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EXHAUSTIVE DETERMINATION
OF (1023, 511, 255)-CYCLIC DIFFERENCE SETS

PETER GAAL AND SOLOMON W. GOLOMB

ABSTRACT. An exhaustive search for (1023, 511, 255)-cyclic difference sets has
been conducted. A total of 10 non-equivalent (1023, 511, 255)-cyclic difference
sets have been found, all of which are members of previously known or con-
jectured infinite families. A fast and effective autocorrelation test method was
utilized that can also facilitate the testing of longer sequences.

1. INTRODUCTION

Cyclic Hadamard matrices, cyclic Hadamard difference sets, and the related two-
level autocorrelation sequences—AC sequences for short—play a crucial role in both
radar and communication systems. It is conjectured [1, pp. 91-92] that the length
of each AC sequence falls into one of the following three categories:

e p, p prime, p = 3(mod4)

® pg, p,q prime, g =p+2

e 2™ — 1, n a positive integer.
(In a search involving lengths up to 9999 [2], no counterexamples to this conjecture
were found.) Since out of these three categories, the third gives by far the most
known or conjectured [3] difference sets of a given size, the exploration of these
(v,k,A) = (2" —1,2"~1 — 1,272 — 1)-cyclic difference sets is well motivated. Com-
plete searches in the following parameter set cases have been done already: (127,
63, 31) by Baumert and Fredericksen [4] in 1967; (255, 127, 63) by Cheng [5] in
1982; (511, 255, 127) by Dreier and Smith [6] in 1991 and later independently by
Song [7] in 1997. The elapsed times between these successful attempts indicate the
huge leaps in complexity between the consecutive cases. In fact, it was estimated [7]
that even with applying all techniques used in previous searches, it would still take
about 10* years of CPU time to do the complete search in the length 1023 case. In
this article, we describe a new method that significantly reduces the computational
time required to test a given sequence for the AC property, thus enabling us to
undertake the exhaustive search for (1023, 511, 255)-cyclic difference sets.

A (v, k, X)-cyclic difference set is defined in the following way: Let D be a set
of k integers, distinct modulo v. D is a (v, k, A)-cyclic difference set if and only if
there are exactly A ordered pairs (di,ds), di,ds € D, such that dy —ds = d (mod v)
for all d, 0 < d < v. We can use the following equivalent definition [8]:
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Let

O(z) =Y  z*.

d;€D
D is a cyclic difference set if and only if

v—1
O(z)0(z™) = k+ )\in (mod z¥ — 1)
i=1

v—1
1 = n+ )\in (mod z° — 1),
=0

where n = k — A, and the coefficients are taken modulo v.

When v is not prime, each of its non-trivial divisors gives rise to a boundary
condition that can be used in reducing the complexity of the search for all difference
sets [4]. Let w be a proper divisor of v.

Then

w—1
(2) 0(x)0(z~ ") =n+ % zz:; z’ (mod z% —1).

A necessary, but of course not sufficient, condition for D to be a (v, k, \) differ-
ence set [1, pp. 63-64] is the following.

Let
(3) by =#{deD |d=i(modw)}, 0<i<w.
Then the b} must satisfy all the following properties:
(4) 0 <b <w/w, Vi, 0<i<uw,
w—1
(5) 0 =k,
i=0
w—1
A
(6) ) = n+
i=0
w—1 v
popr . = 22 ; .
(7 ;0 Lio= = J#0 (modw)

To use this in a complete search, first we determine all possible {b}} sequences
satisfying (4)—(7) for each w|v. The search can then be restricted to cases that by
(3) correspond to one of the {b*} solutions for each w|v. Since 2! — 1 = 1023 is a
product of three distinct primes, 3, 11 and 31, the most effective strategy is first to
determine all {63}, {b}'} and {b3'} sequences; then using these, search for all {633},
{693} and {b?*'} sequences; and then finally, using the latter three, determine all
length 1023 AC sequences.

2. THE AUTOCORRELATION TEST METHOD

There are basically two ways by which we can reduce the computational com-
plexity of the search. The first is to use necessary conditions, such as (5)—(7), to
reduce the number of cases we actually have to test for the AC property. The second
is to simplify the AC test itself. To calculate the complete autocorrelation function
of a binary sequence of length L, we need approximately L? multiplications and
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L? additions, 2L? integer operations in all. The most obvious simplification can
be achieved by stopping the calculation as soon as it becomes apparent that the
sequence doesn’t have the AC property. In all cases, we still need at least L/2 mul-
tiplications and L/2 additions, i.e. L integer operations before we can stop. The
method proposed here will reduce the test to an average of five floating point—FP
for short—operations per case by testing the Discrete Fourier Transform of the
sequence instead of testing the sequence itself.

The DFT F{a;} of a sequence {a;}, 0 < ¢ < L, is defined as the vector
(A(0), ..., A(L — 1)), where

L-1
Ay =Y ae VTR,
=0

Using well-known properties of the DFT, we can write

L—-1
F { > aiaH.T} =A%
=0
Since

Lz:_la' ~ _ [k, 7=0(modv),
— @it =)\, otherwise,
1=

it follows that

s | n+d, =0,
[ADF = { n, otherwise

Thus, a necessary condition for {a;} to be an AC sequence is that |A(1)]? = n
(note the “1”, instead of “I”, in the argument). Knowing A(1), we only need
two FP multiplications and one FP addition for this test. Intuitively, we can also
expect this test to be efficient in the sense that non-AC sequences will fail it with
high probability; thus, the further testing of passing sequences carries negligible
cost. In other words, in almost all cases, it will be enough to test an arbitrary
single DFT value—A(1) in our case—to exclude non-AC candidate sequences. Of
course, calculating A(1) seemingly requires 2L additional FP operations, but due
to the inherent redundancy of this calculation, we can reduce the resulting load
significantly. To show how this can be done, consider a binary sequence {a;} of
length L = 2™ — 1. By the multiplier theorem, we introduce no loss of generality if
we assume that the sequence is constant on cyclotomic cosets, where by cyclotomic
cosets we mean the equivalence classes under the equivalence relation z & y iff x =

2ty (mod v), for some t € {0,1,--- ,n — 1}. From now on, we will assume that
sequence elements a; and a; are always equal if ¢ = 2'j (mod v), for some t €
{0,1,--- ,n—1}.

Let N, be the number of cyclotomic cosets mod L. Define the DFT of a cyclo-
tomic coset C; by
Ci(l) =Y e VT,
JEC;
Then the DFT of the sequence {a;} associated with a presumed difference set D is
simply

A=Y Ci.

i:C,€D
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Since the values C;(1), 0 < ¢ < N, need to be calculated only once, getting the
DFT value of {a;} now takes only 2N, =~ 2L /n FP additions, where the factor 2 is a
result of doing the computation in the complex field. To see how further reductions
can be achieved, we have to consider the way a complete search is done. In the case
of our previous example, we would use N, nested loops, with each loop representing
an assignment of 0 and then 1 to the coset C; and invoking an inner loop assigning
values to C;+1. We would test for the AC property in the innermost loop. Since we
have N, levels, the resulting search-tree will then consist of 2 - (2¥¢ — 1) branches
and 2N leaves. Because the DFT is a linear operator, we can build the Fourier
transform gradually as we proceed along the branches of the tree. If a particular
branch represents an assignment of 0 to a coset, then we do nothing. If it represents
an assignment of 1, then we add the DFT value of that coset to the DFT value
of the sequence. This takes two FP additions, one for the real and one for the
imaginary part. Thus, on average, the cost of a branch is a single FP addition
only. The cost of a leaf, as explained before, is two FP multiplications and one
FP addition. Weighting these costs by the numbers of the branches and leaves,
we can calculate that the total cost is approximately 3 - 2V¢ additions and 2 - 2/
multiplications, i.e. five FP operations per case.

The strength of this method is heightened by the fact that if we undertook
searches for even longer sequences, the cost of testing for the AC property would
not increase at all, as opposed to the linear growth associated with conventional
autocorrelation test methods.

Further reductions are also possible. One method employed is the following.
Let’s precalculate the DFT of all combinations of cosets situated below a certain
level in the tree, and select the combination with the maximal absolute DFT value
for each possible Hamming weight value of the assignment. Then, upon entering
this level during the search, the absolute value of the partial DFT sum can be tested
against the preselected maximal absolute DFT value of the remaining cosets. Many
subtrees can be excluded simply because the partial DF'T sum is too big or too small
to be brought to the desired A(1) value even when adding or subtracting the biggest
absolute DFT value of the remaining cosets.

As an example, assume that we chose the 6th level from the bottom in the
tree to be the place where this test would be performed. Then we precalculate
the DFT of the 6 cosets below with all 26 = 64 possible coset assignments. We
sort the coset assignments of these 6 cosets into 7 classes based on their Hamming
weights. Thus, we will have 1 assignment with weight 0, 6 assignments with
weight 10, 15 assignments with weight 20, etc. In each class, we determine which
assignment has the maximal absolute value of the DFT. During the search, when we
arrive at the 6th level, counted from the bottom, we already know the contribution
of the 108 — 6 = 102 higher cosets; call it Cp.. 101(1). We also know the required
Hamming weight for the 6 lower level cosets, and from the precalculated list, we can
determine the possible maximal absolute value of the DFT for these 6 cosets; call
it |Co2...107(1) |maz- Then if |Co.. 101 (1) + |C102...107(1) |maz is less than the desired
|A(1)] or |Co..101(1)] — |C1o2...107(1) |maz is more, then all possible completions of
the partial coset assighment can be eliminated.

A corresponding condition could be set up based on the minimal absolute value
of the DFT for the cosets at the bottom, but in practice this proved to be far less
effective.
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There is a trade-off in determining the optimal level of the tree at which the test
ought to be performed. The higher the level, the more extensive the subtree that
can be excluded when one of the conditions is met; however, the less likely this is
to happen. Since the appropriate probabilities would be too difficult to calculate,
the optimal level was found empirically.

It should be noted that every time DFT values were compared, windows for
unavoidable calculation errors were left. In our programs, two double precision
numbers were declared equal if the absolute value of the difference between them
was less then 1076. The resulting “false alarms”—when two values were de-
clared equal when indeed they were not—were easily filtered out by a conventional
autocorrelation test performed in the integer domain. The rate of these events was
sufficiently low so as not to create significant overhead.

3. THE SEARCH

In order to organize the search efficiently for (1023, 511, 255)-cyclic difference
sets, we have to consider how the cyclotomic cosets behave when we map the set
of integers modwv into the set of integers modw, where w|v. First, to help us
study the coset structure mod v, we introduce a simple classification of the cosets,
explained as follows.

We will say that two integers x and y are equivalent mod v when their greatest
common divisors with v are the same, i.e.

z 2y iff (z,v) = (y,v).

Obviously, this is indeed an equivalence relation on the set of integers mod v; thus,
it will provide us with equivalence classes tied to the individual divisors of v. It is
also trivial that all the elements within any given coset are equivalent to each other;
thus, the same equivalence relation can be applied to the cosets as well. This gives
us a natural classification of the cyclotomic cosets. For convenience, we introduce

the following notation. Let C,(f), n|v, mean the class of cosets satisfying
C; € CW if and only if (z,v) = n, Vz € C;.

Example 1. We take the case of v = 33 as an example. We have five cyclotomic
cosets, listed as follows:

CO = {0}’

¢ = {11,22},

G, = {3,6,12,24,15,30,27,21,9, 18},
Cs = {1,2,4,8,16,32,31,29,25,17},
C, = {5,10,20,7,14,28,23,13,26,19}.

Then, the classes are the following:

c3Y = {Co},

¢ = {a},
= {ca},
e = {cs, Cy}.

Thus, C3 and C4 are equivalent to each other, but the other cosets are equivalent
only to themselves.
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‘We now return to our original problem, namely determining the way the cosets
are mapped when we map the set of integers mod v into the set of integers mod
w, where w|v. It can be easily verified that cosets are mapped into cosets and
equivalent cosets are mapped into equivalent cosets. Because of this, we could also
say that coset equivalence classes are mapped into coset equivalence classes This

way, (”) (w , w|v, will mean that all cosets in equivalence class C’n are mapped

into some cosets in equivalence class Cm .

At this point, we introduce two characteristic values associated with this map-
ping. We say that class C(”) has multiplicity M (mod w) if there are exactly M
cosets in C,(l ) mapped into each of the cosets in C’,(#’ ). And we say that a class
¢ has weight W (mod w) if there are exactly W elements in any given coset in

T(L v) mapped into each of the elements in the corresponding coset in C( “) Tt can
be easily seen that the multiplicity and the weight are properly determmed by the
following two identities:

number of cosets in C

M= (@)’
number of cosets in Cpy
W size of cosets in CS”)

size of cosets in Cr(#’ )
Using these notations, we have summarized all important information about the
coset mappings in Table 1, at the end of the paper.
Next, we give two examples to show how the information contained in Table 1
can be utilized.

Example 2. We will determine the values assigned to the 1-, 2- and 5-element
cosets mod 1023. First of all, we know that each coset has the value 0 or 1 assigned
to it and that the sum of all elements is 511 = 1 (mod 5). This forces the values
assigned to the 1- and 2-element cosets to be 1 and 0, respectively. From Table 1, we
get C%ég?f’ 6(33 nd C(1023 C(33) i.e. the 1- and 5-element cosets mod 1023
are mapped into the 1-element coset mod 33. Then, the value assigned to b3, which
is the same as the value assigned to the 1-element coset mod 33, must be congruent
to 1 (mod5). Using this, we can easily do a complete search for {33} sequences
that satisfy (4)—(7). The result of this search is that there is exactly one solution:
b33 = 31,15,15,...,15. But this, in turn, means that 1 has to be assigned to every
5-element coset mod 1023, because otherwise the value assigned to the 1-element
coset mod 33 would have to be less than 31.

Example 3. We will determine the {67!} sequences. Similarly to Example 2, using
Table 1 and also the results of Example 2, we can determine that b3! = 1(mod
10). Then, by (4), b3 =1, 11, 21 or 31 are the only possibilities. As for the
other b} values, we can claim that they must be odd because the contribution of
the 5-element cosets mod 1023 is 1 and the contribution of all the other cosets is
even since those cosets have weight 2 (mod 31). Using these necessary conditions,
a simplified computer search sufficed to determine that there are exactly eight
solutions mod 31.

As mentioned earlier, when w is a product of two or more primes, we can use
the solutions for those prime moduli as boundary conditions. Consider w = 341,
which has 11 and 31 as its prime factors, as an example. From Example 3, we
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already know that there are eight solutions mod 31. It can also be seen that there
is a unique {b}'} solution: b}! = 61,45,45,...,45. This follows from the fact that
the single {62} solution found in Example 2 uniquely determines the {b}'} solution
through (3). Furthermore, we have from (4) that 0 < b3 <3, 0< i < 341.
Then the problem of finding the {6341} sequences can be reformulated [6] as follows.
We fill an 11 x 31 rectangle with numbers between 0 and 3 in such a way that the
row sums form the unique {b}'} sequence and the column sums form one of the
eight possible {b3!} sequences. Also, when we read out the numbers diagonally,
extending the rectangle cyclically when necessary, we get a {b341} sequence that is
constant on cosets and satisfies (5)—(7). The task of finding all solutions can then
be done by an exhaustive computer search that takes all possible patterns giving
permissible column and row sums and tests whether they satisfy (5)—(7) or not.
Actually, using (5) is redundant here because the condition on either the row or
the column sums already ensures that (5) will be satisfied. The compliance with
(6) and (7) can be simultaneously checked using the AC test method described in
Section 2.

To make the computation more efficient, we divided the search into eight distinct
parts based on the eight {671} solutions. This not only reduced the overhead by
ensuring that we had unique boundary conditions in each case, but also supported
a natural parallelization of the search process, which decreased the duration of the
search significantly.

With these and similar methods, we were able to find all solutions of (4)—(7) for
all possible moduli. Here, we only list the number of inequivalent solutions found
in each case:

(mod 3) : 1 solution
(mod 11) 1 solution
(mod 31) : 8 solutions
(mod 33) 1 solution
(mod 93) : 17 solutions

(mod 341) : 14 solutions

When we do the final search for mod 1023 sequences, we follow a very similar
path. The only difference is that here we have a 3-D object to work with. Namely,
we have a 3 x 11 x 31 rectangular solid to be filled with zeros and ones in such a way
that the projection sums taken over the three faces form permissible {633}, {93}
and {b3*'} sequences. Note that using the {b7}, {b}'} or {b3'} sequences would
provide no further information, because the correct projection sums over the faces
already ensure the correct sums along the edges. This implies, of course, that the
combination of a certain {673} and {b3*!} solution can only occur if they both reduce
to the same {b3'} sequence mod 31. The unique {b33} sequence can occur with any
{633} or {b34'} solutions, because the {b?} and {b}'} solutions are both unique.
When we divide the search into parts based on these permissible combinations,
we have to remember that, in general, the decimations of the modular solutions
must be treated as inequivalent cases. We are still allowed, however, to fix the
decimation of one of the modular sequences, and we can also use the fact that
the unique {623} solution is invariant under decimations. This led to a total of 43
permissible combinations.

Interestingly, it turned out that the computationally most intensive part wasn’t
the search for the length 1023 AC sequences but rather the intermediate search for
the {b34'} sequences, which involved the testing of approximately 5 - 10'? putative
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solutions. Utilizing the test method described in the previous section, however,
we were able to accomplish this task in less than two days, with the bulk of the
computation done on USC’s Convex Exemplar computer. The other moduli took
significantly less time to check completely.

4. RESULTS

We give one representative for each of the ten inequivalent (1023, 511, 255)-cyclic
difference set classes found. Every difference set can be obtained by a decimation
and a cyclic shift based on one of these examples. We used the trace representa-
tion of the associated two-level autocorrelation sequence—where « is an arbitrary
primitive element of GF(1024)—to obtain a short listing.

Using the same methods as described in this paper, the search was later repeated
by Song [7] with identical results.

e m-sequence
— Tr(a?)
e GMW sequences
_ Tr(a‘ +a219i)
— Tr(a® + af%)
_ ’I\r(al +a39i +a157i +a221i)
— Tr(of + a0 4 o159 4 187%)
— Tr(ad + % + ad7i 4 9% + 101 4 q15% 4 1710 | o187i)
Extended GMW construction based on length 31 quadratic residue sequences
— Tr(ad + 0% + a7t + % + a9 + 25 + a0%)
— Tr(ad + a5 + a5 + a®% 4 089 4 870 4 101 4 1073
Fal2l 4 189 4 1870 | o370 4 (2450 4 4790y
e 5-term construction [3]
Construction using the Welch-Gong transformation [3] on the previous exam-
ple
— Tr(ad + @l + alli 4 @12 4 @13 4 g4 4 150 4 1380
Fald% 4 400 | ldli g 1420 4 1430)

As mentioned before, the ten cases are inequivalent in the sense that none of
them can be transformed into another by cyclic shifts and/or decimations. A sep-
arate question is whether any pair of the ten underlying designs is isomorphic, i.e.
whether their incidence matrices can be transformed into each other by permut-
ing rows and columns. This is obviously impossible when the incidence matrices
have different ranks. The rank of a cyclic incidence matrix is the same as the lin-
ear complexity of the corresponding sequence, which in our case equals ten times
the number of terms in the trace description above, for each sequence. The only
pairs where isomorphism would be possible are the first and second pairs of GMW
sequences. To try to settle these cases, first we examined the triple intersection
numbers. Interestingly, it turned out that these numbers were identical for all four
sequences. Then, we examined the quadruple intersection numbers. This test was
quite lengthy, as it required the execution of ~1.5-10'2 integer operations per case;
but in the end, we were able to determine that no two designs were isomorphic.



EXHAUSTIVE DETERMINATION OF (1023, 511, 255)-CYCLIC DIFFERENCE SETS

TABLE 1. Coset class mappings

mod1023 || mod341 | mod93 | mod33 | mod31 | modll | mod3
N, S N, S N, S N, S N, S N, S N,S
MW | MW | MW | M\W | M\W | M,W

1023 341 93 33 31 11 3
C§023 ) C§41 ) C( ) C( ) Cs ) C§1 ) C?(, )
1,1 1,1 11 11 1,1 1,1 1,1
1,1 1,1 1,1 1,1 1,1 1,1

C&({Q:’,) C:S,ﬁl) c(93) C(33) C(31) C(11) Cf?’)
1,2 1,1 12 1,2 1,1 1,1 1,2
1,2 1,1 1,1 1,2 1,2 1,1

C,(1023) C(341) ngs) C(33) Cf’l) Cﬁl) Cg(,?’)
65 6,5 6,5 1,1 6,5 1,1 1,1
1,1 1,1 6,5 1,1 6,5 6,5

C(1023) C,(341) C(93) C§33j Cé‘;’l) C;ll) Cés)
1, 10 1, 10 1,1 1, 10 1,1 1, 10 1,1
1 1 1, 10 1,1 1, 10 1,1 1, 10

C(1023) C(341) C(93) C§33) C?(,‘;’l) C§11) a:’,)
2,10 1, 10 1,2 2, 10 1,1 1, 10 1,2
2,1 2,5 1,1 2, 10 2,1 2,5

1023 341 93 33 31 11 3
¢ e [ e | P | PV | eV | o
6, 10 6,5 6, 10 1,2 6, 5 1,1 1,2
1,2 1,1 6,5 1,2 6, 10 6,5

C§1023) C§341) C§93) C§33) C(31 C%H) Cg(,3)
30, 10 30, 10 6,5 1, 10 6,5 1, 10 1,1
1,1 5,2 30, 1 5, 2 30,1 | 30,10

C§1023) C§341) 593) C§33) C@ C§11) C%B)
60, 10 30, 10 6, 10 2,10 6,5 1, 10 1,2
2,1 10, 1 30, 1 10, 2 60, 1 60, 5

SE®R=

Number of cosets in the coset class,
Size of the cosets in the coset class,
Multiplicity of the mod 1023 cosets when mapped to other moduli,
Weight of the mod 1023 cosets when mapped to other moduli.
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