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EIGENVALUE AND EIGENFUNCTION ERROR ESTIMATES
FOR FINITE ELEMENT FORMULATIONS
OF LINEAR HYDROELASTICITY

PAT RYAN

ABSTRACT. Convergence of an approximate method for determining vibra-
tional eigenpairs of an elastic solid containing an incompressible fluid is exam-
ined. The field variables are solid displacement and fluid pressure. We show
that in suitable Sobolev spaces a variational formulation exists whose solution
eigenvalues and eigenfunctions are identified with those of a compact operator.
A nonconforming finite element approximation of this variational problem is

described and optimal a priori error estimates are obtained for both the eigen-
values and eigenfunctions.

1. INTRODUCTION

Accurate modeling of the interaction between liquid propellants and structures
is important to the prediction of dynamic loads in launch vehicles and spacecraft. It
is common practice to represent the motion of these systems by superposition of the
response of a small number of approximate eigenfunctions, obtained from a finite
element representation of an inviscid, incompressible fluid coupled to a linear elastic
structure. Previous authors have addressed both mathematical and computational
aspects of this problem. The existence of real eigenpairs of a two-field variational
formulation, in the presence of a free surface, was established by Berger, Boujot
and Ohayon [3] and Boujot [6]. However, the Galerkin finite element discretization
of fluid pressure and structural displacement variables results in a nonsymmetric
matrix eigenvalue problem, and direct solution of this nonsymmetric problem results
in complex eigenvalues. Solution procedures which eliminate the fluid pressure
variable at the matrix level by static condensation to the fluid boundary have
been presented by Coppolino [8] and the text by Morand and Ohayon [13]. These
methods result in a symmetric matrix eigenvalue problem whose solution results in
real eigenvalues. The statically condensed fluid representation takes the form of an
“added mass matrix”. The existence of real eigenpairs of a continuous variational
counterpart of the added mass formulation was shown by Bourquin [4], for the
special case of a rigid tank with an elastic bottom.

Although existence of solutions and computational procedures have been
addressed, the rate of convergence of these approximate methods has not been
completely established [13]. Numerical results for typical vehicles show that, at the
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lowest natural frequencies, the tank wall moves essentially as a rigid body and the
motion is predominately fluid slosh. Convergence for slosh mode prediction has
been addressed by comparison to analytical solutions for rigid containers with sim-
ple geometries [8]. However, as the natural frequency increases, the fluid free surface
motion becomes quasi-static and tank wall elastic motion dominates. These latter
mode shapes are of greatest importance to structural dynamic loads prediction, yet
no relevant analytical solutions exist to verify accuracy.

The contribution of the present work is to provide a quantitative measure of the
accuracy of finite element methods for the prediction of dynamic loads in an unre-
strained elastic flight vehicle. To focus on this aspect, an atypical model problem
is studied: one in which the fluid is completely enclosed in an elastic container. In
Section 2 we state the pointwise equilibrium equations and establish the existence
of discrete real eigenpairs of a related variational problem. In Section 3 we provide
a precise statement of a finite element approximation to this variational eigenvalue
problem using simple C° elements for both fluid and solid. In Section 4 we es-
tablish a priori error estimates for the approximate eigenvalues and eigenfunctions.
It is shown that optimal rates of convergence are realized for three-dimensional
polyhedral domains typically encountered in engineering practice.

2. THE VARIATIONAL EIGENVALUE PROBLEM

An unrestrained three dimensional linear elastic solid encloses an incompressible,
inviscid fluid as shown in Figure 1. The system is free of external forces. The
equations of pointwise equilibrium are

(2.1) V.o =XMu in Q°,
(2.2) Ap=0 in 07,
(2.3) 9 _ Mo u-n on T,

on
(2.4) n-o,=7p on T,
(2.5) on,—(n-o,)n=0 on T,
(2.6) o,=0 on O0°\T,

FIGURE 1. Fluid enclosed in an elastic solid
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where A is the square of the circular frequency of vibration, w is the solid displace-
ment field, n is the unit normal vector on the fluid-solid interface, p is the fluid
pressure, o is the Cauchy stress tensor, and o, = oy;nj is the surface traction
vector where n® is the outward normal to 2°. The symmetric strain tensor e is
defined by the strain-displacement relation

€ =€ = é(ui,j + Uj)i) in Q°,

while the stress-strain relation is
O = Cijil €kl in Q°,

where c;;1; are the elastic constants. The fluid density p' is constant while the solid
density p°, elastic constants c;;,; and the field variables u and p are functions of the
spatial variable € = (z1,x2,23). In what follows, we use standard Sobolev spaces
and notation (see, for example, Aubin [1]). The coupled problem takes place in a
simply connected region Q € R3, where Q = Q*UT UQ/,Q° N QS = (. Consistent
with typical engineering models, the fluid is contained in a region ©/ assumed to
be convex, simply connected and polyhedral with unit outward normal vector n.
The fluid-solid interface T' = Q° N Q/ comprises the union of a fixed finite number
of facets such that each facet is a smooth two dimensional manifold. As a result,
n is locally smooth but globally an element of Ly(I')3. We denote by v* the trace
operator on H'(02°)? and by v/ the trace operator on H*(Q2/). Let

Q={qlqe HY(Q)/P, Ag=0in Q},
P ={q | qo is a constant function in Qf 1,
0Q ={¢|1¢=1"q,0€Q} (the trace space of Q),
Q' ={vive H™2(I), (v,q0) = 0 Vg0 € P} (the dual space of 9Q),
H={v|v=(v,v,) € Lo(2°)® x 0Q'},
V={v|v=(v,v,) € H(Q°) x Lo(T) N H,r(v,®r) =0},
where v,, = m - y*v is the normal trace on I' of a function v € H'(Q%)3. We set

& = (¢, n-7 Pg), where ¢ is a six-dimensional subspace of H'(02*)® represent-
ing zero strain energy states in the solid. The bilinear form r(-, ) is an inner product

on H and (-, -) is the duality pairing on H~2 () x Hz (). Denote by 1105 5 1Mo,
the H'(Q2*)* and Ly(92°)° norms, respectively, and by |||l o, |||l os the H'(Q7)

and Lo(Qf) norms, respectively. Finally, let I, denote the H*(I') norm. A
Galerkin weighted residual form of the eigenvalue problem represented by equa-
tions (2.1) through (2.6) follows.

Find A\, u,p € R x V x @ such that

(2.7) / o(u) : e(v) dQ — (v,,7 p) = A p’u-v dQ Yo €V,
s Qs

(2.8) Vp - Vq dQ = Xp! (un, v q) Vg €Q.

Qf

We now develop a problem statement in which (2.7) and (2.8) are combined into a
single variational equation.
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The elements of Q@ C H(Qf)/P are an equivalence class [g] of harmonic functions
q € HY QYY) differing by an arbitrary element of P. It is well known (see, for
example, Ciarlet [11]) that, for the norm on H'(2/)/P defined by

IHq]IIHl(Qf)/P = qiféfp g+ aolly qr

there exists a coercivity constant « such that

@9 oalldlisann < [ Vo-Vade Vig € H'@N/P

and a continuity constant M such that

(2.10) /Q 0 qd < M[plls ey p Nl lpsarye ¥ [P la] € H(Q)/P.

We remark that the bilinear form [,,; Vp- Vqd< is continuous on H* (/) as well,
so there exists a constant C satisfying

(2.11) lalll 2 )2 < Cllall s -

As a consequence of (2.9) and (2.10), for any A pfu, € 0Q', equation (2.8) has
a solution [p] € @ unique up to an arbitrary element py € P. Thus we may define
an operator RY : 0Q" — Q by [p] = po + A\p'R/u,. Let Sfu,, = v/ Rfu, be the
trace on I of Rfu,,, and let § = % denote the Neumann operator @ — 9Q’. For

] € Q,

(2.12) / Vp-VqdQ =Apf [ VRIu, -Vgdd Vg eQ,
Qf

Qs
(2.13) = (8g, 7' [p]) (Green’s formula),
(2.14) =\ p/(6q,97 u,,) (Definition of S7).

We shall make use of the following
Lemma 2.1. The operator § is a surjective map from @ onto 0Q'.

Proof. From the Green formula, for [¢] € Q,

/m VgV = (6a,478) Vo e H'(Q)

choosing ¢ = go € P we get (dg,qo) = 0, so § maps @ into 0Q’. Conversely, given
any v € H™2(T") with (v, go) = 0, we can solve

/ Vg Vo= (') Ve H(Q),
Qf

for [q] € HY(Q/)/P, which shows that any function v € H~2(T) with (3q, go) = 0
is the image of the Neumann operator acting on some ¢ € Q. O

Now, since (2.12) through (2.14) hold for all [g] € @, Lemma 2.1 ensures that
(2.13) and (2.14) hold for all §g € AQ’, so in particular they hold for any arbitrary
element v,, € Q" and we can write

(2.15) (U, Y [0]) = A p? (un, ST uy) Vo, € 0Q,
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where we made use of (vn,'yf po) = 0. We choose this v, to be the normal trace

the solid weighting function v in (2.7), so that substituting (2.15) into (2.7) and
defining

(2.16) a(u,v) :/ o(u) : e(v) dQ,

(2.17) r(u,v) = / pou - v d+ pf (vn, ST uy),
QS

we eliminate the fluid variable from (2.7), (2.8) and obtain the following one-field
variational eigenvalue problem.

Find A\,u € R x V such that
(2.18) a(u,v) = Ar(u,v) Yv eV.

The operator S/ is known as the Steklov operator (see e.g., Agoshov [2], Bramble
and Osborn [3]). The use of a Steklov operator to formulate a one-field variational
eigenvalue problem for fluid-structure interaction was proposed by Bourquin [4].

3. EXISTENCE OF VARIATIONAL SOLUTIONS

In this section we show that the eigenvalues and corresponding eigenfunctions
of variational problem (2.18) may be identified with those of a positive self-adjoint
operator T. This operator is then shown to be compact and therefore its spectrum
is a discrete sequence of positive real eigenvalues [1]. We let C' denote a constant,
not necessarily the same at each occurrence, and establish some preliminary results.

Lemma 3.1. The duality pairing (v,,S7u,) is an inner product on 0Q’.

Proof. Let ¢ = R/, in (2.12) and (2.14). Since § is surjective, R/ is a right inverse
of § and

/ VR u, - VRS v, dQ = (6Rv,,, 8 u,,)
Qf

(3.1)

= (vp, ST uy)
which is symmetric by inspection and, since Rf maps 0Q’ into Q, is positive definite
by virtue of equation (2.9). O

We denote by [-[|5o, the natural norm for the inner product defined by equation
(3.1), this norm being equivalent to the usual norm ||~||_%’F for all elements of 0Q'.
From Lemma 3.1 we deduce that the bilinear form r(-,-) is an inner product on

H. Rather than the natural (product) norm generated by r(-,-), we will find it
convenient to use the norm on H defined by

g = H D (v,00) = [vllg g0 + [ VR val -

Now
all [1v] = (lull g0 + VR wnl]g o) (0l o0 VR vallg o)
(32) = “u“O,QS |lv“07Qs + HvaunHO,Qf HVRfrUnHO)Qf
+ g s VR V] s + 10llg 0 VR wnlly

> C r(u,v) Yu,v € H,
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so 7(-,-) is continuous with respect to [|-||;. For the space V we may choose the
norm defined by

Iy =V 2 (v,0n) = o]l ge s
since for all v € H'(Q°)*,v = 0 implies that v, = 0, ||-[|, g. is a norm on V.

Furthermore, the bilinear form a(-,-) is continuous on H*(02*)? and coercive on V
by the Korn inequality, so there exist constants § and N such that

(3.3) Blvl} <alv,v) WweV
and
(3.4) a(u,v) < Nuly [[vlly, Yu,veW

Remark 3.2. The mapping n-v® defines, for every element v in H*(2%)3, an element
vp, unique in Lo(T"). This is not the case when n - v° is considered as an operator
on Ly(02°)3. Thus elements of H are ordered pairs of independent functions.

By continuity of the injection H®(I') — H*¢(T),e > 0, the Schwarz inequality,
continuity of the trace operator %, and the assumption that n € Ly(T),

||vn”8Q' <C ||Un“o,1“ <C1l: ”’YS’UHQ,F

SClyvllyp £ Clolly g = Cliviy Vv eV
Furthermore, for all v = (v,v,) € V
IVl = Tvllog: + [IVR vall, o

(3.5)

= [[vlg.qs + llvallag: by Lemma 3.1,
< Clvlly gs + llvallag by continuity of H'(Q%) — Ly(0?),
< Clvlly by (3.5),

and, since V C H, the injection of V into H is continuous.
We now prove

Theorem 3.3. The solution of variational eigenvalue problem (2.18) is a countable
sequence of real eigenpairs (\j,u;) with 0 < Ap < Ag < A+ < +00.
Proof. We define operators T, T, : H — H by
u € H:
Tu €V, a(Tu,v) = r(u,v) Yv eV,
T.u €V, a(v,T.u) =r(v,u) Y eV
The existence and uniqueness of Tu and T,u is guaranteed by (3.2), (3.3) and the
Lax-Milgram lemma. Now T is a bounded operator from H into V since
B Tul} < a(Tu, Tu)
= r(u, Tu)
< M [lull [[Tullg
< Cllull g [ Tully, .
Because the imbedding of H'(Q%)? into Ly(£2°)? and the imbedding of Ly(T') into

H™z (T") are compact, and the injection of V' into H is continuous, the imbedding
of V into H is compact. Therefore T is compact from H into H. Furthermore,
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the bilinear forms a(-,-) and r(:,) are symmetric and positive definite on V and H,
respectively, and both are symmetric on V U H, so T = T, is a compact positive
self-adjoint operator on H. Finally, since (A, u) is an eigenpair of equation (2.18)
if and only if (%,u) is an eigenpair of T, we have shown that the eigenpairs of
variational problem (2.18) are a countable sequence of positive real eigenvalues
tending to infinity with corresponding real eigenfunctions. O

4. FINITE ELEMENT FORMULATION

We now formulate a matrix eigenvalue problem based on finite element discretiza-
tion of problem (2.18). Let {7} be a triangulation of 2 such that

Let {Th} = {fh} U {Sh}, such that

Of=Jr and o= Ur

TEF TeSy,

Denote by AT the boundary of each region T'. Let {Aj} be a triangulation of I" by
the boundaries of the solid elements such that

r= U ornNT
(4‘1) TES

= |J or

T ey,

No assumptions are made with respect to the compatibility of fluid and solid mesh
on I

Let QF = {¢" | ¢" € CO(QF) : VT € Fr,q" |1€ Pu(T)} be a space of Lagrange
fluid finite elements. Since Q" ¢ H(Q/)NCY(Qf), the trace operator v/ is defined,
and, for any ¢" € Q", v/¢" coincides with the restriction ¢" |p. Let N be the
number of element nodes in the triangulation of Qf and let S4(xz), A=1,2,..., N,
be the set of shape functions in the fluid and g4, A = 1,2,..., N, the corresponding
nodal pressure amplitudes. Then dim Q" = N and any ¢" in QF has the form

(4.2) =% S ... Sy =8Tq.

Similarly, let VF = {v" | v" € C%(Q®%)? : VT € Sp,v; |r€ Pu(T),i = 1,2,3}
be a space of Lagrange solid finite elements. Since V' C H'(02°)% N C%(Q*)3,
the trace operator 4° is defined, and, for any v" € V* ~%v" coincides with the
restriction v" |p. Let M be the number of element nodes in the triangulation of
Q° and let Na(x), A=1,2,..., M, be the set of shape functions in the solid and
(vy vo v3)h, A =1,2,...,M, the corresponding nodal displacement amplitudes.
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Then dim V" = 3M and any v in VF may be written
(4.3)

U1

U1

Ny 0 0 N, 0 O ... Ny 0 0 Vs

=10 N 0O 0O Ny O ... 0 Ny 0
0O 0 N O 0 Ny, ... 0 0 Ny 2

=NTV.

:)
)

U1
V2

Y3/ w1
As described in Section 2, the unit normal vector on T' is globally Lo(I')® but is
locally smooth so that on the interior of each 0T C T’

ny(x)
n(x) = < na(x)
n3(x)

is continuous. Note that n need not be uniquely defined on the vertices between
adjacent facets O7T. Let

K= [ o(N):eNT)dQ,
Qs

M= [ p°N.NT 40,
QS

A:/SnTNTdI‘,
r

B=[ VS-vsTdQ,
Qf
so that upon substitution of V" for V in equation (2.7) and Q" for Q in equation
(2.8) we obtain

(4.4) VI{KU-A"p- MU} =0,
(4.5) q" {Bp - \p/AU} =0.
The solution to problem (4.4), (4.5) contains a zero eigenvalue of multiplicity 6,
corresponding to zero strain energy states of the solid, and of multiplicity 1 cor-
responding to a constant pressure state in the fluid. We seek a solution which

eliminates the pressure variable while simultaneously eliminating 1 zero eigenvalue.
Now p and q, the vectors of nodal pressure and weighting function amplitudes, are

elements of RY for which the standard basis is (e1, es,...,ex) so that
N

(4.6) q= Z q:€;.
i=1

The matrix B is not invertible on this basis because the nullspace of B is the
constant vector aly and is representable by (4.6). We instead choose the basis
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(81,62, ey €L, 1,ek+1, N ,e]\“]) so that
k—1 N

(4.7) a=agly+Y aeit+ > ge,
i=1 i=k+1

where g, is the nodal amplitude of the kth node. Assume (for convenience) that
k=1 in (4.7) and partition p,q,B and A according to

1 0 1 0
= =+ - s = =+ - R
N S I R Rt
bi1 b1z a
B = A =
[b21 b22] ' le-] ’

where g and pg are arbitrary constants. Substituting these expressions into equa-
tion (4.5) results in the two equations

(4.8) QM 1EAU =0
and
(49) E]T [b22f) - )\pfagU] = 0,

which must be satisfied independently.

Remark 4.1. All terms involving py vanish identically due to the nullity of B on
the space of constant functions.

For nonzero A, (4.8) is the finite dimensional counterpart of the constraint equa-
tion (un,qo) = 0. Let u; be a scalar component of nodal displacement U on T,
chosen such that a unit displacement results in a nonzero change in fluid volume.
Partition A and U and write equation (4.8) as

A A Uy
(4.10) 1% [a a5 {U} =0.
By solving (4.10) for u; in terms of U and letting
_1%a,
(4.11) C=| 13& |,
Ly

we define a subspace of V,? consisting of all fluid volume preserving motions by
(4.12) u" = NTCU.

Now for all solid nodal displacement vectors U satisfying U = CU, we can solve
(4.9) for p, so that p may be expressed in terms of pg and U as

1 0 0 |a o
_ f 1
p=mlie [0 g o] o0

(4.13) p= po + M B'ACU.

or



480 PAT RYAN

Since U has a representation

X -1 3M
U= Zuiei + 2 U@,
i=1 i=l+1

the solution of (4.13) for all basis vectors e;, i = 1,2,... ,I-1,1+1,... ,3M, defines
a transformation from a subspace of V" consisting of all fluid volume preserving
solid motions into a subspace of Q". This subspace is an equivalence class of fluid
motions excitable by motion of the solid, differing by an arbitrary constant. Finally,
we make the substitutions V.= CV,U = CU and equation (4.13) into (4.4), to
obtain the matrix eigenvalue problem

(4.14) CTKC U =2 {CT™MC + p/CTATB'AC} U.
Remark 4.2. The quantity p/ CTATB™!AC is the “added mass matrix”.

The solution of equation (4.14) is a set of real eigenvalues \p; and eigenfunctions
uy, = NTU;, j = 1,2,...,3M — 1, orthonormal with respect to the total mass
matrix. Corresponding to the nullspace of K will be 6 rigid body eigenfunctions
and associated null eigenvalues. The remaining 3M — 7 eigenvalues will be positive.

5. ERROR ANALYSIS

Tt remains to show in what sense the solution to the matrix eigenvalue problem
(4.14) is an approximation of the variational eigenvalue problem (2.18), and to
quantify the error in the approximate solution. We begin by defining the function
spaces Q" and V" used to approximate () and V. For arbitrary g, the set of
functions defined by equations (4.2) and (4.7) is an element of the quotient space

(5.1) Q" ={d"|4¢" € Qi/P}.
Now any element of Q’fz satisfies the approximation property

(5'2) qhigfgk{l q— qh |1,Qf + hfl | q— qh |0,Qf} < Ch}n | q \m+1,9f,
h

where hy is the fluid mesh diameter, |-|,, os is the seminorm corresponding to
lIll,n .06 » ™ = min(k,  — 1) where k is the order of the finite element polynomials
and r is the regularity of the function ¢ € H™(Q).

Now for the solid. Since the linearized rigid body motions ¢y are elements of
CY(02°)3, they may be represented exactly by functions in VE. We therefore assume
that they are reproduced without error by the solution to (4.14) and restrict our
attention to the elastic motions by defining V" to be the space defined by (4.3) and

(5.3) Vh = {0 | ot e VE, / o godl =0 VYo € P,r(v", ¢g) = 0},
T

where r,(-,-) is an approximation of 7(-,-). Elements of V]! satisfy the approxima-
tion property

(5.4) inf {|v—0"|10s 4+ h7 v —v" |00} <ORT |V |lmi1,00,
vhevk
where h is the solid mesh diameter, ||, s is the seminorm corresponding to

[l ¢ » and m is as defined above with r the regularity of the function v € A" (2%)3.
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Remark 5.1. The estimates (5.2), (5.4), hold for nonsmooth functions with 1 < r <
2 if we identify ¢" and v" with the local averaging interpolate of ¢ and v described
by Brenner and Scott [7] (see also Scott and Zhang [16]).

Remark 5.2. The normal trace of any function v = n - y*v" in V" is an element

of Q" since v € Ly(T") C H~%(I), and frm- yfvdl' = 0 is the restriction of the
constraint equation (v,,qg) = 0 to v, € Lo(T).

We denote with superscript h an arbitrary element of Q" or V", and use sub-
script h to denote an element of the solution space. Consider the operator T} :
H — H defined by the variational problem:

uc H, Thru € V* and
(5.5) / o(Thu) : e(v™) dQ — ("', 4T b)) = / pPu-v"dQ Vo' eV,
s Qs

(5.6) / Von - Vg dQ = p! (un,*yfqh) dr v¢" e Qm.
Qf

Since Q" C H'(Q)/P, the bilinear form [,; V¢ - Vg™ dI" satisfies the coercivity
and continuity properties (2.9), (2.10) for all ¢, ¢" € Q" and (2.11) is satisfied for
all ¢" € Q". As a result, for any u, in 9Q’, (5.6) is a matrix equation solvable for
an element [¢] € Q®, unique up to an arbitrary constant ¢o € P. So we can define

a finite dimensional operator R{l :0Q" — Q" by [¢n] = do + p’ R{lun analogous to
(4.13). Let S = 4/R be the composition of the trace operator 4/ and R/ and
denote by Q™ the restriction of Q" to T, then Sf : Q" — AQ" and we can write
(5.7) Y] = (6] o= do + o' Sfun.

Substitute equation (5.7) into equation (5.5) and let

rp(u,v) = / p’u-v dQ+ pf(vn,S{Lun>.
We then write a one-field finite dimensional variational problem:
uc H, Tru € V" and
(5.8) a(Tru,v?) = rp(u,vh) Vi evh

Since a(-,-) is positive definite on V" and r,(,-) is continuous on H, the existence
and uniqueness of Tpu is assured. Now (Xl’—,uh) is an eigenpair of T}, if and only
if (An,up) is an eigenpair of the following variational problem.

Find M\, up € R x V' such that
(5.9) alun, v7) = Mprp(ap, v vt e v

But equation (5.9) is precisely equation (4.14) restricted to the space of nonzero
strain energy states. So we have identified the eigenpairs, corresponding to positive
eigenvalues, of the matrix eigenvalue problem with those of T},

Remark 5.3. Note that rp(-,+) : H x H — R, differs from r(-,-) by the presence
of the finite-dimensional operator S£ in place of Sf, so that V* ¢ V. Also, since
V¢" will suffer jumps across adjacent elements T € F,, Ag¢" is not defined in

all of O/, and Q" ¢ Q. Therefore the variational eigenvalue problem (5.9) is a
nonconforming approximation of (2.18).
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Remark 5.4. Recall that we relied upon the surjectivity of the Neumann operator
on @ to eliminate the pressure from equations (2.7) and (2.8). Since Q" ¢ @Q we do
not have surjectivity of the Neumann operator acting on Q". Instead, we used the

fact that Q" is finite dimensional to eliminate the pressure variable from equations
(5.5) and (5.6).

Now we show that for sufficiently refined meshes the solutions of (4.14) are
approximations of those of (2.18). We first establish some preliminary results.

Remark 5.5. Although Q" ¢ @, the orthogonality relation

(5.10) VR —R))u, -V¢"dQ2 =0 V¢" e Q"
Qf

holds, since from the Green formula for Rfu, € Q, ¢" € Q",

0 VRfun : th dQl = <una7fqh>’

and, by definition of R{lun

fr VR up, - Vg dQ = (un, v q") V" € Q.

We now state the following regularity result, the proof of which is found in
Girault and Raviart [10].

Lemma 5.6. Let Q be a convex polyhedral region in R with boundary 0 and let

v € HY(N)? satisfy fag'v -ndl’ = 0, then the solution ¢ of the boundary value
problem

N =0 in Q,
8—¢ =v-n on o9,
on

belongs to H2(Q)/P.

Define
OV ={v, v e [[ H>OT) Ywevuvhy
BTEAh
We equip OV with the mesh-dependent norm

1

2

bl = (3 ol ar)
OTEA

with Aj, defined by (4.1). The normal traces n - y*v of functions v € V U V" are

elements of V. It is clear that Lemma 5.6 implies that the solution p € @Q of

(2.8) with Neumann boundary data v, € dV is an element of H2(Q/), and that

there exists a constant C' such that [|[p][| g2(qs)/» < Cllvnllgy. Furthermore, by
continuity of the trace operator v°, there exists a constant C such that

(5.11) lonllgy < Clivl g YoevVUV™

Now we establish the following error estimate for the Steklov operator (extended
from a result due to Bramble and Osborn [5]).
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Lemma 5.7.

foalll [(6,(87 —Sf)m) |
|s"=si] . P s S P Y P38

hf, if HzBV, GZBQ/,
=C{hy, it H=0Q, G=90V.
hi, if H=0V, G=0aV.

Proof. Let n € 0Q’. From equations (2.9) and (2.10) we have
1

f_Rrf < = fF_RrH,. f_nf
J® =R, <o | V@R -RDy YRS -Rjnde
1
=— [ VR -R{)n V(R n-q")dQ
Q@ Jof

< 2w/ Ry

Ry = g"[]; o Va" € Q"

HL(Qf)/P
and so
M
f_mnf e f.o_  h
610w R, S RO
For any &,n € 0Q),
(€, (87 = Shm) = 8 V(RS — R))n- VRI¢dQ,
= [ V@® -Rl)n VR/¢-q")d0,
Of
f_nf f¢e R h h
(5.13) <M (& R, o RIE~ "] g Ve e Q"

where we made use of (5.10). Upon substitution of (5.12) into (5.13), we obtain

(5.14)
(€ (8" =Spn) < C it [RIn—d", o, inf |[RIE—a"],q,-
From Lemma 3.1 we have
(5.15) R/ nl1.0r < Clnllog Vn € 0Q),
and from Lemma 5.6 we have
(5.16) IR/ nlz0s < Clnlloy Vn € OV.

Now using (5.15), (5.16) and the approximation property (5.2) of Q", we obtain

_ f o I€log  for & €0Q,
(5.17) threlfgh HR £—q HLQf <C {hf 1€l for £ € OV,

and the result follows from (5.14) and (5.17). O
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Tor the smoothness of the eigenfunctions in the solid, we are concerned with the
regularity of the solution u of the boundary value problem

olu)=7F in Q°,

on(u) =g on r,

-n- an(u) =0 on r,
on(u) =0 on O°\T,

with f € Lo(Q%)% and g € H 3(I). To our knowledge, the precise regularity of this
solution for arbitrary polyhedral domains in R® has not been established. Since Q°
contains conical points and re-entrant vertices on I', it is probably unreasonable to
expect that the solution will be in H2(Q°)? even if the external boundary to Q°
is convex. We will therefore assume that the eigenfunctions wu, restricted to the

solid, belong to H"(Q2*)3 for 1 < r < 2, where r depends on the smoothness of the
boundary 9Q°.

Let T,y : H — H be defined by
u €H, T,ucVh

(5.18) a(vh, Topu) = rp(viu) wh e vh
Note that 74 (v" u) # r(u,v?) for all u € H,v" € V" so T}, # T.p.
We now prove

Lemma 5.8. T} converges to T in operator norm
li T-T =0.
i | wll
hs—0

Proof. Since r(-,-) is an inner product on H, continuous with respect to ||-||;, we
can define the operator norm on H by

[Tl = sup [Tullz= sup sup r(Tu,v).
ucH uceH veH
[lall =1 lull =1 vl z=1
Using continuity of a(-,-), the second Strang lemma [11], and (5.11),
r((T — Tp)u,v) =a((T — Tp)u, T,v)
— a((T = Ty)u, (T. = T.y)v) + a((T — T)u, T.pv)
< M(T = Tp)ully [[(Ts = Tup)vlly + 7w, Tupv) = ra(u, Tupv)
= M (T = Ta)ully [(Te = Tup) vy + (Tupon, (87 = S])un)
h Sf _ Sf "
<C{ inf ||Tu-— vhHV-I- sup |, 7 b)tn) |)
vhevh wheyh lwh]] 5y
hogf _gf
( inf HT v — fh”v + sup | {gn, ( 7)Vn) |)
fhe gheVh g7l 5y
+ (T *hvna(s - S{L YUn)) I}

(5.19)
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For v € H, v, € 8Q’, while for v € V*, v} € OV, so by inequalities (5.19), (5.2),
(5.4), Lemma 5.7, and the assumed regularity of Tu = T.u, we get

|IT—Thl|y= sup sup 7((T—"Th)u,v)
ucH veH
lull =1 vlz=1
< C{AY™Y +hy) - (WY + hy) + g}
— 0 as (hs,hy) — (0,0).
O

Let m be the multiplicity of an eigenvalue A=! of T. As a consequence of Lemma
5.8, exactly m eigenvalues of T, converge to A~!; denote these by )\fhl, /\Q—hl, ey ;Llh.
We are now in a position to prove

Theorem 5.9. Let (A, u) be an eigenpair of (2.18) and let (An,up) be an eigenpair
of (4.14), then for sufficiently small hy, hs the eigenvalue error is

1 & .
(5.20) | A= o E Ain | < Cmax(h27—Y, h?c)
i=1

and the eigenfunction error is
(5.21) u—uplly < Cmax(h2=Y, h3).

Proof. Let X = Ly(2°)® x Lo(T). Then H,X,V,V* a(-,-),7(:,-),74(-,), T, T, Tp,
and T, satisfy the hypotheses of the extension of Theorem 4.1 of Mercier, Osborn,

Rappaz, and Raviart [12] described in the Appendix, and the eigenvalue error is
given by

(5.22) | A—— me < c{ sup  sup | (T = Tpu,v) |

_ ckE cE,
=1 lally=1 V=1

11 =T el - T = T

where E is the space of generalized eigenfunctions of T corresponding to AL E,
is the space of generalized eigenfunctions of T, corresponding to AL

(T = Tw)ell, = suwp (T -Thuly
uck
llull ;=1
and
(T = Tw)pallyy = sup (T = Toully
llull =1
For v € E = E,,v, € 0V, and evaluating the terms in (5.22) we obtain
(5.23) sup sup |r((T—Tx)u,v)|=C{AI™Y +h3)- (R~ + h5) + 3}
uck veE,
alfa=t v 1

< C'max(h2Y), h?«),
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and

(5.24) (T - Th)/EHH = sup sup |r((T—-Tp)u,v)|
lullg=1lvlg=1

< C'max(h2(r=1), h?‘)
The last term in (5.22) was evaluated in Lemma 5.8
(5.25) (T = Tw)/m],, < Cmax(h2"™ hy),
so combining (5.23), (5.24) and (5.25) we obtain (5.20).

For the eigenfunction error, Theorem 1 in [15] is directly applicable, and

lu = unlly < (T = Tw)/e 4

5.26
( ) < C’max(hg(r_l), hfc),

which proves (5.21). O

In conclusion, we have demonstrated that using fluid elements of the same mesh
diameter as the solid elements yields a convergence rate no worse than would be
expected in a “dry” structure. Note that this rate is limited by the smoothness of
the eigenfunctions in the solid, and localized refinement of the solid mesh could be
used to improve the accuracy of the solution. Although the method and analysis are
applicable to incompatible fluid and solid meshes of arbitrary interpolation order,
this result shows that no improvement in the rate of convergence would be expected
from the use of higher order elements in either solid or fluid. The error estimate is

optimal in the sense that it is the best that can be achieved with piecewise linear
finite elements.

APPENDIX

An extension of the proof of Theorem 4.1 in reference [12] is required to produce
an error estimate result applicable to the nonconforming approximation (5.9) of the
variational eigenvalue problem (2.18). This extension is now described. In what
follows, equation numbers denoted by [12](z.z), refer to those in reference [12].
In equations [12](4.2), [12](4.5), and [12](4.7), replace r(,-) with r4(:,+), where
ri(+,+) is a strongly coercive bilinear form on H, and assume that r(,-) is an
inner product on H. By the Lax-Milgram lemma, there exist invertible operators
Bp, B.n : H — H defined by rp(u,v) = r(Bpu,v) = r(u, Bupv) for all u,v in H.
The finite dimensional operator T, defined by [12](4.7) is then the (-, -)-adjoint of
T}, defined by [12](4.6), and similarly for the associated spectral projections Py, Pp.
Since r(-,-) is an inner product, the H-adjoint of P}, denoted by P}, is related to
the r4 (-, -)-adjoint P.p by

r(Pyu,v) = r(u, Piv) = r(u, B}, Py (B}) ')

and similarly for Ty, T} and T.,. With these terms defined, [12](4.14) and [12](4.15)
are unchanged, but P} replaces P, in [12](4.16), and from [12](4.13), [12](4.14),
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[12](4.15), and the modified [12](4.16), we have

1 m
. < _
| A E Ain | C sup  sup {] r((T — Th)u,v) |

i—1 U vEE,
¢ lullg=1 ]|l ;=1

T = Tl (P2 = Pl )

Now |(P. — Pi)v|ly < CI(T —Ty)vll,; Vv € E., E. C H, T,,T; are the H-
adjoints of T, T}, respectively, and r(-,-) is an inner product on H, so

sup (P = Py)olly <C sup  sup [r((T = Tp)u,0)| = C (T~ Tn) | »
veE, ue veH
lloll =1 llull =1 [lv]| z=1

and the eigenvalue error estimate of Theorem 5.9 in the present work follows.
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