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1[35L60, 65M06, 73V15, 76M20, 78A05, 80A22]—Level set methods and
fast marching methods: evolving interfaces in computational geometry, fluid me-
chanics, computer vision, and materials science, by J. A. Sethian, Cambridge
University Press, New York, NY 1999, xx+378 pp.; 23 cm, hardcover $74.95,
softcover $29.95

The level set method was devised in [OSe] as a versatile and useful tool for an-
alyzing the motion of fronts. It has proven to be phenomenally successful as both
a theoretical and computational device. A level set calculus has been developed,
there have been many extensions, and several related techniques have been con-
structed. One of these related techniques is the fast marching method devised in
[T1], [T2].

The idea behind the level set method, as developed in [OSe], is merely to define
a smooth (at least Lipschitz continuous) function ¢(Z,t) that represents the inter-
face I' as the set where ¢(Z,t) = 0. Here & = (z1,...,2,) € R" and T' bounds
(a possibly multiply connected) region 2. This level set function ¢(Z,t) has the
following properties: o(&,t) > 0 for & € Q°, ¢(x,t) < 0 for z € Q, ©(F,t) = 0 for
Z=00="T(t).

The interface is to be captured for all time by merely locating the set I'(¢)
where ¢ vanishes. This deceptively trivial statement is of great significance because
topological changes, such as merging and breaking, are well defined and easily
performed.

The motion is to be analyzed by convecting the ¢ values (levels) with the velocity
field ¢. This elementary equation is

‘ dp
(1) 8t+ -V =0.

Here, ¥ is the desired velocity on the interfaces, i.e., where ¢ = 0 and is arbitrary
elsewhere. .
Actually, only the normal component of v is needed: v,, = ¥ |g£‘ , 80 (1) becomes

)
(2) e +vn|Vg0| =0.

This is all easy to implement in the presence of boundary singularities, topolog-
ical changes, and in 2 and 3 dimensions. Moreover, when the normal velocity v, is
a function only of the direction of the unit normal, then equation (2) becomes the
first order Hamilton-Jacobi equation
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High order accurate, essentially nonoscillatory approximations to general Hamil-
ton-Jacobi equations, including (3), were obtained in [OSe],[OSh]. Theoretical jus-
tification of these methods for geometrically based motion came through the theory
of viscosity solutions, e.g., [CGG], [ES], [ESS].

The fast marching method, which gets equal billing in this book, is an opti-
mal numerical algorithm for obtaining convergent approximations to the viscosity
solution of the eikonal equation, e.g., in R?

\/ P2+ ¢l =a(z,y) >0

with ¢ given to be zero on a closed set. The function ¢ is the positive distance
to this set using a weighted metric. Very slight generalizations are admitted. This
too is a useful algorithm, as the author demonstrates. However, its scope (at this
point) is far more limited than that of the level set method.

The author, who is the coinventor of the level set method, writes well and this
book could indeed serve as a beginner’s “user’s guide” to this subject. However,
the author is less than generous in his attribution of who was first responsible for
many of the key ideas he describes.

Here are a couple of examples:

(1) The fast marching method was invented by John N. Tsitsiklis in [T1] (see
also [T2]). Everything is in these papers—eikonal equation, viscosity solution,
Hamilton-Jacobi equations, Dijkstra’s algorithm, heap sort, precise complexity es-
timates (including a parallelized version), a rigorous proof that it works, and the
application to optimal path planning (which is the subject of section 20.1 of this
book).

The method was rediscovered independently and simultaneously by John Helm-
sen, see [HPCD] and the author [Se]. Remarkably, there is no mention of [T1], [T2]
or [HPCD] in the book being reviewed here, whose title includes the words “Fast
Marching Methods”.

(2) On page 219 the author states that “the strategy of using level set methods
for shape recovery was invented by Malladi”. However, the earliest work in this
area is the very substantial paper [CCCD].

The topics covered for the most part involve motion which is not coupled to
external physical systems, for which v, in equation (2) of this review depends only
on the geometry and location of the shape. Topics involving external physics are
briefly touched upon in chapter 18 and elsewhere. The versatility and utility of the
level set method is exemplified in the book by applications such as computer vision,
etching and deposition and image processing. Of course the author’s understand-
able bias toward his work comes through, for example, in his choice for min/max
flow for image restoration, which is probably not the most frequently used or useful
approach.

The exposition of numerical methods is a bit confused and is lacking in detail.
In sections (6.4), (6.5), (6.6) he calls “convex” the schemes coming from [OSe] for
Hamiltonians closely related to the eikonal equation. These schemes would certainly
not work for general convex Hamiltonians such as pp? —I—qgofl —2rp py with p,qg >0
and pq > r2. He calls “nonconvex” everything else, including convex Hamiltonians,
for which he advocates using the schemes in [OSh].

Also the book (inevitably) fails to cover interesting, relevant topics such as Wulff
shapes, island dynamics models in epitaxial growth, motion of higher codimensional
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objects, e.g., curves in R?, the ghost fluid method for multiphase flow, etc. However
it is a useful introduction to a remarkably dynamic area.
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