MATHEMATICS OF COMPUTATION

Volume 70, Number 233, Pages 1-15

S 0025-5718(00)01323-5

Article electronically published on October 2, 2000

SHAPE CALCULUS AND FINITE ELEMENT METHOD
IN SMOOTH DOMAINS

T. TIIHONEN

ABSTRACT. The use of finite elements in smooth domains leads naturally to
polyhedral or piecewise polynomial approximations of the boundary. Hence
the approximation error consists of two parts: the geometric part and the
finite element part. We propose to exploit this decomposition in the error
analysis by introducing an auxiliary problem defined in a polygonal domain
approximating the original smooth domain. The finite element part of the
error can be treated in the standard way. To estimate the geometric part
of the error, we need quantitative estimates related to perturbation of the
geometry. We derive such estimates using the techniques developed for shape
sensitivity analysis.

In this paper we consider the dilemma of “smooth polygonal domains” related
to error analysis of the finite element method. The dilemma is that the finite ele-
ment methods are naturally formulated in polygonal (or more generally in piecewise
polynomial) geometries. On the other hand, the abstract error estimates rely on in-
terpolation error estimates that require smoothness of the solution that is typically
achieved only in regular geometries.

In the literature this question has been treated in several ways. Perhaps the most
popular approach is that of the above mentioned smooth polygonal domains. That
is, the analysis is carried out assuming that the domain is polygonal and hence the
grid fits exactly to the domain, and at the same time the solution is regular enough
for the optimal interpolation estimates.

At the other extreme are the works where the curved boundary is captured
more or less exactly by introducing corresponding curved elements, [4], [5], [7],
[16]. In this case the analysis can be made rigorous but the price to pay is more
complicated local analysis and implementation, especially if the basis functions are
modified in the curved elements. If one does not want to modify the basis functions
near the boundary, then the approach of [3] provides a way to analyse the resulting
variational crime on the boundary. In [7] this approach has been used to construct
optimal interpolated essential boundary conditions for curved boundaries.

Finally, there exists quite a number of papers where the smooth domain is ap-
proximated by a polygonal one which is then triangulated. In many of the papers
the error analysis is based on some specific feature, like trivial extension of the
finite element solution outside of the polygonal domain. Also the analysis of the
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approximation of geometry is generally interwoven with the analysis of the finite
element approximation properties.

In this paper we introduce an approach where the approximation of geometry is
detached from finite element analysis. This means that we shall analyze the error
made due to replacing the original problem in a smooth domain by an auxiliary
problem in a (polygonal) approximate domain. Then we analyse the error for the
finite element approximation of the auxiliary problem, bearing in mind that the
auxiliary solution is close to the original smooth one. The first error is estimated
using the techniques familiar from shape optimization [9] where the question of
continuous dependence with respect to variations in geometry is a key issue.

The question of continuous dependence of the solution on the geometric data
dates back to at least Hadamard’s times. Most of the analysis has been qualitative.
Some quantitative works were published in early 1970’s ([10], [11]) with the mo-
tivation arising from finite element error estimates. Then, it seems, the issue was
forgotten.

The contents of this paper can be summarized briefly as follows. In Section 1
we discuss the strategy of decomposing the error to geometric and finite element
components in an abstract framework. Then in Section 2 we consider a model
second order elliptic problem for which we show the continuous dependence of the
solution under polyhedral approximation of the boundary. Corresponding finite
element error estimates are also formulated. In subsequent sections we consider
second order systems and fourth order problems where polyhedral approximation
of the boundary turns out to be a much more delicate issue. In particular we
comment on Babuska’s famous counterexamples ([1], [2]) from the point of view of
shape derivatives.

1. ABSTRACT FORMULATION

The aim is to study the dependence between the solution u of the variational
problem defined in a smooth domain € and its finite element approximation uy
defined in an approximate domain ;. To be able to compare u and wy, we have
to be able to prolongate one of the two to the domain of definition of the other. As
prolongation of finite element functions can be technically difficult (as finite element
functions) in the general case, we choose to prolongate the original solution from
to Qj by some prolongation operator. The idea behind error estimation is to intro-
duce an auxiliary problem defined in 25, to be able to separate the approximation
of geometry from approximation by finite element spaces.

Thus, let the original problem be given as

a(u,w) = (f,w) Ywe W
for fe W, ueW =W(Q). We introduce an auxiliary problem
(0, w) = (f, w) Yw e W
with W = W({2). The bilinear forms a and & are assumed to be continuous and

W (resp. W) elliptic. The auxiliary problem is defined so that its finite element
discretization gives the discrete problem

a‘(uhawh) = (f» wh) Ywp, € Wy, C w.

We now want to estimate the error between u and wuj,. Because of different
domains of definition we have to consider an extension @ of u. Let || - || be some
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norm for functions defined in Q. Then, by the triangle inequality,
@ — unll < ll@ =@l + | —unl|.

Here the first part corresponds to the error due to geometry, whereas the second part
is a standard finite element approximation error (but now in a polygonal domain).

Assume now that we have a quasi-optimality result with respect to the | -|| norm.
That is,

1.1 i — <C inf |4- .
(1) o unll <Cinf =

Then, using the triangle inequality, again we can estimate
4 —wh| <4 —all + 1% — wall-
Hence,

(1.2) @ —upl| < Ci|la—a| +Cq inf |&— wsl.
wp €W

In order to derive useful concrete error estimates from (1.2), we have to make sure
that the following conditions are satisfied.

1. f, a and the extension operator are chosen so that we get an appropriate
estimate for |G — 4.

2. Extension is defined so that @ has the regularity needed for interpolation
estimates, that is, @ should be smooth when restricted to any element of the
triangulation.

3. f and & should be natural extensions of f and a as they will be used to
construct the discrete problem.

4. The quasi-optimality estimate (1.1) is valid uniformly for all Q.

Condition 1 above is best satisfied when the auxiliary problem is defined simply
by mapping Q to ) and defining the “extensions” using the same transformation.
Then, of course ||@ — @] = 0. On the other hand the mapping shows up in the
coefficients of the auxiliary problem and its discretization complicating thus both
error analysis and implementation. This is what happens in practice with curved
elements.

Condition 4 is satisfied at least for the energy norm for W-elliptic problems.

Finally, let us remark that the above abstract estimate can be extended, for
example, to cases where we compare the solution to the post-processed discrete
solution Ru, where R is some recovery operator, provided that we have an estimate
of the type

i— Rup|| <C inf ||a—R
4 — Run| < whlgWhHu wh|

that is valid uniformly in ,:s. Likewise, the quasi-optimality estimate (1.1) can
be replaced by a more general one to cope with numerical quadrature, for example.

2. MODEL PROBLEM

Let us consider the following model problem:

(2.1) —Au = f, in Q,
(2.2) u = up, onI'p,
(29 % o_ g enlw,

an
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where Q C D C R™ is a smooth domain. For our convenience we assume that
the complement of € is not connected, and the boundary 992 can decomposed to
I'p and 'y with T'p NTx = 0. (This because we want to treat simultaneously
both Dirichlet and Neumann conditions without bothering about the compatibility
conditions.)

We assume that f € L?(D), g € H'(D) and ug € H?(D). Then it is well known
that the problem (2.1) has a unique solution u € H?(Q), u — ug € H(Q;T'p).

We shall study the dependence of u on the shape of 2. For that we construct a
family of domains €2; as follows. Let us choose a vector field V € C'(D; R™) and
introduce a deformation map T} : z — x + tV(z) which is injective for small t. We
denote Qf =Ty (Q) = {z +tV(z) | z € Q}.

In O we define the stated problem as follows:

(2.4) —Au; = f, in QF,

(2.5) Uy = uQ, on I,
Ou

(2.6) —%t— = g, on I'l;.

We address the question of continuous dependence using the concept of a shape
derivative. We define the shape derivative of u to direction V' as the limit

ﬂt—u
uy = 1

im ,
t—0-+ t

Q

where ~ denotes any regularity preserving extension from Q! to D. The limit does
not depend on the choice of the extension.

Theorem 2.1. Under the above assumptions there exists a shape derivative uf, €
HY(Q). Moreover, u}, is the unique solution of the problem

(2.7 -Auwy, = 0, in Q,
, o(u—u
(2.8) uy = ——(—an—O)(V, ny, onT'p,
ouy, dg

Here H stands for the mean curvature of I' and Vr denotes the tangential part of
V, that is, Vru = Vu — (0u/0n)n.

The proof of this theorem can be obtained by combining the proofs of Propo-
sitions 3.1 and 3.3 of [9]. This result is almost what we need to analyze the er-
ror due to polyhedral approximation of the geometry. Namely, let Q be a C%-
domain and 2, its polyhedral approximation so that the vertices of 9}, are on
OQ. Then, if h is small enough we can locally describe 0Q and 99}, with the same
charts and deduce from standard interpolation theory that || — Qu[co < Ch2,
12 — Qplcor < Ch, where C depends on the C2-smoothness of Q2. Hence we can
write O, = {z + hVj,(z) | x € IQ}, where ||V}, ||e < Ch, |Vi|wie < C. Clearly,
problem (2.7) is well defined for such V},. Moreover, we can estimate the norm of
u' as

ou’
1.0 < GO aen + I e ll-120):
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Now,

- &

U U — U
Wiharo < 1= 20, - 2w,

O(u — )

[P REN S AD]
provided that u and ug belong to H%/2(Q). Similarly,

ou’ 0
152/ < KV Vs + I + Ho+ 52XV m)lzar, < OB

if ue HY2(Q), f € HY/?(Q) and g € H3/?(Q).

This suggests the estimate ||ug, —ugq|/1 < Ch*/? in the case of sufficiently smooth
data. However, the above development is only formal as the velocity field V' does
not satisfy the conditions of the shape differentiability proof. Also the estimate
|lu'|l1 < Ch3? does not imply automatically the h3/? estimate for the difference of
the two solutions as the differentiability proof of [9] does not give a quantitative
estimate for

I3 Gie — ) — .

Theorem 2.2. Let V€ WH(D). Then if u and ug belong to H%/?, f € H(Q),
and g € H'(Q), and @ is an H%? extension of u to D, it holds that

_ 1/2 1/2
lue — @100 < CEHIVIZZIVI .

Proof. We start by writing the variational problems for u; and u in . For u; we
have directly

_ 1,0t ot
JLveve=[ g0+ [ g vocH @1y
and u; — ug € H1(Q4T%). For u we have
_ 1 .
(2.10) /wa - /Qf¢>+/FN 9 ¥ée H(%TD)

with u — ug € H'(Q;Tp). Now let us denote ul = uo T, * € HY(Q). Tt is easy to
see that if we choose ¢ = do Ty, ¢ € H' (2% T%) in (2.10), we can rewrite

/ VuVeé = DT, Vu!DT;V|DT; |,
Q Qt

|re = [ rorépr

/g¢> = / go T, ' pss,
Tn r

t
N
where s; = |DT3|| DTy "n|| (see [9]).
We are now ready to write an equation for du = u; — u:

(2.11) /Q VéuVe = (Rs, ¢) Vo € H(QHTY)
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with du — (@ — up) € H*(Q4T%) and

(Ri,d) — /ﬂ (VaV$— DTV DL,VYIDT, | - [+ f o T, 9| DT, )

- /Ft 96— go Ty "¢s:.

N

Now if we can show that the data of the problem (2.11) is sufficiently small, we
obtain the conclusion as the problem (2.11) is invertible uniformly with respect to
Q. We formulate the estimates for the data in the following two lemmas. O

Lemma 2.3. Ifug, i € H¥?(D), then
lluo — @l 12,04, < CHIVIE2 [V IIa -
Lemma 2.4. If i € H%?(D), f € HY(D) and g € H'(D), then
IRl -1,0¢ < CHIVIZ2IV 15 -

For the proofs of Lemmas 2.3 and 2.4 we shall need some results on the differ-
entiability with respect to deformation T;.

Lemma 2.5. Let f € WYP(D) for some p < co and V € WH*°. Then

1
I5(foTi= )= VF Vi =0
ast— 0.

Proof. First let f € C°. Then for any z € Q

1
T 1)@ = V@) V() = [ (V@ +stV(e)ds = Vf(e) - Vo)

Hence

wp (L[0T~ )~ VI Vi)
10l L =1

/ /1/) Vi(x+stV(z)) — Vi) V(z)dzds

”w”Lp' =1

3/0 I(Vf 0Ty Vi) - V]

For any s, Vf o Ty is continuous with respect to ¢ in LP. Hence the above integral
tends to zero. By the density argument we can extend the result for f € WP, [

With similar arguments we can also prove

Lemma 2.6. Let f € W2P(D) for some p < oo and V € Wh°. Then

1
||;(f°Tt—f) - Vf-Viwir =0
ast — 0.

Obviously, analogous results hold when T; is replaced by T;*
Now we are ready to prove Lemma 2.3.
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Proof. As T, maps H'(Q) functions to H'(Q*) functions, it also maps H'/?(T'p) to
H'Y/2(T%,). Hence
luo — @ll1jo,re, < Cll(uo — @) o Ty Hlijzrs

Cll(uo — @) o T; " — (uo — @)l1/2,rp
Cllt(V(uo — @) + &) - Vllij2rp

IN

for some |&;]|l1.0 — 0 as we get from Lemma 2.6 that ((ug — @) o T; ' — (ug — @))/t
converges to —V(ug — ) - V in H'(Q) and, consequently, also in H'/?(T'p).
So the leading term of [[ug — 4|1 2,r¢ can be estimated as

3(11,0 — u) 6(u0 - u) 1/2 8(11, — U
12y o < 12 gy, 1 2 gy 2,
from which the conclusion follows. O

Next we shall prove Lemma, 2.4.

Proof. We start from the boundary term fl“ﬁv go— goTt_lqﬁst. First we observe that

Isi| =1 —tVr -V + O(t*|V |21, ). From Lemma 2.5 we get that (g —go T, ')/t
converges to Vg -V in L?(D) with a remainder term of order o(||V | ). Thus for
any ¢ € H'(QF) we can write

[ gp=goTtes=t [ (Va-V+gTr-V)ot OV s+ olt]V ).
N N

Integrating by parts on T'%;, ([9], Chapter 2.23), we get the leading term into the
form

L, G+ o me

Next let us consider the term involving f. As f € H*(D) we can deduce from
Lemma 2.5 that f — fo Ty ! = —tVf -V —t& - V for some & — 0 strongly in
L?(D)™. Hence,

/f¢—foT{1¢>IDT{1I ~ —t/ (Vf-V+V-Vf)e
Qt Qt

—t(| —fV-Vé+ fe(Vin))
ar aq

—t([ —AwV-Vé+ [ fo(V,n)).
ot rY,

Finally, we have to reformulate also the terms involving u. With Lemma 2.6 we
get that wo T, ' ~ @ — tV - Vi with smaller terms tending to zero fast enough in
H'. Consequently we can write

Q

/ ViVé — DT, Vut DT,V ¢| DT, | V(tV - Vi)V
Qt Qt

— t(DV+DV'T —IV.-V)ViaVe.
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Now integrating by parts twice we have

V(V.-Vi)Vp = DVViV$ + / D*uVVe

Qt Ot Qt

= / (DV — IV -V)ViVe — D2¢VaV + Vave(V,n)
Qt Qt ont
= / (DV+DVT —IV.-V)VaVe + ALV -V
Qe Ot
+ VavVe(V,n) — Qliws V.
ant on

Combining the above derivations we conclude that the leading part of R; can be
written as

(Fuod) =t [ +H + 5206 + Travrg) Vi)
O

From the proofs of Lemmas 2.3 and 2.4 one can observe that the leading terms
in the data for du can in fact be identified with the data characterizing the shape
derivative uj,.

In the above results the regularity requirements for data are not in balance.
Partly this is due to the fact that we showed convergence in L? for the f term
instead of an H~!-estimate that would be sufficient. Let us note, that for f in
L?(D) one cannot prove strong differentiability under T} in H~!-norm (see [9]).
Whether this could be done for f € H*(D) for some s < 1 is not known. Also
in the treatment of the essential boundary condition, no effort has been made to
optimize the regularity (last estimate in the proof of Lemma 2.3).

If we now apply the above result to a smooth domain and its polyhedral ap-
proximation, we obtain an O(h%/?) estimate for the energy norm of the error in the
solution. Similar estimates have been obtained already by Strang and Berger [10]
and Thomée [11] in the early 1970’s under the assumption that the domain to be
approximated was convex.

For the purpose of finite element error estimates in the energy norm, an O(h)
estimate is sufficient. It can be obtained quite easily with weaker assumptions on
the regularity of the data.

Theorem 2.7. Let ii,ug € H*(D), f € L?>(D) and g € H*(D). Then
ue — 1,00 < CHV]wreo.
The above estimate can be obtained by writing
lug = @lle < llue —wo Ty Hlige + Jluo Tyt —dllyqr

It is easy to write an equation for the first term and to bound its data. The second
term can be bounded using Lemma 2.6. Observe that uo T, ' can be considered to
be an “extension” of u to Q! in the sense of Section 1.

It is also of interest to derive estimates in the L*° norm. For the Dirichlet
problem some estimates follow as easy consequences of the previous developments.
For example,
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Theorem 2.8. Assume that 00 =T'p, V € WH®(D), u,ug € W2?, f € WP for
some p > n and that @ is a WP extension of u to D. Then it holds that

lto — @l e g < CHV -

Proof. Thanks to the Sobolev imbedding of W1?(D) to L>(D), we can observe
from the proof of Lemma 2.3 that [|uo—@| peo (rt ) < Ct||0(uo—a) /On(V, n)| oo (rt ) <
Ct||V || pes. O

While this estimate is of optimal order, the regularity assumptions are not sharp.
Better estimates for the Dirichlet case have been obtained by Thomée [11], who also
provides examples showing the sharpness of the O(h?)-estimate with respect to both
L* and L? norms. In the Neumann case we are not aware of any L°°-estimates.

We conclude this section by discussing the finite element error estimates related
to above geometric estimates. In the case of the estimate in the energy norm,
the situation is very simple. Thanks to Poincare’s inequality and Cea’s lemma, we
obtain easily that the quasi-optimality result holds with uniform constant. Hence
the developments of the previous section lead immediately to

Theorem 2.9. Let Q, be a polygonal approximation of Q. Define the discrete
problem as standard piecewise linear finite element approximation of (2.4) fort = h.
Then for the error between the discrete solution u;, and the prolongated solution a,
it holds that

& = unllzr(an) < ChIfllz2()
For other norms the situation is not so easy. For example, for L*°-estimates
an appealing starting point could be the quasi-optimality result by Rannacher and
Scott [6] which states that

o —unlipn, <C inf [[&—wilip0, 2<p<oo
whEVh

However, the question of whether the constant C' can be chosen independently of
Q was not addressed in [6]. On the other hand there exist some uniform quasi-
optimality results like that of Schatz and Wahlbin [8] which state that under several
technical conditions for the discrete domains one has the estimate

lv —up|lpe < CX(h) inf ||wp —u| L=,
wpEVh

where X (h) = 1 except in the two dimensional case where it equals to —Inh. To
generalize this result to the case where u is replaced by @ that depends on ) may
be even harder than to prove the result directly.

3. SECOND ORDER SYSTEMS

Let us next consider the case where the state problem is a system like the elas-
ticity problem or the (Navier) Stokes equations. It turns out that the question
of continuous dependence on geometry is more delicate in this case. To illustrate
this, we shall consider a model problem in elasticity with several different boundary
conditions.

Let us write the problem in an abstract setting as

3.1) a(u, ) =F(¢) VoeW.
Here
W={pecH Q) |p=00nTy ¢-n=00nT;}.
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The bilinear form a is defined as
aw,8) = [ oyuey ()
where
e(¢) = 5(D¢+D"¢)

and the stress tensor o is defined as

N =

045 (u) = Cijk:lekl (u)
In this and next section we use the standard convention of summation over repeated

indices. The fourth order tensor of elastic coefficients, C, satisfies the standard
symmetry conditions

Cijri = Cjint = Chrusj
and the coercivity condition
Cijrii el > cijthij

for some ¢ > 0 and for all symmetric second order tensors . Finally the data F is
given by

F(¢>)=/in¢>i+/rzgi¢i

for some f € (L?(D))?, g € (L?(D))?. The boundary of  is decomposed as
aQ=f0Uf1 Uf‘z.

If |Tg|¢—1 > 0, the problem (3.1) is coercive and, consequently, its solvability is
obvious.

Let us now address the question of continuous dependence on geometry. As in
the previous section, we start by stating a shape differentiability result. First we
formulate sufficient conditions for shape differentiability:

e The velocity field V € C?(D) with V =0 on Ty N Ty, Ty N Ty, Ty NTs.

o f€(CUD)), g € (C'D))%, C € (C (D)™

e Du-V e (H'(Q))4.
Under these conditions the solution of (3.1) is shape differentiable to direction V'
and the shape derivative u’ solves the problem

(3.2) V.o = 0, in Q,

(3.3) o= —(V, n)gZ—, on Ty,

(3.4) v-n = u,-(DV'-n), onTy,

(3.5) o), = (V,n)fs, on Iy,

(3.6) o) -n = (V,n)(f+Hg)—Vr-({(V,n)o,), onTy.

Here 0 = o-n—(0-n-n)n and u,, f. denote the tangential components of u and
f, respectively. For the proof, see [9, Theorem 3.11].

If I'1 = 0, we can apply the techniques of the previous section to extend the
above results for W velocity fields as well.
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Theorem 3.1. Let Ty =0, V€ WH°(D), V =0 on Ty NTy. Then if u and uo
belong to H%/2, f ¢ H'(Q) and g € H'(Q), and @ is an H5/? extension of u to D,
it holds that

- 1/2 1/2
e — @ll.00 < CEIVIL2IVIY2..

Proof. As in the proof of Theorem 2.2, we can show that the difference u; — @ solves
a problem with data whose leading terms coincide with the data of the problem
characterizing the shape derivative u’. Hence we can conclude that

_ ou 1/2 1/2
e = llyya,m < Vi gl 2. < CHIVIEZ VI

and

lo(ue = @) - nll 12,0y < [(Vin)(f + Hg) = Ve - (V,n)or)ll-1/2,rs-
O

If I’y is present, we cannot obtain shape differentiability in H* for W1°° velocity
fields. This follows directly from the fact that

v =u, - (DVT .n)

does not belong to H'/?(T';) anymore if V has only W regularity. In fact, it turns
out that the solution does not change continuously under polygonal perturbation
of the boundary (see [2], [14]).

This result implies that the finite element approximation of this problem has to
be made more carefully than just by approximating the domain by a polyhedric
one. If polyhedric approximation is used, the “locking” it implies has to be treated
by relaxing the boundary condition. This can be done for example by “under-
integration” (i.e., imposing the Dirichlet condition only at discrete points, [14]) or
by introducing a regularized normal field. The latter approach can be treated in our
abstract framework. Namely, let us assume that we can define a smoothing operator
P such that the discrete problem satisfies the boundary condition uy - P(ng, ) = 0.
Then, the “geometric” part of the approximation error contains the error due to
changing n to P(n) in the original problem and the error due to approximating 2
with €, for the problem with the regularized boundary condition « - P(n) = 0.

In the two dimensional case such a smoothing operator can be obtained as a con-
volution with a one dimensional hat function of length-scale h. As typical estimates
for such convolutions are of the type ||P(¢)|ls < C/h|¢||s—1, only suboptimal error
estimates can be expected. This is in accordance with [14] as well. Stabilization
techniques needed for optimal convergence rates (see [15]) seem to be inherently
discrete and cannot be treated with our technique.

4. A FOURTH ORDER MODEL PROBLEM

In this section we consider the continuous dependence on geometry for higher
order problems. As a model example we take the linear Kirchhoff plate. Thus, let
w € H4(Q) be the transversal deflection of the plate {2 C R?, which satisfies the
equation

(bijrw i) =f inQ
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with the boundary conditions

w = 0, 8—w =0 on FOv
on
w = 0, Mn =0 on Fl,
MTL = O’ Q = 0 on FQ,
where 0 = Ty UT; UTy,
Mn = Mijninj

with M;; = b;jpiw ; denotes the moment, and
1o}
=-M - — (M,
Q kLT 87-( Kl MTk)

is the shear force. The coefficient tensor b € R?" satisfies the standard symmetry
and coercivity conditions.
The corresponding weak form can be written as

(4.1) a(w,¢) =F(¢) Ve WweW,

where

(4.2) W:{¢€H2(Q)}¢:00nI‘OUF1,g—i=OonF0}
and

a(w,¢) = /Qbijkzw,iﬂs,kl,

F(¢) = /Q 14,

If Ty # 0, the solvability is guaranteed for all f € W'.

Next we state, without proof, a shape differentiability result from [9]: If the data
(9, b, f), the deformation velocity V, and the solution w are smooth enough, then
the solution w is shape differentiable to direction V and the shape derivative w’ is
the unique solution of the problem

(bijuw'y) s = 0 inQ,
ow’ H%w
/ — — -
w - 0’ 871 - <‘/’ n) 87’1,2 on 1—‘0:
ow
w o= —(V, n)% on Iy,
M, = Vr((V,n)My;)+Vr((V,n)M:)-n onT;UTy,
Q = -Vr- (Ve - ((V,n)M:);) + (V,n)f on Ty,
where
M, = byuwynng,
(M7)y; = M;j— Myning.

As before we shall use the equation for the shape derivative to get error estimates
for the solution under perturbation of the geometry. First we notice that conforming
approximation of fourth order problems requires the use of C'-elements. Hence,
if we use similar approximation for the geometry as well, we are lead to study
deformation velocities in W2, 1In this case, proceeding as in the case of the
Laplace equation, we can show that the leading term in the difference between wy,
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the solution in the perturbed domain, and w, the H?-extension of w to , is tw'.
Hence, to estimate the error due to a change of domain it is sufficient to get a
bound for w'.

Now, to get an estimate for w’ in H2(Q), we have to bound w’ in H3/2(I'y UT;),
o0’ in HY2(Ty), MY, in H-Y/2(Dy UT,) and @' in H—3/%(Ty).

For w' we have

1/2 1/2 1/2 1/2 , 0w
o/ sz, < I IEE 1 l'E, < CINVIRGIV lzleoli 5, l2.es-

Similarly, for the other terms

2
12 o, < CIVIZZIVIEZ at Szl

1/2 1/2
1M1 -1/2.0,0r, < CIUVIZZIVIRE M1, or,
and
1/2 1/2
1Ql-3/2.r, < CIVIFRIVIVE I M1, + CIV [l [ £l -1,
Thus summarizing the above estimates we get

1/2 1/2
lw'llze < CIVIEZ p IVIYE p lwlleza + CIVIZZIVIEZ wllre,0
+C\V e I fll-1/2,9-

This estimate cannot be transformed directly to an error estimate as such since
some higher order terms with respect to V require somewhat higher regularity
from the data (at least f € L?(1)).

Now if 2}, is an approximation of  resulting from a C'-cubic spline approxima-
tion of the boundary 9 and if 2 is a C*-surface, we have that |Q — Q4| = O(h?)
and that ), can be obtained as the image of a W2* deformation map T}, = [+hV,
where ||V |l2—k.co < Ch*% k= 0,1,2. This results further to the estimate

lwn — Bll2,0 ~ hl|w||s,0 < CRY?
in the general case and to
lwp, = @lo,0 < ChT/?

in the case where I'j = (). One observes thus that the solution is more sensitive to
the approximation of I'; than to approximation of other boundaries. In both cases,
however, the geometric error is asymptotically smaller than the O(h?) error related
to finite element approximation by C*-elements.

In the case of polyhedral approximation of {2 one observes a situation analogous
to the elasticity case. For V € W1 the problem for w’ admits a solution only
if 'y = (). However, unlike in the case of second order problems we cannot deduce
continuous dependence on geometry from this result as the proof of shape differ-
entiability and hence the derivation of the corresponding problem requires higher
derivatives of the deformation velocity. In the case where I'; is present, the solution
is not continuous with respect to polyhedral approximation of the geometry. This
is demonstrated in the classical counterexample of [1], the so-called Babuska’s plate
paradox.
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5. CONCLUSIONS

We have analyzed an error due to polyhedral approximation of smooth bound-
aries in the continuous setting. The analysis shows that for scalar second order
problems the geometric part of the approximation error can be neglected at least
if the energy norm is considered. Thus for those problems not much can be gained
by using other than isoparametric fitting of the elements at the boundary. The
technique used for the error analysis is independent of the finite element method
used (Galerkin, Petrov-Galerkin, mixed, etc.) provided the method can be shown
uniformly quasi-optimal in a family of polyhedral domains. The technique can be
applied also to more complicated cases such as coupling of integral equations with
boundary value problems. For this, see [12].

For systems and higher order equations the situation is more interesting. For
some boundary conditions the analysis can be performed as in the scalar case while
for some other cases the analysis fails, indicating a lack of continuous dependence
under polyhedral approximation of the geometry. Thus formal shape analysis can
be used as a quick way to identify the boundary conditions with which one should
be especially careful when treating curved boundaries.
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