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WEAKENED ACUTE TYPE CONDITION
FOR TETRAHEDRAL TRIANGULATIONS
AND THE DISCRETE MAXIMUM PRINCIPLE

s

SERGEY KOROTOV, MICHAL KRIZEK, AND PEKKA NEITTAANMAKI

ABSTRACT. We prove that a discrete maximum principle holds for continuous
piecewise linear finite element approximations for the Poisson equation with
the Dirichlet boundary condition also under a condition of the existence of
some obtuse internal angles between faces of terahedra of triangulations of a
given space domain. This result represents a weakened form of the acute type
condition for the three-dimensional case.

1. INTRODUCTION: MAXIMUM PRINCIPLE

In this paper we prove the validity of a discrete maximum principle for continuous
piecewise linear finite element approximations for the Poisson equation with the
Dirichlet boundary condition

(1) —Au=f in Q,
(2) u=g on 09,

where f € L?(Q), g € C(09) and Q C R? is a bounded domain with a Lipschitz-
continuous polyhedral boundary 09.

First we formulate the strong maximum principle for the continuous problem
(cf. [14]) as follows.

A linear partial differential operator of the second order £ defined on a space
of suitably smooth functions, which are in turn defined on a bounded domain
QCRY de{l,2,..}, with a boundary 89, is said to satisfy the strong mazimum
principle if

(3) Lu(z) <0 VzeQ and u(s) <0 Vse o
imply that
u(z) <0 Vre.
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FIGURE 1

If £ satisfies the condition £v =0 for any constant function v and if Lu(z) <0
for all z € Q, then the following mazimum principle holds (cf. [6, p. 31])

4) rilea% u(z) = max u(s).

Note that this is precisely the case of our problem (1)—(2).

It is natural to ask whether the corresponding discrete problem satisfies the same
principle as the continuous problem. This question for linear elliptic equations is
considered in [4]: in the two-dimensional case the discrete maximum principle is
proved for continuous piecewise linear finite element approximations if all angles
« in the triangulation are not greater than % (the so-called acute type condition).
However, it is noted that the discrete maximum principle holds for continuous
piecewise linear finite element approximations for our problem under the following
weaker condition ([17, p. 78]): for every pair (a1, ) of angles opposite a common
edge of some given pair of adjacent triangles of the triangulation we have o +ag <
7, (see Figure 1a). In [13], it is shown that the discrete maximum principle may
still hold in some cases if both angles in such a pair are greater than 7.

In the three-dimensional case this problem is studied in [10], where the authors
prove the validity of the discrete maximum principle under the condition that all
internal angles between faces of all tetrahedra in the triangulation of Q are not
greater than 7 (a natural generalization of the acute type condition to the three-
dimensional case, see Figure 1b). Moreover, they prove the result for a nonlinear
elliptic equation taking into account the effect of numerical integration (cf. also [5]
for the two-dimensional case).

If an edge is surrounded by four tetrahedra, then all four associated angles have
to be equal to % to satisfy the acute type condition introduced in [10]. This is a
quite restrictive property, which is difficult to satisfy especially when performing
refinements by “midlines in 3d”; see the four “internal” tetrahedra in Figure 2 and
their common edge (cf. [9]). Some special examples of acute type triangulations of
polyhedra are given in [10]. They are based on Delaunay triangulations (cf. [7]).

In this paper we consider problem (1)—(2) and show that the above-mentioned
acute type condition can be weakened and some obtuse internal angles between some
faces of tetrahedra can be allowed under certain conditions on the triangulation of
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FIGURE 2

a given domain and the discrete maximum principle still holds. An example of such
a triangulation is given in Section 4.

Other papers devoted to discrete maximum principles include, e.g., [1], [8], [15],
[16].

2. THE DISCRETE PROBLEM

If we examine proofs of discrete maximum principles to hold, then we see that
they are all based on the following fact: the corresponding discrete problems are of
nonnegative type (cf. [4]). This means that the finite element approximate problem
leads to the solution of a system of linear equations of the form

(5) Aw = b,

where the matrix A = (aij)?,j:l, besides being nonsingular, satisfies the following
conditions:

(63) ai; >0, 1=1,..,nm;
A
(6b) da >0, i=1,..,m
j=1
(6¢) a;; <0, 4,j=1,..,M, i #j.

Here & = (ug,...,us) and for the Dirichlet boundary problem the components
Up41, .-, Up are given by values of g at nodes belonging to the boundary 9S2.

Remark 1. If (6) holds, then the matrix A is known to have a nonnegative inverse
(see [18]), which implies the validity of the discrete maximum principle (cf. [10]).

The conditions on A can be still reduced:

Theorem 1. Let the finite element matriz A of the problem (1)-(2) be monotone
(i.e., nonsingular with a nonnegative inverse) and let (6b) hold. Then whenever
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f <0, the following discrete mazimum principle is valid:

(7) max u; = max uj.
1<i<n n+1<j<n

The proof can be found in [3, p. 342].

Remark 2. In our paper we will allow some obtuse angles in the triangulation (which
may cause condition (6¢c) to not hold), such that the matrix A remains monotone,
and, therefore, in view of Theorem 1, the discrete maximum principle holds under
weaker conditions than in [10].

Further we give some notation and conditions on the triangulations used. By
K (possibly with a subscript) we always mean a closed tetrahedron. The symbol
75, denotes a triangulation of € into tetrahedra, whose nodes are By, ..., Bx.
We denote by ¢1, ..., ¢z continuous and piecewise linear basis functions defined in a
standard way, i.e., ¢;(B;) = d;; for i,j = 1, ..., 71, where J;; is the Kronecker symbol.
We also assume that {73 }r—0 is a strongly regular family of triangulations, i.e.,
there exists a positive constant Cy independent of A such that

(8) Cyh® <meass K Vhe (0, hg) VK €Ty,

where meas, stands for the d-dimensional measure.

Let By, ..., B, be nodes that do not lie on 9Q and let m be the number of nodes
lying on 0Q, i.e., n. = n+ m.

Let a(-,-) be a bilinear form associated with the problem (1)-(2), i.e.,

(9) a(u,v) :/QVwVv dz.

We define the basic finite element matrix A to be the n x n matrix whose entries
are

(10) Qij = a’(¢ia¢j)? 'L?j = 1a ceey Ty
and the n X m boundary matrix Z with entries z;; given as
zij = a(biy Pnaj)y i =1,.,m, j=1,..,m.

‘We also set
b; = / fodz, i=1,...,n.
Q

What we actually need is to solve the problem
Au=b- Zg,

where g = (9(Bns1),.-, 9(Bn))T = (91, -, gm)’. However, to simplify the proof
of the main result of Section 3, it is more convenient to consider an extended
form of this system, namely, the 7 x 7 linear system of equations (like (5)), where
b= (b1,....bn, g1,y 9m)’ and A is the 7 x 7 matrix having the form
- |A Z

(11) -9
where I is the identity matrix. ~

Further we analyze of the structure of entries of A. First note that if two different
vertices B; and B; have no common edge, then

meass (supp ¢; Nsupp ¢;) =0, 1ie., a; =0.
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B,

FIGURE 3

Let us now consider an edge denoted by B;Bs for simplicity, and let Bs, By, ...,
B2 be another set of vertices in an appropriate order, which are connected with
edges to both B; and Bs. Then we observe that

M
supp ¢1 Nsupp ¢ = | J Ko,
r=1

where the symbol K. denotes a tetrahedron BiBsB, 2B, 13 (see Figure 3 with
M = 6) and we define B3 = Bs. We see that the tetrahedra K, ..., Kjs are
“surrounding” the edge BiBs.

From (9)-(10) we particularly have that

M
(12) az = Z/ Véilk, Vo k,dz,
r=1YKr

where ¢;|x, € Pi(K;), j = 1,2, r =1,..,M, and P;(K,) denotes the space of
linear polynomials over K.

In what follows we always use the notation o for the internal angle in K
(between faces), which is opposite to the edge B, B, and the notation S, for face
of K with vertices B;, Bj, By.

Lemma 1. Let K be an arbitrary tetrahedron with vertices Bi, Ba, B3, By and let
p,q € Pi(K) be such that

p(Bl) = 17 p(Bz) =0 fO'f’ 1 7& 17

q(BQ)zla q(B])=0 fO'f' J#Qa

then
meass 3234
13 T Qe I
(13) Vol 3measz K’
measy So34 - measy S134
(14) Vp-Vg=— S (mons; K2 cos X,

For the proof see [10, Lemma 3.1].
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Remark 3. From (14) it follows that the most undesirable case (in the notation of
Figure 3) is when all angles between faces S 42,43 and So py2,43, 7 =1,..., M,
are not less than % and at least one is greater than 5. Then in view of (12) and (14)
we observe that a2 > 0, i.e., the condition (6c) does not hold for the corresponding
matrix A.

Note also that if not all such angles are obtuse and there are some acute ones we
can still get a negative value (as well as a positive one) of ayg, since it is (cf. (12))
a sum of M terms over K., r=1,..., M.

In this paper we consider the situation (cf. Remark 2) when some positive off-
diagonal elements in the matrix A may also appear. To prove that the matrix A is,
under certain conditions, still monotone and therefore that the discrete maximum
principle holds by Theorem 1, we use the Bramble-Hubbard decomposition theorem
from [2].

Before giving a formulation of this theorem we introduce some further notation.
We assume for the moment that A is an arbitrary n x n matrix for which (6a) and
(6b) are valid, and that there exists a nonempty set J(A) of numbers of rows of A
such that for every k € J(A) we have Z;‘zl ar; > 0. Now for i ¢ J(A) we define a
connection in A from i to J(A) to be a finite sequence of nonzero elements of the
form aij, , @5, 550 Qjyjsy - Aj. k> Where k € J(A), cf. [18]. We assume also that there
exists at least one such a connection in A for every i ¢ J(A).

From now on we assume that the matrix B, which we will be dealing with in
the following theorem, is given by B = (diag A)~'A, where diag A denotes the
diagonal matrix whose diagonal coincides with that of A. Note that from a trivial
observation 7 ;¢; =1 in Q, (9) and (10) we may easily derive that both A

and B satisfy (6a) and (6b), and J(A4) = J(B) ={n+1,...,0}.

Theorem 2. Let a matriz B have a unit diagonal, satisfy (6b) and let J(B) # 0.
If there exists a splitting B =1 — C — D, where

(15a) diag C =0,
(15b) I—-C satisfies (6b) and (6c),
(15¢) (I — C)7'D is nonnegative,

(15d) for each i ¢ J(B) there exists a connection in C from i to J(B),
then B is monotone, i.e., B™! exists and is nonnegative.
For the proof see [2, p. 352].

Remark 4. Actually, it will be difficult to check only condition (15¢). To simplify
this procedure we define the following decomposition of the matrix D (note that it
is different from that given in [13]):

D = DPos Dneg,

where the entries of matrices DP% = (d;°)7;_; and D"*¢ = (d;;®)7";_; are defined
in the following fashion. If an entry d;; consists of several contributions, i.e.,

M;;
_§ : l
=1
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then we set
5= " di; and dif= ) dij.
d;>0 d};<0
Further, from the trivial relation
(16) (I —C)~'D = DP° 4 (I — C)~(D"& + CDP*),

we observe that in order to verify (15¢) it is enough to prove that D8 4+ C'DP°s is
a nonnegative matrix, since both DP° and (I — C)~! are obviously nonnegative in
view of (15a), (15b) and Remark 1.

Remark 5. Taking into account Theorems 1 and 2, we observe that if one finds a
suitable splitting of B = (diag A)~'A satisfying (15a)—(15d), then the discrete
maximum principle (7) still holds.

Let us define the entries of the matrices C and D as follows:

(17a) Cij = ~a?;g/2ai¢,

(17b) dz'j = —a?;’g/2a” — (1 — 6¢j)a§]95/a”,
where i = 1,...,n, j =1,...,7, and the other their entries are zeros.

3. MAIN RESULT

Before presenting the main result—Theorem 3—we make the following observa-
tions on the triangulations used.

Lemma 2. Let {7} be a strongly regular family of triangulations of Q. Then
there exist positive constants C;, C;’, C’é, C’g, Cé, C’g, 0y and hg independent
of h such that for all h € (0,ho), all K € Tp, and all their interior angles 6,
faces S and edges e, we have

(18) Cyh < meas; e < C} b,

(19) Cyh? < meas, S < C h?,
(20) Cyh® < meass K < Cy h®,
(21) 0 <6 <m— 0.

The proof follows immediately from the property of the strong regularity (8).

Lemma 3. Let F = {Tp}h—o be a strongly regular family of triangulations of
Q. Then there exists a positive constant 01 independent of h such that if K is
an arbitrary tetrahedron from T, and o1, oo, as are internal angles between an
arbitrary face of K and three remaining faces of K adjacent to this face, then
(22) min(ay, ag, ag) < g — 61.

Proof. Let Ty, € F, K € T, and a face S of K be arbitrary. Let p be the radius of
the inscribed circle O to S and let v be the length of the spatial altitude of K onto
the face S. If the attitude ends at the centre of O, then a; = az = ag = arctan%;
otherwise at least one of these angles is less than arctan%.

From (18) and (19) we get v < C; h and
_ 2 meas,S 2C,h?
" meas;0S ~ 3C]h’
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Hence, we find that

1"

3(Cy)?

min(ay, ag, a3) < arctan% < arctan (2(;; .
The last term is independent of h and less than 7/2. From here the existence of
some 61 > 0 follows. O

From now on we impose the following basic assumption on the triangulations
used:

(BA) Let aj; > 0 for some 4,5 € {1,...,a}, i # j. For simplicity assume that
i =1 and j = 2 in order to keep the notation of Figure 8. In such a case, we
require that there exist vertices B, r € {3,..., M +2}, and two tetrahedra K , and
Ky, € Ty, having B1 B, and By B, as their edges, respectively, so that

(23) i < T -0, k=12,
where 0y is some positive constant independent of h.

Remark 6. Observe that we always have 6; < 6. However, the numerical example
of Section 4 shows that it can happen 6; = 05 (cf. (31)).

Note that Myee < [%—7;], where M, is the maximum number of tetrahedra
around the same edge and the constant 6y is from (21).

Theorem 3. Let {7} be a strongly regular family of triangulations of Q leading
to the matriz A given by (11) with entries satisfying (BA).

Let, in case a;; > 0, one of the following two conditions (in the notation of
Figure 8 a;; = a12) hold:

1. None of the nodes Bs, By, ..., Byry2 belongs to 0€);

2. The function g is constant and ByB;B;i1 N OQ = ByB;Biyq or 0, i =

4,....M + 2,BM+3 = Bj.

Then the discrete mazimum principle (7) holds for continuous piecewise linear
finite element approzimations of the problem (1)-(2) if internal angles between faces
of tetrahedra from Ty, are not greater than 5 + €, where

: 81 (Cy)' (Gy)°
sine < min( —= C’é’ sin 61, o (G (1)
Proof. From now on we always assume that B; ¢ 89, since the case Bj, B2 € 0Q
is trivial, see (11).
We check whether the assumptions of Theorem 2 are satisfied (cf. Remark 5).
First we consider the case when none of the other nodes Ba, ..., Bas12 lies on 0f.
Obviously, (15a) is valid in view of definition (17a) of the matrix C.
Further we prove that (15b) holds. Using again (17a) and the fact that matrix
B satisfies (6b) we observe that

1— ch =1+ aj5%/2a;

. Si.Il2 02) .

Jj=1 J#i
(24) =143 ag/a] + D (ah® /205 — (a3 + af*)/as)]
J#i J#i

> D (—af5® /200 — aff®fai)] = —1/ai Y _(aj8/2 + aly”).
J#i J#i



WEAKENED ACUTE TYPE CONDITION 115

B,

FIGURE 4

Now we give a sufficient condition for the right-hand side to be nonnegative.
Suppose that for some fixed i and j, ¢ # j, there exists a nonnegative contribution
over some tetrahedron K; € 7y, denoted as a};”| Kn into apos Let K have vertices
B;, Bj, Bs, B (see Figure 4) and let € = ag‘ — Z. Let a ! be the smallest angle
among angles formed by the face S,;; and the other faces adJacent to it. Then by
(24) and (14), in order to show that I — C satisfies also (6b), it is enough to prove
that

ab® |k, + 305 |k,

measy Sist - measy Sjst measy Si,; - measy Sggj  €OS agl
= -sine — . <0.
9meass K| 9meass K 2

This inequality holds, due to (19) and (22), if the value of € is such that

(25) sine < 2%;, sin 64,

which implies that I — C satisfies (6b). From (17a) we see that condition (6c) holds
for all entries of the matrix I — C, i.e., (15b) is valid.

Now we check whether (15¢) holds, i.e., we prove that the negative entries of
Dre8 are dominated by the corresponding positive terms of CDP® (see Remark 4).

By the definition of matrix D the “worst” situation occurs if all contributions into
some entry a;;,% # j, are positive, see (17b). Let such an entry be a, for simplicity.
Then d}s? = —a}5° /a11. If we consider the corresponding entry (C'DP°®)q, then
we have to check whether the following condition holds (cf. (16) and (17)):

neg

—aitry  —Oniha aly
(26) (CDP e + (D™ Z 2a11 24 +2 ’+2 a ail =0
T ,T

We have from (14) and the assumption that all contributions into a;2 are non-
negative that

pos __ measy S1,r42,r+3 - Measy S2 r2,r+3 K,
(27) al; =) — - Cos 0y,
9meass K
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where aﬁr stands for the internal angle in K, between faces Sj ri2,r4+3 and
S2,r+2,r+3. Thus, from (19), (20) and (27) we get that

aPOS < ]\4-(Og)2

< -h-sine
12 9C, '

where & = max{aX — Z,r=1,.,M}.
Consider now the sum from the left-hand side of the inequality in (26). From
the basic assumption (BA) we conclude that

M neg neg .2 !

Z al 2 ) ,,~+2 2 > Sin 02 . (02)4 . h2
i 1" .

= 2a11 20r12,42  4da11 - aryorge - (Cs )?

Hence ¢ is to be chosen so that

(Cy)t  Cy sin? 0,

sine < — « —2— . —2—. - h.
TAM  (Cy)? (C3)? artari2
Taking into account that (cf. (13), (19) and (20))
(Cy)?
r ™ < _‘—/'ha
Ar42,r4+2 > 9C;
we observe that the value of € has to be such that
1 C’ 4 '\2
(28) sing < 8 (Gy)°  (Cy) -sin? 0.

AMmax  (C3)* (Cy)?

The condition (15d) can be trivially proved as in [13].

Since, under the assumptions of the theorem, the value of ¢ satisfies (25) and
(28), then obtuse angles with values less or equal to 7 + € are allowed and the
discrete maximum principle holds.

Consider now the situation when By € 952, but none of Bs, By, ..., Bar+2 belongs
to 8Q. In this case the entry a;o # 0 (but ag; = 0 — ¢f. (11)), and the same
arguments as before can be used, since inequality (26) does not involve any term
of the form ayj,j # 2, that vanish now.

Further, let the function g in (2) be constant and let, say, the face B;BsBy
belong to the boundary. If we consider the entries ajo,ai3,a14 being, in fact,
entries of Z from (11), then employing the arguments used to prove (24) and a
simple observation from [13, p. 485], we may replace the p081t1ve entry ajo with
zero and change entries a13, a14 by nonpositive entries a13, a1 4, respectively, so that

we get an equivalent system of equations with a new matrix already satisfying
(6c). g

4. NUMERICAL EXPERIMENTS

Consider problem (1)—(2) with g = 0, where Q is a parallelepiped whose shape
is shown in Figure 5. Let us divide Q into 3 x 3 x 3 = 27 smaller parallelepipeds
which are congruent and similar to €.

In this way we obtain eight interior nodal points Bj,..., Bg and let their order
correspond to Figure 6, i.e., B;...Bg is one the 27 parallelepipeds, which is in the
centre of . Assume that

B, =(0,0,0), Bs=(8,0,0), Bs=(-3,8,0), B =(4,4,7).
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FIGURE 6

Coordinates of the other vertices B; and the vertices of  can now be determined
from the above by a simple calculation.

We decompose the interior parallelepiped Bj...Bg into 6 tetrahedra as sketched
in Figure 6, and the other 26 parallelepipeds are decomposed in the same manner.

Then the associated triangulation 7, of Q contains 6 x 27 = 162 tetrahedral
elements having the same volume. Hence,

(29) C;=Cy
in inequality (20). The triangulation 7 is, in fact, equivalent to decompositions

studied in [9] and [12]. Note that each vertex B; belongs to 24 tetrahedra and each
interior edge is surrounded by 4 or 6 tetrahedra. Therefore,

(30) Mipax = 6.
Simple computer calculations now lead to
(31) CY = 31.532, CY =37.125, 0, =0, =29.74°

(cf. (19) and (22)), see Remark 6. Then we find by Theorem 3, (29), (30) and (31)
that

sine < min(0.21070, 0.43233),
which yields the upper bound
(32) e <12.16°.

The tetrahedron B;B;B3B,4 has two obtuse angles: 92.78° at the edge B B3
and 100.30° at the opposite edge By By. These edges are surrounded only by four
tetrahedra from 7. Since the angle 100.30° = 90° + 10.30° is at the same time the
greatest angle in the whole triangulation, we see that (32) is valid, and thus the
discrete maximum principle holds due to Theorem 3.
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The corresponding 8 x 8 stiffness matrix A is monotone

39.30

—-5.54 39.30 sym.
0.97 —-5.79 39.30

—-3.83 —0.23 —4.49 39.30

A= —-0.74 —4.49 0 —5.79  39.30
-5.79 097 0 0 —-3.83 39.30
—-0.23 -3.83 0 0 0 —4.49 39.30
—4.49 -0.74 -3.83 0 0 0 —5.79 39.30

even though some of its nondiagonal entries are positive.

If an edge is surrounded only by four tetrahedra, then, of course, at least one
angle is greater than or equal to 90°. For unstructured triangulations such an angle
is greater than 90°, in general. The above example illustrates that angles which are
even slighty greater than 100° can still guarantee the validity of the strong discrete
maximum principle. Other numerical experiments with similar parallelepipeds show
that angles less than 100° usually do not destroy the discrete maximum principle
provided their faces have approximately the same area.

Finally, note that refinements of tetrahedral triangulations should be done with
special care (see [11] and [19]). The latter reference contains an interesting example,
where repeated refinement by midlines may produce a degenerate tetrahedra if the
interior octahedron in Figure 1 is divided into 4 tetrahedra incorrectly.
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