeat all of Step 1). 

2) Build the unnormalized left Lanczos vector w. 
2a) Set =q0 + 1. 
2b) If the left block Krylov subspace is exhausted, then stop. 
2c) Advance the left block Krylov subspace. 
2d) Determine against which clusters w needs to be biorthogonalized. 
2e) Biorthogonalize w against these clusters. 
2f) Decide if w should be deflated; if so, deflate :it and repeat all of Step 2). 

3) Normalize v and w to obtain Vn and wn, and add them to current clusters. 
4) Record the n-th history indices /ln = ,U and O$n = q). 

5) Check for end of look-ahead clusters. 

FIGURE 1. Structure of Lanczos-type algorithm. 

4.3. Deflation. We now begin our discussion of the algorithm in the general case, 
where deflation and look-ahead may occur. In Figure 1, we show the basic structure 
of the algorithm; a complete statement of the algorithm is given in ?5.1 below. In 
the following, we use the step numbers from Figure 1 to describe the algorithm. 

We use n as the counter for the main loop of the algorithm. During the n-th 
pass through the main loop, the Lanczos vectors vn and wn are being computed. 
This is done by first constructing, in Steps 1) and 2), candidate vectors v and w 
that satisfy the required biorthogonality conditions for vn and wn. In the proof 
of Theorem 6.3 in ?6, we will show that v = 0 or w = 0 is equivalent to an exact 
deflation in the right or left block Krylov subspace, respectively. Therefore, in the 
algorithm, we check for exact deflation by simply testing if v = 0 or w = 0. If 
inexact deflation is included, we choose a small deflation tolerance dtol, and then 
check for deflation by testing if 

(4.3) livll < dtol or llwll < dtol. 

If llvil < dtol, then v is deflated and all of Step 1) of the algorithm is repeated. 
If llwll < dtol, then w is deflated and all of Step 2) is repeated. Once Steps 1) 
and 2) have produced vectors v and w with llvJll > dtol and llwll > dtol, the n-th 
Lanczos vectors vn and wn are obtained by normalizing v and w in Step 3). Note 
that deflation reduces to exact deflation only by setting dtol = 0 in (4.3). 

Every time a v vector is deflated, the effective right block size, which was m 
initially, is reduced by 1. Similarly, each deflation of a w vector reduces the effective 
left block size by 1. If only exact deflation is performed, then the effective right 
and left block sizes could be recorded by keeping track of the sizes of the blocks 
Ai1 Rj and (AT)k-1 Lk in (2.2), together with pointers for the positions of vn and 
wn relative to the current blocks in (2.2). However, this approach cannot easily 
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be extended to include inexact deflation. Instead, we use a different encoding 
that properly describes the effective block sizes even when both exact and inexact 
deflation are performed. This encoding is based on history indices for the individual 
Lanczos vectors. Next, we describe these indices. 

4.4. History indices. In the algorithm, the indices ,u and 0 are used to record 
the number of passes through Steps 1) and 2), respectively; see Figure 1. At the 
beginning of the n-th pass through the main loop of the algorithm, p1 = ,Un-1 

and 0 = qn-1, where, initially, we set ,uo = -m and 00 = -p. The value of ,u 
is incremented by 1 in every pass through Step 1), and 0 is incremented by 1 in 
every pass through Step 2). The values of ,u and 0 after Steps 1) and 2) have been 
performed the last time within the n-th pass through the main loop are recorded as 
the n-th history indices, tin and O$n, in Step 4) of the algorithm. Recall from ?4.3 
that Steps 1) or 2) are repeated within each n-th pass through the main loop if, and 
only if, a deflation of a v or w vector has occurred. If follows that ,Un - n-1 -1 

is the number of deflations of consecutive v vectors in between the construction of 
vn-1 and vn. Similarly, On- k n-1- 1 is the number of deflations of consecutive 
w vectors in between the construction of wn-1 and wn. In particular, 

(4.4) tin = win-l + I and On = n-1 +1 

if no deflation of a v or w vector occurred during the n-th pass. 
It turns out that pUn and O$n are just the indices of the vectors from which vn and 

wn, respectively, were generated. More precisely, if tin < 0, then vn was obtained by 
biorthogonalizing and normalizing one of the right starting vectors, namely r,-n+m. 
If tin > 0, then vn was generated from the A-multiple A vn of the previously 
constructed vector v Similarly, an index O)n < 0 means that wn was generated 
from the left starting vector l'qn+p, while O$n > 0 means that wn was generated 
from AT w?. It will also be convenient to set nm,max+1 := Onmax+1 := nmax + 1. 

Note that, by construction, the history indices are strictly increasing: 

/LO < K1 < < fln-1 <fn < ... < Anmax+1v 

(4.5) 
(o < Oi < *.. < On-1 <kn < ... < Knmax+l1 

Filurthermore, we have n- m < ,Un < n and n-P < Oqn < n for all n K nmax 
The following example illustrates the concept of the history indices. 

Example 4.1. Suppose that {itO, b1, 2, I3, 2 4, 3 5, * * I } = {-2-1, O, 1,3,4, ...} 
This means v1 and v2 came from the m = = 2 starting vectors, while V3, V4, 
and V5 came from the A-multiples Avl, Av3, and Av4. Since ,u4 - ,3 = 2 > 1, 
there was one deflation in between the construction of V3 and v4. More precisely, 
the vector that would have resulted from A v2 was deflated. 

Remark 4.2. If no deflation occurred during the construction of the first n pairs of 
Lanczos vectors, then tin = n - m and O$n = n - p. This readily follows from (4.4). 

Remark 4.3. In the case of only exact deflation, the history indices (4.5) can be 
used to determine the sizes of the blocks Rj and Lk in the deflated block Krylov 
matrices (2.2). In [2], we show how to do this for the right blocks Rj; the case of 
the left blocks is analogous. 
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4.5. Recurrence relations for the general case. After having introduced the 
history indices, we are now in a position to state the recurrence relations for the 
most general version of our algorithm with both deflation and look-ahead. 

We continue to use the matrix notation Vn and Wn introduced in (3.13). More- 
over, for n = 0, we set Vo = Wo := 0. In analogy to (4.2), the recurrences for the 
construction of the first n right and n left Lanczos vectors can then be summarized 
as follows. For all n = 0,1,... nmax we have 

r[rl r2 ... r,t+m] if i, < O, 
VnT + Vdl = T i > n ?/ < Kn+l, 

A V, if Pi> 0, 
(4.6) 

? ~ = {[li 12 .. k1+p] ifq 0, q< ?o<$li Wn T,,+ Wdl = { TO?n < sb < )n+l- 
Ak T Wk If>0 

Here, Vdl and Wdl are N x ,u matrices that contain the vectors v and w that were 
not turned into Lanczos vectors due to deflation, together with lots of zero vectors. 
More precisely, these matrices are built up as follows: 

V dl vi if v =A 0 and v is deflated, 

VA [v0> o] otherwise, 
(4.7) 

W [wl 1 wi if w 74 0 and w is deflated, 

<IjW+u1 O] otherwise, 

where Vdl = Wdl :0. In particular, if no deflation or only exact deflation occurs, 
then Vdl = Wd,l are zero matrices. If inexact deflation occurs, then Vdl and W dl 

are no longer zero matrices, but they are still small in norm. At any stage of our 
algorithm, the number of v and w vectors that have been deflated so far is given 
by mr-n + ,i and p-n + q, respectively. Thus Vl and Wd, have at most m-n + ?u 
and p - n + 0, respectively, nonzero columns. In view of the deflation criterion (4.3), 
these nonzero columns have Euclidean norm at most dtol. It follows that 

K dtol rmn-n + ?i and- < dtol Vp-n ?q. 

As in (4.2), the matrices TA and T?, in (4.6) contain the recurrence coefficients 
used to enforce the biorthogonality conditions for the Lanczos vectors. For ,i < 0 
and 0 < 0, the columns of T, and T?, are obtained by biorthogonalizing the columns 
of the starting blocks R and L, respectively. For it > 0 and 0 > 0, the columns of 
T, and T? contain the recurrences used to advance the right and left block Krylov 
subspaces by multiplications with A and AT, respectively. 

If no deflation occurs, then V -l , W=l = O, = n-m, X =n-p, and hence 
the recurrences (4.6) reduce to (4.2). If, in addition, no look-ahead occurs, then 
the matrices TA and T?, in (4.6) are identical to those in (4.2). Recall from ?4.2 
that T, and T?, in (4.2) are banded matrices with lower and upper bandwidth m 
and p, respectively p and m. 

In the general case where deflation and look-ahead may occur, the structure of 

TA and T?, is more complicated. As before, T/, and T?, still have lower bandwidth 
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m and p, respectively. However, after each deflation of a v or w vector, the lower 
bandwidth for the successive columns of TA or T?,, respectively, is reduced by one. 
As before, T and T?, have nonzero elements within a band of upper bandwidth p 
and m, respectively. After each deflation of a v or w vector, the upper bandwidth 
for the successive columns of T?, or T/1, respectively, is reduced by one. Look- 
ahead and inexact deflation result in some additional nonzero elements above the 
upper bands of T, and T?. More precisely, look-ahead steps result in "bulges" 
in T, and T?, above their upper bands. The cluster indices lv and lw describe the 
beginning of the upper band, including any look-ahead bulges, in the ,u-th and 0-th 
column of TA and T?, respectively; see Algorithm 5.1 below. Each inexact deflation 
of a v vector requires that all successive left Lanczos vectors need to be explicitly 
biorthogonalized against a certain earlier vector vi, and in the look-ahead case, 
against the entire cluster containing vi. Similarly, inexact deflation of a w vector 
requires explicit biorthogonalization of all successive right Lanczos vectors against 
a certain earlier vector wi, and in the look-ahead case, against the entire cluster 
containing wi. The indices of the look-ahead clusters against which one needs to 
biorthogonalize due to inexact deflation of v and w vectors are stored in the sets lw 
and Iv, respectively; see Algorithm 5.1 below. These biorthogonalizations caused 
by inexact deflation result in nonzeros in rows of T, and T? whose row indices 
correspond to Iv and Tw, respectively. However, these nonzeros only appear to the 
right of the bands. 

4.6. An example. In this subsection, we present a specific example to illustrate 
how deflation and look-ahead affect the zero structure of T, and T?,. 

This is an example with m = 3 and p = 2. We assume that three deflations 
of v vectors and one deflation of a w vector occur. More precisely, the v vectors 
obtained by biorthogonalizing Av8, A v1l, and Av20 and the w vector obtained 
by biorthogonalizing AT w12 are deflated. The corresponding history indices are 
shown in the second and third columns of Table 1, where the values of , and 0 in 
parentheses indicate the repeated executions of Steps 1) and 2), respectively, due to 
deflation. Note that n = ,u at pass n = 21. This means that the right block Krylov 
subspace is exhausted, and thus the algorithm stops in Step lb) at pass n = 21, 
after having generated 20 pairs of Lanczos vectors, namely 

(4.8) v1,v2,. . . ,v20 and w1,w2,. . .,w20. 

If no look-ahead occurred, the vectors (4.8) are constructed to be vector-wise bior- 
thogonal. We also consider a case where true look-ahead clusters occur, with the 
values of the cluster indices (3.10) given in the ninth column of Table 1. Note that 
there are two true look-ahead clusters of length three, starting at n5 = 5 and at 
n6 = 8, respectively. Thus, the vectors (4.8) are grouped into clusters 

(4.9) V(1) v (2) V(6) and V16W(2),..., 16) 

where V(5) - [V5 V6 V7], V(6) - [V8 V VO], -[W5 W6 W7], 

W(6) = I[w8 w9 wio], and the remaining clusters consist of single vectors only. 
In the look-ahead case, the vectors (4.8) are constructed such that the clusters (4.9) 
are biorthogonal. 

For both the no-look-ahead and the look-ahead case, the zero structure of the 
matrices A20, T20, and T20 are shown in Figures 2 and 3. The following convention 
is used: guaranteed zeros are marked by ".", while potential nonzeros are marked 



1590 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ 

TABLE 1. Indices and sets used in Algorithm 5.1 for the example in ?4.6. 

History indices No look-ahead With look-ahead 
n - I n I v Iw | w Iv TV Iv w 1 w 

O . -3 -2 
1 -2 -1 1 0 1 0 1 1 1 0 1 0 
2 -1 0 1 0 1 0 2 2 1 0 1 0 
3 0 1 1 0 1 0 3 3 1 0 1 0 
4 1 2 1 0 1 0 4 4 1 0 1 0 
5 2 3 1 0 1 0 5 5 1 0 1 0 
6 3 4 1 0 1 0 1 0 1 0 
7 4 5 2 0 2 0 2 0 2 0 
8 5 6 3 0 3 0 6 8 3 0 2 0 
9 6 7 4 0 4 0 3 0 2 0 
10 7 8 5 0 5 0 3 0 5 0 
11 (H =8) 6 0 {8} 5 0 {6} 
11 9 9 7 0 6 {8} 7 11 5 0 5 {6} 
12 10 10 8 0 7 {8} 8 12 5 0 5 {6} 
13 11 11 9 0 9 {8} 9 13 6 0 6 {6} 
14 ( = 12) {12} 10 {8} {8} 6 {6} 
14 12 13 10 {12} 11 {8} 10 14 6 {8} 7 {6} 
15 13 14 11 {12} 12 {8} 11 15 7 {8} 8 {6} 
16 14 15 13 {12} 13 {8} 12 16 9 {8} 9 {6} 
17 15 16 14 {12} 14 {8} 13 17 10 {8} 10 {6} 
18 16 17 15 {12} 15 {8} 14 18 11 {8} 11 {6} 
19 17 18 16 {12} 16 {8} 15 19 12 {8} 12 {6} 
20 18 19 17 {12} 17 {8} 16 20 13 {8} 13 {6} 
21 (A = 19) 18 {8,19} 14 {6,15} 
21 (A = 20) 19 {8,19,20} 15 {6,15,16} 
21 (= 21) 

by "?", "x", "c", "d", or "b". The distinction between the potential nonzeros is 
as follows: diagonal entries are marked by "?", other elements within the bands 
of T20 and T20 are marked by "x", entries due to look-ahead are marked by "c", 
entries due to inexact deflation are marked by "d", and entries resulting from the 
combined effects of look-ahead and deflation are marked by "b". 

Note that, by (3.14) and (3.15), the biorthogonality properties of the vectors (4.8) 
translate into a block-diagonal structure of the matrix A20. Indeed, as shown in 
Figure 2, in the no-look-ahead case, A20 is diagonal, reflecting the vector-wise 
biorthogonality of the vectors (4.8). In the look-ahead case, A20 has two 3 x 3 
diagonal blocks, reflecting the cluster-wise biorthogonality of the clusters (4.9). 

Figure 3 shows the zero structure of T20 and T20. First, consider the no-look- 
ahead case. Here the structure of T20 and T20 is completely described by the data 
listed in the first seven columns of Table 1. At the n-th pass through the main 
loop of the algorithm, the ,/-th column of T20 for all ln-1 < I,l <u /n and the 
0-th column of T20 for all )n-I < ? < On are constructed. Recall that, by (4.4), 
we have ,b = ,An and 0 = On if, and only if, no deflation occurs during the n-th 
pass. From Table 1, the zero structure of the columns of T20 and T20 that are 
constructed at the n-th pass can be read off directly from the row(s) of Table 1 
starting with the value of n. Note that there are multiple rows starting with the 
same value of n and corresponding to multiple values of ,a or 0 if deflation occurs 
during the n-th pass. For example, in Table 1, there are two rows associated with 
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+.. . .+. 

.+-+ cc............ 

. c.c ............ 

.CC....- +. .c 

.+~. . .. ... 

A20 .= .. .C C . .- 
. . . . . . . . . . . .+ 
. . . . . . . . . . . . .+ 
. . . . . . . . . . . . . .+ 

.+::::::.+ :: 
. . . . . . . . . . . . . . . . + 
. . . . . . . . . . . . . . . . . + 
. . . . . . . . . . . . . . . . . . + 

L. . . . . . . . . . . . . . . . . . .+ 

FIGURE 2. Zero structure of the matrix A20 for the example in ?4.6. 

n= 11. The first row records the structure of column ,a = 8 of T20, as well as 
the deflation of the v vector obtained from A v8. More precisely, the banded part 
of the 8-th column of T20 starts with the entry in row lv = 6, and since Iv = 0, 
there are no nonzero entries due to earlier deflations outside the banded part. The 
deflation of the v vector obtained from A v8 has the effect that ,a = 8 is added to 
Iw. This means that all later w vectors will have to be biorthogonalized against 
v8, resulting in potentially nonzero entries in row 8 of T20; see Figure 3. However, 
due to the deflation of the v vector, from column ,- = 8 on, the lower bandwidth 
of T20 is reduced by one, which compensates for the "spike" in row 8 of T20. In 

T 20 i 20 

+ X X*-- - . . . . . . . . . . . . . . . . .. , - + X X X*-- . . . . . . . . . . . . . . . .' 

X + X X *. * *. . *. . . . . . . . . .. . . X + X X X CC . . . . . . . 

X X+ X X C C *. -. ......... . . . ...XX.XX X C.......... . . ..XXX *- 
X X X + X X C* . . . . . . . . . . . . . + X . . . . . . . . . . . . ....... *XX*- 

* 
X XX + X X C CC . . . . . . . . . . . . .X X + X X X C .C 

*-.XXX+XXCC*.........-x- 
*-X 

+ X.X . .. . . .. . +x-XXX+XXC+ ........ xxx..... XX+XXX 
*-xxx +xxCc xx+xx ....... ..... xx+xXcbbbbbbbb 

--x x x +xxcc ...... ..... xx+xXbbbbbbbb 
* - -. x xx+x xc*--- .... . .. . xx+x x .bbb 

. . . . . . . . X x x . . . . . . . . . . . . . . X X + X X - -. . . . . . ...................X+X*-- 
......... xx+xddddddd ......... XX+XX ...... 
....... . . . ......... XX+XX ..... 
........... XX +X ..... ............ X +XX*. 

. . . . .. . ..... . . ---XX+ X*- . . . . . . . . . . . . . . . . . . . . . . .... . . . ---X+ X X*--. 

. . .. ... ....... . . . .x XX+ x -..... . ..... .... ... .. .. .. .. . .. . . . X+ X X 

. . . ..... ......... XX+ X *- .................. .. .. ..... X+ XX - 

...... ............ ----XX+X* .................. ...........----X+XX 

........................ --XX+X ...... ...... .................. - X+X 

.. . . . . . . . . . - - - - - - X . ... . . . . . . . . x x . . . . . . . . . . . . . . ... . . . ... -- X + 

FIGURE 3. Zero structure of the Lanczos matrices T2o and i2O 
for the example in ?4.6. 
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Table 1, the second row associated with n = 11 records the nonzero structure of 
column ,u1l = 9 of T20 and of column 11 = 9 of T20. The banded parts of these 
columns start at position l, = 7 and l = 6, respectively; see Figure 3. 

If no deflation occurred at the n-th pass, then, in Table 1, there is only a single 
row associated with n. For example, consider row nr 18. The history indices 
/118 = 16 and 018 = 17 record that, at pass rn = 18, column 16 of T20 and column 
17 of T20 were constructed. The banded part of both these columns starts with 
entries in row lv = 1, = 15. Furthermore, since v = f{12} and 1, = {8}, there 
are potential nonzeros in row 12 of T20 and row 8 of T20, due to earlier deflations. 

In the general case, where look-ahead may occur, the structure of T20 and T20 is 
completely described by the data listed in the first three and the last six columns of 
Table 1. Recall from ?4.5 that, in the look-ahead case, lv, 1, I v, and 1, record the 
indices of look-ahead clusters. For example, consider again row n = 18 in Table 1. 
In the look-ahead case, we have lv, = = 11. This means that the banded part 
of both column ,u18 = 16 of T20 and column 018 = 17 starts with entries in row 
nll = 15. Furthermore, since I,v = {8} and 1 = {6}, there are additional potential 
nonzero entries in row n8 = 11 of T20 and rows n6 = 8, 9,10 of T20; see Figure 3. 
Note that since the 6-th cluster corresponds to a true look-ahead cluster of length 
3, the "spike" in row 8 of T20 in the no-look-ahead case has spread to "spikes" in 
rows 8, 9, and 10 in the look-ahead case. 

5. THE LANCZOS-TYPE ALGORITHM WITH DEFLATION AND LOOK-AHEAD 

In this section, we present a statement of the algorithm in its most general form, 
with deflation and look-ahead, and discuss a few implementation issues. 

5.1. A complete statement of the algorithm. Recall that, in Figure 1, we 
showed the basic structure of the algorithm. The step numbers from Figure 1 
match those used in the following statement of the algorithm. 

Algorithm 5.1. (Lanczos-type method with deflation and look-ahead.) 
INPUT: Matrix A E CNxN; 

m right starting vectors rl, r2,... , rm E CN; 
p left starting vectors l1, 12,.. .,lIp EE cN; 
Deflation tolerance dtol > 0. (Set dtol = 0 for exact deflation only.) 

INDICES AND INDEX SETS: 

* ,u is the index of the v vector currently being expanded; X is the index of the 
w vector currently being expanded. (A non-positive ,u or X means we are still 
fetching starting vectors.) 

* '-v and ITw record indices of clusters that must be preserved due to inexact 
deflation. If k E -Av or k E 1w, then v or w needs to be biorthogonalized 
against the entire earlier clusters W(k) or V(k), respectively. 

* 1 is the index of the currently constructed clusters V(l) and W('). ni is the 
index of the first pair of Lanczos vectors in V(l) and W(0. 

0) (Initialization) 
Set , = po = -m and 0 = 00 = -p. 

Set Iv = 0 and Iw = 0. 
Set 1 = 1, ni = 1, and V() = W(- 0. 

For n = 1, 2,. .., build n-th pair of Lanczos vectors vn and wn: 
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1) (Build the unnormalized right Lanczos vector v.) 
la) Set ,b = ,? + 1. 
lb) If ,t = n, then stop. (The right block Krylov subspace is exhausted.) 
ic) (Advance the right block Krylov subspace.) 

Set 

(5.1) v r=l+m if LL?, 
(Av/-, if ,t> 0. 

If V(l) 74 0, optionally set 

(5.2) V = V-V(') It',]n,<i<n7 with arbitrary ti,U E C. 

(We may add arbitrary combinations of vectors in the current cluster Vl), if 
nonempty.) 

Id) (Determine against which clusters v needs to be biorthogonalized.) 
If ,t > 0, set l(pu) = max{ i E N ni < u }. 
Set 

maxt i (E N I ni <? }n,(,,) if ,tu > 0 and qnl(g,) > 0, 

{ I 'I?1(g) otherwise, 

and define the temporary index set 

(5.4) l ={lv)lV +I) ),** 1- 1 }U U {k}- 
kEIv 
k<I, 

le) (Biorthogonalize v against these clusters.) 
Compute the coefficient vectors 

(5.5) -~~~ (A(k))l1 (W(k))Tvfralk I (5.5) [tj)l-] nk <i<nk+l =( ) (W )v for all l 

Set 

(5.6) v = v - EZV [ti,U]nk?i<nk+1. 
kEl7 

If) (Decide if v should be deflated.) 
(i) (If nr < n- 1, the current cluster V(l) is nonempty, and we first orthog- 

onalize, in the ordinary one-sided sense, v against V(').) 
If n? < n-1, then for i = nl,n + 1,... ,-1, set 

VH v 
(5-7) V l%2' V= V - viri,/1,, and ti, = ?ti, T+i,,. 

(ii) Check if llvil < dtol. 
If no, continue with Step 2). 
If yes, deflate v by doing the following: 

(iii) If ,(b > 0 and v 74 0, then set Iw = Iw U { l(IL) }, and save the clus- 
ters V(10')) and WWA)) 
(The vector v is the ,u-th column of the matrix Vdl in (4.6).) 

(iv) Repeat all of Step 1). 
2) (Build the unnormalized left Lanczos vector w.) 

2a) Set q = 4 + 1. 
2b) If b = n, then stop. (The left block Krylov subspace is exhausted.) 
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2c) (Advance the left block Krylov subspace.) 
Set 

(5.8) w= 110+P 
if 

X 
<_ 

0, 
(ATW5 ifq5>O. 

If W(') # 0, optionally set 

(5.9) W = W- () [ti<]ni<i<n, with arbitrary ti,,k E C. 

(We may add arbitrary combinations of vectors in the current cluster WM, 
if nonempty.) 

2d) (Determine against which clusters w needs to be biorthogonalized.) 
If 0q> 0, set l(q) = max{ i e N rni < q }. 
Set 

fmax{ i E N J ni < Pun(O,) } if qJ > 0 and Jn(?) > 0, 

lI otherwise, 

and define the temporary index set 

(5.10) I = {l,l?w + 1,l * *1-1}u U {k}. 
kElw 
k<lw 

2e) (Biorthogonalize w against these clusters.) 
Compute the coefficient vectors 

(5.11) [i<t>]nk<i<nk = (A(k))T (V(k))T W for all k E l. 

Set 

W = W ZW [Wi,+] nk<i<nk+1 

kEl 

2f) (Decide if w should be deflated.) 
(i) (If n < n- 1, the current cluster W(') is nonempty, and we first orthog- 

onalize, in the ordinary one-sided sense, v against W(').) 
If nr < n-1, then for i = n1,n1 + 1,... ,n-1, set 

(5.12) W - , w = w - w% h,k, and ti,,k = ti,,V + Ti,fk. 

(ii) Check if llwll < dtol. 
If no, continue with Step 3). 

If yes, deflate w by doing the following: 

(iii) If X > 0 and w =$ 0, then set Iv = Av U { l(X) } and save the clus- 

ters V( (X)) and W('O(X)). 

(The vector w is the 0-th column of the matrix Wdl in (4.6).) 
(iv) Repeat all of Step 2). 

3) (Normalize v and w to obtain the n-th pair of Lanczos vectors vn and wn, 
and add them to the current clusters.) 
Set 

(5.13) tn,, = l|vii, t n= lIwlI, v n= V, and wn= - 
tn,,u 7tn,q 

Set V(l) = V(l) U {Vn} and W(') = W(') U {Wn}. 
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4) (Record the n-th history indices.) 
Set /ln = lt and O)n = C) 

5) (Compute A(l) and check for end of look-ahead clusters.) 
Form A 't)- (W(j)) TV(I). 

If A (M is "sufficiently" nonsingular, then set 

II+1, ni= n + 1, and V() =w(l)=0. 

(The current clusters are complete, so start new clusters in the next pass.) 

Remark 5.2. Recall from (4.6) that the entries of the matrices T, and TX contain 
the recurrence coefficients used to generate the Lanczos vectors. The nonzero en- 
tries ti,j and tij of these matrices are given by equations (5.2), (5.5)-(5.7), (5.9), 
and (5.11)-(5.13) in Algorithm 5.1. The matrices TA and TX are given by 

([ti,j]i?<i<n, 1-m<j<,u if t < 0, 
T= 

[tij]1<i<n, 1<j<, if , > 0, 
(5.14) 

T [i,] 1<i<n, 1-p<j<b f 4 < 0, 

Tq ii[] 1<i<n, 1<j<o 
if b > O) 

where all elements ti,j and ti,j that are not explicitly defined in Algorithm 5.1 are 
set to be zero. 

Remark 5.3. For , > 0, TA is an n x ,u matrix, where n > At. In some applications, 
such as the BL-QMR method for the solution of linear systems with multiple right- 
hand sides, the rectangular matrix T, is used; see [18]. For eigenvalue computations 
and Pade approximation of matrix-valued transfer functions, only the At x At square 
part T(_) [t j]i<j,j<, of T,1 is used. 

Remark 5.4. Algorithm 5.1 simplifies considerably if no deflation and/or no look- 
ahead occurs. In the absence of look-ahead, all clusters consist of single vectors 
only, and thus ni = 1 for all 1. If, in addition, no deflation occurs, then the index 
sets (5.4) and (5.10) are identical and given by 

If;{IvlvI+l...,rn-I}, where lv=max{1, n-m-p}. 

This means that in the special case of no deflation and no look-ahead, each Lanczos 
vector has to be explicitly biorthogonalized only against the last m + p vectors; see 
the discussion in ?4.2. A detailed statement of a version of Algorithm 5.1 with 
deflation, but without look-ahead, is given in [2]. 

5.2. Implementation details. In this section, we discuss a few implementation 
details for Algorithm 5.1. 

Steps le) and 2e) implement a classical two-sided Gram-Schmidt biorthogonal- 
ization, but in practice a "modified" two-sided Gram-Schmidt process would be 
preferred; see, e.g., [32]. For example, for the "modified" version of Step le), one 
simply replaces (5.5) and (5.6) by the following block-by-block update. 
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For all k E I (in increasing order), set 

It'] nk] nk+l (A(k))-1 (W(k))Tv and v = v - V(k) l f]lnk<i<nk+l 

The "modified" version of Step 2e) is analogous. 
The computational work for obtaining the recurrence coefficients ti, and ti,O in 

Steps le) and 2e) is dominated by the vector products (W(k)) v and (V(k)) w. 
Roughly half of these vector products can be eliminated by exploiting relations that 
connect the coefficient matrices TA and T7O. For example, in the simplest case of 
no deflation and no look-ahead, the square parts T(-) and j(s) of these matrices 
are connected by (T(s))T - AH T, AI1, where AH is a diagonal matrix. A similar 

relation holds in the general case. Exploiting the connection between T, and To 
not only halves the number of vector products required in Steps le) and 2e), but, 
as in the case of the classical Lanczos algorithm, it usually also enhances the overall 
numerical stability of Algorithm 5.1. 

In Step 5), one needs to decide if the current look-ahead cluster can be closed. 
In view of the nonsingularity of the A(k) in (3.11), a necessary condition for closing 
the look-ahead cluster is that the matrix A(') is nonsingular. It is thus tempting to 
base the look-ahead strategy solely on a measure of singularity of A('), such as the 
smallest singular value. However, as was illustrated in [17] for the Lanczos algorithm 
with single starting vectors, such a look-ahead strategy is not appropriate and does 
not lead to a robust algorithm. Instead, a reliable look-ahead strategy needs to 
check the singularity of A('), as well as the sizes of the recurrence coefficients ti,, 
and ti,q in (5.5) and (5.11) relative to some estimate, nest(A), for IJAII. More 
precisely, the current look-ahead cluster should only be closed if 

(5.15) ti,pj, iti,7| < fac x nest(A) for all i. 

Here, fac is an appropriate constant, typically fac = 10, and if not available 
a priori, the norm estimate nest(A) can be obtained easily during the first few 
passes through the algorithm. The check (5.15) guarantees that the component 
A v/, or AT wX (respectively) of the new Lanczos vector is not dominated by the 
previous Lanczos vectors. Note that A v/, and AT ws are the only parts of v and w, 
respectively, that advance the block Krylov subspaces. 

6. PROPERTIES OF THE ALGORITHM 

In this section, we establish some theoretical properties of the Lanezos vectors. 
Throughout this section, we assume that the Lanczos vectors are generated by run- 
ning Algorithm 5.1 in exact arithmetic. A round-off error analysis of the algorithm 
is beyond the scope of this paper. 

First we show that the Lanczos vectors are indeed cluster-wise biorthogonal, as 
stated in ?3.3, and satisfy the recurrences stated in ?4.5. 

Theorem 6.1. The Lanczos-type Algorithm 5.1 generates two sequences (3.1) of 
right and left Lanczos vectors that satisfy the cluster-wise biorthogonality condi- 
tion (3.11). The algorithm also generates matrices of coefficients TA, and TX such 
that the recurrences (4.6) are satisfied. 

Proof. The recurrences (4.6) follow directly by summarizing equations (5.1), (5.2), 
(5.5)-(5.9), and (5.11)-(5.13), which are used to generate the Lanczos vectors, in 
compact matrix form, using the notation introduced in (3.13), (4.7), and (5.14). 
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Next, we prove the cluster-wise biorthogonality condition (3.11) by showing that 
each n-th pair of Lanczos vectors vn and wn satisfies 

(6.1) (W())vn = 0 and (V(i)) wn =O forall j=1,2,... , l(nr)-1. 

Recall that, by (3.12), I(n) is defined as the index of the clusters that contain vn 
and wn. We prove (6.1) by induction on n. Since 1(1) = 1, there is nothing to show 
for n = 1. Now let n > 2, and assume, as induction hypothesis, that (6.1) holds 
true for all i-th Lanzcos vectors with i < n - 1. We need to show that the n-th 
Lanzcos vectors satisfy (6.1). We will only establish the conditions for vn in (6.1); 
the proof of the conditions for wn is completely analogous and thus omitted. Note 
that, in view of (5.2), (5.6), (5.7), and (5.13), we have 

1 n-1\ 

(6.2) Vn = j ( - _ v t-, V(k) [ti] nk <i<nk+l 
tn,, i=nl kEI 

where v is given by (5.1) and Li by (5.5). Here, for simplicity, we have 
set A, := n. Using the induction hypothesis and (5.5), it follows from (6.2) that 

(6.3) (W(j))Tv = 2 (W(j))TV- (W(j))Tv(j) (a(j))y1 (W(j))Tv) =0 

for all j E T. Here, I is the set of cluster indices given by (5.4) (with 1 = 1(n)). 
By (6.3), we have established (6.1) for all j E T. If I contains all the cluster indices 
1 < j < I(n), the proof is complete. Otherwise, it remains to show that 

(6.4) (W(i)) vn = 0 

for all indices 1 < j < I(n) with j f f. Let j be any such index. By (5.4), j f I 
implies that lv > 1. By (5.3) and (5.1), it follows that At > 0 and v = AvA. 
Inserting v = A vA into (6.2) and using the induction hypothesis, we get 

tn (W(i))T v. = (W()) TAv_ = (AT W(i))TvA 

It follows that (6.4) is satisfied if, and only if, 

(6.5) vT (AT w,) = 0 for all nj < i < nj+l. 

In view of (5.8), each of the vectors AT w, in (6.5) is used as a candidate w for 
a left Lanczos vector in Algorithm 5.1. After w has been biorthogonalized, the 
resulting vector w is either deflated in Step 2f), or normalized to become a left 
Lanczos vector, say Wq, where q is the unique index such that i = Oq5 However, 
since j 0 I, the first case can be excluded. Indeed, if w was deflated, then the 
cluster index j would have been added to Iv in Step 2f), and by (5.4), it would 
follow that j E T. In the second case, in view of the recurrences (4.6), we have 

q 

(6.6) AT wi = AT Wqq = Wk tk,1bq 

k=1 

By (5.4), j 0 I implies j + 1 < IV. Using the definition of lv in (5.3), we obtain 
/q = i < nj+l ? It follows that q < nl(r) and, further, l(q) < 1(p) - 1, where 

At < n -1. We can thus employ the induction hypothesis to deduce that wT v, = 0 
for all k < q. Finally, inserting (6.6) into (6.5), we get 

q q 

vT (AT wA) =EV Wk tk,Oq =Z(wkV8) tk,Oq = 0, 

k=1 k=1 
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which shows that (6.5) holds. Therefore, the proof of the theorem is complete. O 

Remark 6.2. The result of Theorem 6.1 is correct independent of the choice of the 
deflation tolerance dtol and the look-ahead strategy. In fact, Algorithm 5.1 will 
work even if a large dtol is chosen and if look-head is carried out when unnecessary. 

Next, we show that for exact deflation, the Lanczos vectors indeed span the right 
and left block Krylov subspaces. 

Theorem 6.3. If the Lanczos-type Algorithm 5.1 is run with exact defation only, 
i.e., with deflation tolerance dtol = 0, then the generated Lanczos vectors (3.1) 
span the right and left block Krylov s.ubspaces, i.e., they satisfy (3.2). 

Proof. We use induction on n to show that 

(6.7) span{ v1, v2, . . ., vn } = AZn (A, R) for all n > 0. 

The proof of the corresponding property of the left Lanczos vectors is analogous, 
and is therefore omitted. For n = 0, there is nothing to show. Now let n > 1, 
and assume, as induction hypothesis, that (6.7) holds true for n - 1. We denote 
by v the vector (5.1) in Algorithm 5.1, and by v the vector that has resulted from 
v after the biorthogonalization in Step le) and the possible orthogonalization in 
Step lf)(i) has been performed. Note that, by (5.6) and (5.7), v is of the form 

n-1 

(6.8) v v + viai, where ai E (C 
i=l 

In view of (2.1) and (2.2), the next candidate vector to be added to Kn-(A, R) is 
of the form Ai ri. Using (5.1) and the induction hypothesis, it follows that 

n-1 

(6.9) ^v =-y Ai ri+ vi,3i, where ,-yE? and ay74O. 
i=l 

Next, we show that 

(6.10) v = 0 4=- Airi E Kn_1(A,R). 

If v = 0, then, by (6.8) and (6.9), the vector Ai ri is a linear combination of v1, v2, 
... ,vn-1, and, by the induction hypothesis, it is contained in Knl1(A,R). Con- 
versely, if Ai ri E AnZ 1(A, R), then, in view of (6.8) and (6.9), we have 

n-1 

(6.11) v = vvi-yi, where -i E (C 
i=1 

Recall that v is constructed to be biorthogonal to the clusters of left Lanczos vectors 
W(k) for all 1 < k < I(n). Multiplying (6.11) from the left by (W(k))T, it follows 
that -y = 0 for all 1 < i < nl(n). Moreover, if nrl(n) <rn - 1 then in Step lf)(i), v is 
also orthogonalized against vi for all nl(n) < i < n - 1, and by multiplying (6.11) 
from the left by v01, it follows that also -yj = 0 for all nl(n) < i < n - 1. Thus all 
yi = 0 in (6.11), and so v = 0. Note that, since we are assuming exact deflation 

only, v is turned into the n-th Lanczos vector vn if, and only if, v 7A 0. In view 
of (6.8)-(6.10), it follows that vn E Kn(A,R), but vn f Kni1(A,R). Together 
with the induction hypothesis, this shows that (6.7) holds true. O 
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7. CONCLUDING REMARKS 

We presented an extension of the classical Lanczos process for single starting 
vectors to multiple starting vectors. 

The objective of this paper is to describe the algorithm and to prove some of its 
key properties. In order to keep the length of the paper reasonable, we decided not 
to include numerical examples. Applications of the algorithm to the problems men- 
tioned in ?1.2 and numerical results will be and, in part, already have been reported 
elsewhere. FReund and Malhotra [18] developed a block version of QMR, called 
BL-QMR,1 for the solution of multiple linear systems (1.1) that uses a version of 
Algorithm 5.1 with deflation, but without look-ahead. Numerical experiments with 
the BL-QMR algorithm are reported in [18, 29]. The results in [18, 29] clearly illus- 
trate the importance of deflation. More precisely, basis vectors do become almost 
linearly dependent in several of the numerical examples in [18, 29], yet BL-QMR 
converges as long as these vectors are deflated properly. However, as soon as the 
deflation procedure is turned off, BL-QMR fails to converge. In [13], Feldmann 
and Freund use an early version (without deflation and without look-ahead) of the 
algorithm to compute Pade approximants to matrix-valued transfer functions (1.5), 
and report numerical results for problems arising in circuit simulation. 

Finally, we stress that we are well aware of the connections between the problem 
of constructing suitable basis vectors for block Krylov subspaces, and the related 
problems of solving block Hankel systems and constructing matrix-Pade approxi- 
mations; see, e.g., [7, 8, 34, 40, 41] and the references given therein. The connections 
between the proposed Lanczos-type algorithm and these related problems should 
be explored further. A first such result on the connection to matrix-Pade approxi- 
mation was given by Freund [15]. 
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