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FINITE VOLUME RELAXATION SCHEMES
FOR MULTIDIMENSIONAL CONSERVATION LAWS

THEODOROS KATSAOUNIS AND CHARALAMBOS MAKRIDAKIS

ABSTRACT. We consider finite volume relaxation schemes for multidimensional
scalar conservation laws. These schemes are constructed by appropriate dis-
cretization of a relaxation system and it is shown to converge to the entropy
solution of the conservation law with a rate of h*/4 in L>([0,T], L}, .(R9)).

1. INTRODUCTION

In this paper we consider a class of finite volume schemes approximating the
scalar multidimensional conservation law, whose construction is motivated by dis-
cretizing the relaxation system

d
1
(1.1) dpw® +div Aw® = = Y Gi(wf, %), z € RY,
€ =1
1
(1.2) 0;zf +div Bz = gGi(wE,zf), i=1,...,d, zeR?

in variables (w, Z) with Z = (z1,...,24). The constant vectors A, B;,1 =1,...,d
and the smooth functions G; : R x R — R satisfy certain structural assumptions,
cf. Section 2. The system (1.1-1.2) is considered with initial data w®(z,0) =
w§(x), Z¢(z,0) = Z§5(x), = € Re. Contractive relaxation systems of the form (1.1-
1.2) were introduced and analyzed in Katsoulakis and Tzavaras [KT1], and it was
shown under certain assumptions that as & — 0 their solution is associated to the
unique entropy solution of the conservation law,

(1.3)
du+divF(u) =0, zeRLt>0, wu(z,0)=uo(z)e LI(RY)NL®RY.

Here, for a given conservation law (1.3), we appropriately select A, B;,i =
1,...,d and the functions G;, and we discretize (1.1-1.2) by semidisctere and
fully discrete finite volume schemes. The approximations emanating from these

schemes are shown to converge to the entropy solution of (1.3) with a rate of hl/4
in L>([0, 7], Lioe(R)) -
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2. PRELIMINARIES—RELAXATION SCHEMES

We assume that for a given conservation law (1.3) we select the vectors A, B;,1 =
.,d, and the functions G; such that,

(A1) G, (-, z;) is strictly decreasing in w for fixed z;,

G;(w,-) is strictly decreasing in z; for fixed w,
and that there exist functions h; : R — R,
h; strictly decreasing, h;(0) =0, lm h;(w)=

Foo,
(A.2) ke
Gi(w, hz(w)) =0, Gi(o, 0) =0, wekR

Given R*? = [a, ] x HZ 11hi(D), hi(a)], there exists a o = o(a,b) > 0 such that
(A3) |Gi(w, Zz)‘ > 0‘|hz(’w) — Zi| for (w, Z) € Ra’b,
and finally, if F is the flux of the conservation law (1.3), h; should satisfy

d
(A.4) = A(v) - ZB ), n=v—-> hv), veR
i=1

Note that as a consequence of (A.1-A.3) there hold
(hi(w) — 2;)Gi(w, 2;) > 0,
|Gi(w, 2;)| < o'|hs(w) — 2| for (w, Z) € R*®, where ¢’ = o'(a,b) > 0.

Lemma 4.1 of [KT1] shows that it is indeed possible to construct such functions,
e.g., when A = (wi1Vi,...,wqVy), Vi > O,w; > 0, B; = (0,...,—V;,...,0), and
Gi(w, z;) = hi(w) — z;, and V;,w; are chosen to satisfy certain subcharacteristic
conditions, cf. [KT1], [CLL] and [JX]. In this case and for d = 1, the relaxation
system (1.1) is equivalent to the one proposed by Jin and Xin [JX] and analyzed
by Natalini [N1]. The convergence properties of (1.1) for d > 1 were investigated
in [KT1]. In [N2] an alternative relaxation system was proposed and analyzed.

Assumptions (A.2) and (A.4) provide a (formal) reasoning on the relationship of
(1.1-1.2) and (1.3). Indeed (1.1-1.2) imply that

d d
(2.1) 0 (w® —sz)—l—div (Awe——ZBizf> =0.
i=1 i=1

As ¢ — 0 we expect that the local equilibrium, z; = h;(w), ¢ = 1,...,d, will be
enforced and therefore, in view of (A.4), the limiting dynamics of the relaxation
system will be described by the weak solutions of (1.3), c¢f. [KT1]. For small ¢,
we — Zle z¢ will provide an approximation to the solution u of (1.3). Based on this
observation one can construct approximating schemes to (1.3) by discretizing the
relaxation system. The corresponding schemes are then called relaxation schemes.

Finite difference relaxation schemes were presented in a systematic way by Jin
and Xin [JX]. Finite difference relaxation schemes based on the system (1.1) were
proposed and analyzed in [KKM]. It was shown that these schemes converge to
the entropy solution of the multidimensional conservation law with a rate of h'/?
in L>([0,T], L} (R%)). Error estimates of difference schemes to relaxation models
arising in chromatography were proved in [ScTW], [ShTW]. The convergence of
finite volume schemes approximating the entropy solution of (1.3) was analyzed,

(A.3))
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e.g., in [CCL], [KR], [V]. In a recent paper Rohde [R], using an appropriate ex-
tension of DiPerna’s theory, has proved convergence of finite volume schemes to
weakly coupled hyperbolic systems.

Space discretization.  Let Tj, be a decomposition of R? into nonoverlapping,
nonempty and open polyhedra such that | J KeT, K =R%. The set of faces of K is
denoted by 0K and, on each face e on K, v, i € R? represents the outward unit
normal to the face e. I'j, will denote the set of all faces of the decomposition 7.
Given a face e of K, K. denotes the unique polyhedron that shares the face e with
K. The volume of K is denoted by |K| and the (d — 1)-measure of e by |e|. Let
hg be the diameter of the polyhedron K and let h = supg.p, hx < 1. We shall

assume that our decomposition is regular, i.e., if px is the diameter of the largest
ball B, B C K,

hKS’YPK, KE,]'}H

with a constant v independent of k. In particular this implies that if e is a face of K,
then |e] and hg are comparable. We define the finite volume scheme approximating
(1.1),(1.2) as follows. We seek a piecewise constant function (wp, Z), wi|x = wrk,

Zp = (Zl,}u e Zd,h)a Zi,h|K = z; K, such that

T
Orwi + Z |K| 9" (Wi, wg,) = - ZGi(wK,Zi,K),

(2.2) ee@K =t

1 )
(9152’1}( -+ Z K gz zz,K,Zi,Ke) = ~Gi(wK,zi,K), i=1,. ..,d, K e '.Th,
e€cOK l | €
where g,g; : RxR — R, i = 1,...,d, are discrete monotone fluxes. For initial

approximations we take wx (0) = |71<—l Jx wldz and z; k(0) = |71<—| [x 22dx. Although
g%, gX correspond to linear fluxes, it is convenient in the analysis to list their
properties as in the general (nonlinear) case. We explicitly use, when it is needed,
the linearity, cf. (2.6). The discrete fluxes are assumed to satisfy:

(2.3)

g5 (u,v) = —g%(,u) , g% (u,v) = —gFe(v,u) Conservation Property,
(2.4)

g5 (u,u) = A(u) - Ve, 95 (u,u) = Bi(u) - vex Consistency Property,
(2.5)

K g.K K

8gu , 8;; >0, 0571; , agz <0 Monotonicity Property,

(2.6)

g% (u,v), g5 (u,v) are linear functions of u,v.

Time discretization. Let & be the time step and ¢ = nd. Then an appropriate fully
discrete version of (2.2) follows. We seek a piecewise constant function (wp, s, Za,s),

Whslgxppmntt) = Why Zns = (ZLhby- 1 2dh8)s ZihslKxinm+l) = Zik,
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such that,
(2.7)
d
n+l _ . n i K¢, n n 5_ Q. n+1l _n+1
Wy~ = Wk lelg™ (wi, wik,) + Z (W 123 K )s
i | e€OK € i=1
n+l _ _n 5 K/_n n 5G n+1 _n+1 =1 d
2K T ALK T |”“| Z le|g; (zi,K>zi,Ke)+E Z(wK y %5 K ), i=1,...,d,
e€cOK

with initial approximations w9 = |—1K—\ [ wo(z) dz, and z?)K = |71<T Sy zio(x) dz,i =
1,...,d.

The stability and convergence properties of the semidiscrete scheme are inves-
tigated in the next sections. We prove that under standard assumptions on the
initial data, for any R > 0, T' > 0, there is a constant C = C(R,T) such that

[u(yt) = Un(y )l niio.ry < CRYY, ¢ < T,

where U, = wh—Zle hi(wp,), cf. Theorem 4.1. Here B(0, R) is the ball with center
0 and radius R. In the case of fully discrete approximations a similar estimate holds
true, provided that appropriate CFL conditions are valid, cf. Theorem 5.1.

A main advantage of relaxation schemes, is the simplicity of their construction
coming from the fact that the principal part of (1.1-1.2) is linear, and therefore
there is no need to solve local Riemann problems. Thus high order and adaptive
schemes can be easily formulated. Issues related to the numerical implementation
and the performance of finite volume relaxation schemes are addressed in [KZ].

Error estimates of order O(h!/4) for finite volume approximations to (1.3) were
previously obtained in [CCL], [V], and for finite elements in [CG1]. For finite
difference approximations the order of convergence O(hl/ %) was established, e.g.,
in [Kz], [S]. The main reason for the reduced order of convergence in the finite
volume case is the lack of BV bounds for the approximate schemes in unstructured
meshes. To compensate for this, an estimate for the discrete gradients in L2 was
proved in [CCL], [V], which led to the O(h!/*) estimate. In the case of relaxation
schemes considered here we are able to prove an analogous bound, cf. Lemma 3.3.
In addition for the relaxation schemes, again due to the lack of BV bounds, an
estimate for the distance from the equilibrium in L? turns out to be crucial, cf.
Lemma 3.4. It is to be noted that Lemma 3.3 provides a rigorous proof of the
dissipative character of relaxation schemes (in the finite volume as well as in the
finite difference setting), compare with [JX].

Our analysis is based on an approximation lemma for deriving error estimates
for numerical approximations to conservation law (1.3), ¢f. Lemma 4.1. This is a
result obtained in [KKM] and extends a result of Bouchut and Perthame [BP] to
the case of numerical schemes. The use of this lemma in the (complicated) case of
finite volume approximations considered in this paper avoids much of the technical
work needed if one applies the original approach of doubling the variables, [Kr],
[Kz], as in [CCL], [V]. Indeed, the analysis in [CCL], [V] is considerably simplified
if one uses Lemma 4.1 along the lines of the analysis presented in Section 4, cf.
also [GM]. As noted first in [CG2], the classical approach of Kuznetsov is an “a
posteriori” approach. This can be seen directly in the framework considered in this
paper, simply by observing that the E-terms in the bound (4.5) depend only on
the approximate solution up. Indeed, by applying a more refined analysis, explicit
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a posteriori error bounds suitable for adaptive mesh refinement based on Lemma
4.1 are proposed in [GM] for finite difference and finite volume approximations to
(1.3), cf. also [CGal.

An alternative “a priori” approach for deriving error estimates, which does not
rely on the regularity properties of the schemes, was proposed and extensively an-
alyzed in [CG2], [CG3] for finite difference and in [CGY] for finite volume schemes.
To carry out the program proposed in [CG1] one has to show an appropriate “dis-
crete” stability for the scheme considered, a task considerably more complicated
than the “continuous” stability used in the proof of Lemma 4.1. Cockburn, Gre-
maud and Yang in [CGY] were able to prove h!/? estimates by using this approach
for a special class of monotone finite volume schemes in symmetric (or nearly sym-
metric) non-Cartesian meshes, cf. [CGY, Sections 2.a, b] for explicit assumptions.

The paper is organized as follows. In Section 3 we prove the necessary stability
properties for schemes. We then use these properties in Section 4 to prove con-
vergence. In particular the relaxation schemes satisfy a basic comparison principle
(Lemma 3.1) which then implies the L' contraction property (Lemma 3.2), the fact
that R%? is a positively invariant region for the schemes and as consequence that
the approximations are uniformly bounded in L*° (Lemma 3.2}, and the discrete
entropy inequalities (3.8). Using the invariance of R%® we are then able to show
the weak dissipation estimates (Lemma 3.3) and the estimate for the distance from
equilibrium (Lemma 3.4) mentioned above. In the convergence proof of Section 4
we first use the discrete entropy to prove the basic error inequality (4.15) which

then allows us to apply Lemma 4.1. To estimate then the E-terms of (4.5) we use
Lemmata 3.3 and 3.4.

3. STABILITY ESTIMATES

We first prove a comparison principle which implies several useful properties of
the scheme. We start by introducing some notation. For a,b € R we set a Vb =
max{a,b} and a A b = min{a,b}. Further, for a given function f we denote by
fT,f~ the positive and negative parts of f, respectively, and x>0 stands for the

characteristic function of the set {(z,t) : f(z,t) > 0}, that is x50 = 1if f > 0
and zero if f <0.

Lemma 3.1. Assume that G;(-,-),i = 1,...,d, satisfy assumptions (A.1-A.3). Let

(wh, Z1) and (W, Zy) be two solutions of (2.2) that vanish outside a ball By of
radius M. Then we have

(3.1)

ﬁt{(wK —wg)t+ i(zi K — 5¢,K)_}

+ Z X’UJK wK>0{gK(wK V Wk, Wk, V@Ke)
eeaK

— gK(wK NWg,Wg, N\ IT)KE)}

K _ _
+ Z Z le K—Zi, K<0{9¢ (Zi,K V Zi K, Zi K, V Zi,Ke)
i=1 ee@K :

— g5z kA Zii, 2 N Z’,KG)} <0.
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Proof. Let (wp, Z1,) and (W, Z1,) be two solutions of (2.2). Then we have

(i —Dr) + Y %{QK(WK,WKE)—QK(WK@KJ}
e€OK

d
= % Z {Gi(wK7 2 k) — Gi(Wk, Zi,K)}
1=1

_ e s
Bulzix — Zik) + %{%’K(zi,K72i,K5) - gz'K(Zi,KaZi,Ke)}
e€COK

! Gi(wk, zi k) — Gi(Wk, Zi, k) ¢
€

Using the fact that fT = xssof,f~ = —Xys<of multiplying the first equation
by Xwx—wx>0, and the second by —Xz; x 2 x <o summing over ¢ and adding the
resulting equations, we get by using the monotonicity assumptions on G;

(3.2)

6t{(wK —wg)" + i(zi,K - Zi,K)—}

i=1
e _
3 oo | e i) = o )|
ecOK

d
lel o
- ‘—Iﬂx;:i,x—zi,x<o[gf((zi,mZz‘,Ke)—gf{(zi,K,Zi,Ke)] <0.
i=1e€OK

Let

Ty = _wa—ﬁzx>0[gK(wKawKe) - gK('wK»wKe)]’

and

T = Xow -5 <0195 (21,5, 21.k.) — 95 (i k0 7))
Then we have the following.

(a) For wy —wg > 0, we have that wx = wg Vi and Wk = wrg AWk; otherwise
T., = 0. Then, using (2.5) we have

(

3.3)
Ty < ~Xox—0x>0{9% (W V W, wi, VOk,) — ¢~ (wg AWk, wg, NDK,)}.

(b) Similarly, for 2; g —Z;,k < 0 (otherwise 7, = 0) we have that z; x = 2i, Kk N\Zi K
and z; g = 2,k V Z k. Now, (2.5) implies

(3.4)
T, < ~Xos —rinc<ol0t (zix V Zik, 2k, V ZiK.) — 95 (2i,x N2k, 2ok, NZiK.) Y-
Therefore, (3.2),(3.3) and (3.4) yield (3.1). O

Next, we show that the scheme is L! contractive and bounded in L.
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Lemma 3.2. Under the assumptions of Lemma 3.1 we have

Jwn () — Tt annzzh )~ Zia (e, 0)

< Nwn(r) = Wh(T) | 12 + 2 lzin(T) = Zin(T)llr, 0<7T <t

(ii) If, for some a < b, we have a < wg(0) < b, h;(b) < z;,k(0) < hi(a), i =
., d, K €Ty, then

aéwK(t) Sb, hz(b) Szi,K(t) Shi(a)v Ke,]—ha 7;:17"'7d,

i.e., the region R%® = [a,b] x Hl 11hi(b), hi(a)] is positively invariant.

Proof. (i) Relation (3.1) implies

d
5t{|wK — Wi+ Z |2i,k — Zi,K‘}

(3.5) + Z Klwk — Wk, lwk, — @Kk, |)
e€8K
+Z Z Fzix — Zixl |2k, — Zixc]) <0
i=1 eG@K

Multiplying by |K| and then summing w.r. to K € 7, we get (i) by noticing that
in each edge of our partition,
Flwg — wkl, lwk, — oK. |) + g% (lwk, — ok, |, lwk — wK]) =0

and a similar relation for the z; x terms.
For the proof of (ii), we first observe that

K _ _
Xwy—wx>09" (Wk — Wk, Wk, — WK, )

> g% (wg — o)™, (wg, —wk,)"),

— Xevx—70xc <008 (Zi,K — Zi K 2 K, — ZiK.)
> =g ((zi, = Z1,6) 7 (i, = Zi,) )
Indeed, by the monotonicity properties of g%, if Xw,—wx>0 = 1,

XwK—zDK>OgK(wK - Wk, Wk, — Wk,) = gK((’wK —wg)", (wk, — wk,))
> g% ((wik — wr) ", (wk, — Wk,)

in the case where Xu,—w,>0 = 0 it suffices to show ¢* (0, (wk, — Wk, )*) < 0.
But this is a consequence of (2.3), (2.4) and the fact that (wx, — Wk, )™ > 0. The
corresponding relation for z; k is proved similarly.

Using now these relations, the fact that g% ((wx — wk)", (WK, — Wk,)") +
g% (wg, — wk,) ", (wx —wx)T) = 0, and the corresponding relation for z; x we
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obtain in view of (3.2),

> |K|[wK +sz )= Zx ()" ]

KeTy,

(3.6) < > I [(w(O) — B () + 3 (20 (0) ~ 7k (0)]

Then, (ii) follows by noticing that wx = b, Z; k = h;(b) is a solution of the semidis-
crete scheme, since Y, o l€|g% (a,a) =0 and 3, o lelgh (hi(b), hs(b)) = 0. O

Discrete entropy inequality. Lemma 3.1 implies a discrete entropy inequality.
Indeed (3.1) is still valid if we interchange + and —. For any £ € R, we let wg =
&%k =hi(§), i=1,...,d, and setting, for u,v € R

DE(u,v) = gX(uVvEuve) — g (unéung) =g"(lu—¢llv—¢l),
37 Def(u,v) =g (wV hi(€),vV hi(€)) — gl (u A hi(€),v ARy (£))
= g5 (Ju = hi(&)), [v = hi©)))

we get after summation using (3.1) the following discrete entropy inequality

d
O{lwic — €+l — hi()l}
=1

(3.8)

Remark 3.1. Notice that for Dg{ we have, for u € R,
D (u,u) =lu—€|A-vex and D™ (u,u) = |u— hi(&)|Bi - vex -

Dissipation estimate. The next lemma provides an estimate for the distance from
the equilibrium z; = h;(w) for our approximating scheme and a weak dissipation
estimate for wx and z; k. A stronger estimate for the distance from the equilibrium
is proved in Lemma 3.4. This result compensates for the lack of BV estimates for
our schemes (compare with [CCL], [V]) in the proof of the convergence result in
Section 4. We need some more notation: Let hi_1 denote the inverse of h;, and

Wi(2) = —/Oz h (e de |

cf., [KT1]. The functions ¥,, i =1,...,d, are positive and strictly convex according
to our assumptions on h;, cf. Section 2. In particular (A.2) implies that there exists
w = u(a,b) > 0 such that

(3.9) U (2) > u>0, z € [hi(b), hi(a)].
Our assumptions on the fluxes imply that
A v,
g (u,v) = = (w+v) + oy (u =),
(3.10) B
9 (u,0) = 525 (wt 0) + b, (u—0),
where a. = a,, , = @y, > 0and b} := b, , = b, . > 0. (25) implies

LA ve k| < aecand $|B; - ve k| < b
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Remark 3.2. Most of the well-known monotone fluxes are reduced to the linear
case, e.g., for g% (u,v) to

A-v, A v
g (u,v) = —2’I£(u +v) + ‘—;—’—Iﬂ(u — ).
We now have
Lemma 3.3. Assume that the initial conditions satisfy (w9, Z9) € R¥® for some

a,b € R. Then if 0 = o(a,b) and p = u(a,b) are the constants of (A. ) and (3.9),
respectively, there holds

/ S KIS (hsla) = 100)°

0 ke, i=1
/Zl6|{aewK W, ) +,u2b ZiKk — le)}
ecl'y,
< ¥ wifleir S ucto) <o
KeTy,

where a., bl are as defined in (3.10).

Proof. First we notice that (2.4) implies

> Jelg" (wie, wie) =0, Y lelgl (zixc, 2i6) =0 .

ecdK ecOK

We then multiply (2.2a) by wg and (2.2b) by h; !(2; k), sum over i and subtract
the resulting equations. Next, if we multiply by |K| and sum, we finally obtain

(3.11)

> |K|at{ wK—i—Z\I! Zi K }+a— > |K|}: — 2, x)*

KeT, i=1 KeTy, i=1

+ Z |e|{ngK(wK,wKe) + wg, g% (wKe»wK)}
EGF)

_Z > |e|{ (z.0) [0F (zires 20,k.) = 97 (21,165 2, 16)

i=1 e€l'y

B ) [0 (o 22k) — gKe(zi,Ke,zi,Ke)]} <0,

where we have used that —(w — h; *(2))Gi(w, z;) > o(hi(w) — 2)?, cf. (A.1-A.3),
(A.3"). We will first estimate the terms corresponding to w-fluxes. Using (3.10) we
get

> |e|{ngK(wK,wKe) +wi, g™ (wKe>wK)} =) lelac(wx —wg,)?,
ecly, eel'y
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since

1 1 1
Y lelg A vecwh —wh) = 3 el {5A- vewwk + 34 vercuk. |
ecl'y eecl'y,

= Z Z |e|%A-ve,Kw§(:O.

KeT, ecOK

For the z fluxes of (3.11), using (3.10) for g (2; k, 2i, k. ), we first write
— hi M(2ix) [giK(Zi,Kazi,Ke) — 95 (2,1, 21,K)]

1 ,
=U'(z k) [531‘ Ve, i — o) (zi k. — 2i,K),

where, as before, b, = b, , =10}, . . By (2.5) 1B; - ve kx — b <0, and hence using
Taylor’s formula and (3.9), ¥(c1)(c2 — ¢1) < ¥(ca) = ¥(cr) — (e — c2)?, we get

— b Mz, k) [9F (ziks 2ik.) — 91 (20,55 20,1)]

1 .
> [§Bi Ve, = be) (Wilzi ke, ) — Wilzi k)
1 ]
+ 5plbe = 5B ver ) (zi,x — 21.k.)*

Similarly,
— b M2k ) [0 (i, 2ik) — 90 (20, k00 2K

1 ‘
> [§Bi ek, — be) (Wilzi, k) — Yilzi,k.))
1

1
+ 5#[52 — 5B vek.) (i — 2iKk.)? -

But then

> |€|{[%Bz‘ Ve — b (Wilzik,) — Vilzi k)

ecly
1 )
+ [y Be Ve, — W) (Wiline) = Wil |

= > B vk (¥i(zik.) — Yilzix))

ecl'y,

=- Z |€|{Bi Ve, kVi(2i, k) + Bi - Ve,Ke‘I’i(Zi,Ke)}

ecly

= — Z Z Ie‘Bz . I/e’K\Ifi(Zi’K) =0.

KeT, ecOK

Therefore,

-y lel{hfl(zi,K)[gf{(zi,K,Zz‘,Ke) — 9 (21, 2i, i)

ecly
+ b k) (05 (2 ke, 2ik) — 91 (Zi,Ke,Zi,Ke)]}

> > lelubl(zix — zix.)"

eclp
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In view of these estimates (3.11) implies

> |K|8t{1wK+§:\I/ (25,5 }—i—a— > |K|Z K) — 2 k)

(3'12) KeT, ;(GTh i=1
+ 3 lelac(wi —wie,)* + 3 37 Jelubl(zix — 2zi,x.)2 <0,
ecl'y, i=1e€l'y,
and the proof is complete. O

Distance from equilibrium. Next, we estimate
wp 3 IK| L (Gitwk (07 O
KeTy,

Lemma 3.4. Let (wp, Z) be a solution of the semidiscrete scheme emanating from

data with finite total variation and lying in an (invariant) region R*®. Assume
further that

d
(3.13) DK G (wk (0), 21,k (0))* < Ce.

KeT, i=1

Then, for any 1 > n > 0 there exists a constant Cp, =C(n,a,b) such that
sup Z |K|Z|G (wr (t), 2, k)]* < Cpe’, withe =&,

KeT,
Proof. Using the definition of the scheme, we have

d
8, Gi(wi(t), 2,k (t)) { > l';” (wk, wi,) +§ZGJ )s 2K (t))}
j=1

e€0K

{ Z IIIefllgz le,zzK)+§Gi(wK(t)’zi»K(t))}'

e€OK
Multiplying by G;(wk, z; k) = G; and adding, we obtain

1 1 0G;
§at;|ci(wx,zi,;<)|2+g‘;( ) |Gilwie, 2.k

1 oG 4
= g; 8w wK,zzK ]Z::lG] WK, 25 K
d
+Z (88?02 [_ ll‘;{l' (’U)K,’LUK ) gK(wKawK))]
i=1 e€OK

+ a((g [ Z [’Ie(’l(gz (21, 2 K,) — giK(zZ-’K,zi’K))]) )

e€OK
Observe now that (A.2) implies that —%G;—’ > ¢ = ci(a,b) > 0 in R*®. Also,
195 (Wi, wr,) — g% (wk, wi)| < ae|lwx — wg,|. Therefore, if ¢ < Chy, K € Tj,
there exists a constant ¢y = co(a, b) > 0, such that

(B14) & Y KD |Gilw zex)P + 2 Y KD Gilwic, 22,60 < CA,

KeT, 1 KGTh 7



544 THEODOROS KATSAOUNIS AND CHARALAMBOS MAKRIDAKIS

where
=02 Y IK Z — 2ik)?
(3.14a) G ,
+ 3 lelac(wi —wk, )+ ) Y lelubi(zix — zix.)?
ecly, i=1e€ly,

and Lemma 3.3 implies that, for any ¢ > 0, fo s)ds < C. By (3.14) and our
assumption on the initial data, we have

SOOI Gi(wk (1), 2k (D)1

KeTy, i
<e %QtE\K|Z|G wie (0), 2,k (0 \2+0/ L9 A(s)
KeTy

< Ce+ C’/ e” T3 A(s)ds .
0

Let 1 > n > 0 be an arbitrarily small number and ¢ = gt~". The proof of the
lemma will be complete if we show

t
(3.15) / e” 29 A(s)ds < Cye’ .
0

. _c0 . . .
Since Le~ =7 is bounded for € — 0, we have, in view of Lemma 3.3
€ ) ) )

t—e' e t—e’ 1 . t—g’
/ e~ T t=9) A(s)ds < s/ ge_?%A(s)ds <ce A(s)ds < ce.
0 0 0
On the other hand, for N, = [e7"] + 1,

t t Ne
(3.16) / e~ T A(s)ds < / A(s)ds < Z
t—e’ t—Nee

m=1

Then using (3.12), we obtain
t—(m—1)e
/ A(s)ds
t

—me

<Y |K|{lw%<<t —me) - whe(t — (m— V)|

KeTy

d
Y et~ me)) ~ Wil — (- D)
(3.17) o
<o) Y 1 uxlt—me) —wiclt = (m~ o)
KeTy,
d
-+ Z |Z¢,K(t - me) — Zi)K(t - (m - 1)€)l}

i=1

< C'(a,b) Z |K|{le( |+Z|22K _Zi,K(0)|}'

KeT),
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Here we also used that (wp, Zp) € R*® and the L' contraction property (Lemma
3.2 (1)) for (@Wr("), Zn(")) = (wn(- +¢€), Zn(- + E)) Let us assume that

(3.18) Z |Kl{|wK(€ |+Z|zzK —Zi,K(0)|} < Ce.

KeTy,
Then, (3.16), (3.17) and (3.18) imply

t
/ e~ 2(=9) A(s)ds < CN.e = O[] + 1)e < C&',
t—e’

and the proof of (3.15) (and therefore of Lemma 3.4) will be complete. Hence it
remains to verify (3.18). To this end let 0 < 7 < e. Then, by (2.2), we see that

d
I r(r) = i O] + 3 () - 2 (O]

<C/ 2|€| |wK wKi'l'Zile ZzKi

e€OK

+ - ZIKHG (wic, 210)])ds

i=1
We estimate the terms of the right-hand side as follows:

|Gi(wk (5), 2,k ()] < |Gi(wr(0), 2i, 1 (0))]
+ C(a,b)(Jwk () — wi (0)] + [2:,x(s) — 2,k (0)])
and
lwi (s) — wk, (s)] < lwg (0) — wr, (0)| + |wk (s) — wk (0)] + [wk, (s) — wk, (0)]-

Therefore in view of the stability of the local L? projection in BV, cf. [C], and our

assumptions on the initial data, we have upon summing over K and using again
the fact that ¢ < Chg, K € Ty,

> 1K lwi(r) = wic(0) \+Z|Z1K<T (0]}

KeTy,

<COr+ - / Z|Kl{|wK — w0 |+Z|zm zi,K(0)|}ds.

KeTy
Then, since 7 < &, Gronwall’s lemma implies

d
S K {Jwr(r) = wic @) + 3 20 () = 20 (0)] } < CeF T < Ce.

KeTy, i=1

The proof is thus complete. O

4. CONVERGENCE

Qur convergence results will be based on the following approximation lemma
[KKM], which provides a compact form for deriving error estimates for numerical
approximations to conservation law (1.3). Lemma 4.1 is an extension of a result
of Bouchut and Perthame [BP], and allows the explicit treatment of terms that
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typically arise in numerical schemes. See also [EG] for a result providing estimates
in the space-time L' norm.

Lemma 4.1 ([KKM)). Let up,u € LS. ([0,00), L, (R?)) be right continuous in t,

loc loc
with values in Li (R?). Assume that u is the entropy solution of a given conser-

vation law, i.e., it satisfies (1.3) and
(4.1)
d
Oelu— K[+ 0, [(Fi(u) — Fi(k))sgn(u— k)] <0, inD', for allk €R,
i=1
with initial value uv° € BV(RY). Let ¥ be a nonnegative test function, ¥ €

C((0,00) x R%), and assume that uj, with initial value u, satisfies

- / / (Jun — k10T + sgu(u, — k)[F(un) — F(k)] - Vo ¥)dtda
(0,00) x R4

(4.2) i (9% i gi (9%
/- (el + 3 ol + 3 BBl (5, )dade
’ J J
for all k € R,

where F = (Fy,..., Fy) and ag, a}{, Ba, /8}‘{, are nonnegative k-independent func-
tions in LL ([0,00) x R?) and ag, Bg € L ([0,00), L (RY)).

loc
Let A >0 and S, = {S} be a given decomposition of [0,00) x R?, into elements
S, such that

4.3) diam(S;) <A, if 3%, is not identically zero for some j, j =1,...,d,
H

where Sy = {z : (t,z) € S}. In addition, the k-independent operators B;{ satisfy

(4.4) |B%I(@)(t,x)| < C sup I@(t,x')l , forall (t,z) € S,1<14,j<d.
8xj ' €S, (9CC]‘

Here C is a uniform constant independent of ¥ and the element decomposition S,.
Then the following estimate holds. For any T > 0, xo € R% R >0, v >0, with
M = Lip(F), we have:

(4.5)
/ lun (T, ) — u(T, z)|de
|z—zo|<R

< / lun (0, ) — u(0,z)|dz + (M A + A)TV (u°) + C(E® + E¥ + EF).
Bo
Here

d
1 .
EH = 2 E // o’y (¢, z)dzdt,
A = 0<t<T 2€B; i

d
- 1 .
EH = — E // B2 (t, z)dzdt,
A i=1 0<t<T z€Bf H( )

T MT
EC =1+ / t,x)d
(1+ A + A—!—l/)ogszlgpzT B ac(tz)dw

and By = B(zg, R+ M(T —t) + A +v), B® = B(zo, R+ M(T —t) + 2A +v).
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Remark 4.1. The terms Bf;{, 6}'{,]‘ =1,...,d,in (4.2), (4.4) can be replaced by one
term Bp,Sy. In this case (4.4) will be

1B (V2 ¥ (t,2))| < C sup [V, ¥(t, )],
€S}

and E¥ will be modified accordingly.

We will use Lemma 4.1 to prove our convergence results. We introduce notation
that will be used along with some preliminary results. In particular, for any k € R
we define £ € R such that

and we set

d d
Un =wp—» hi(wp) ie, Uk =wk — Y hi(wg), K €Tj,.

i=1 i=1

Then Ug — k = [wg — £] — Zle[hi(wK) — hi(§)], and, since we assumed that the
functions h;,7 =1,...,d, are decreasing, we get

d
Uk ~ k| = fwi — €[+ > |hi(wi) = hi(£)],

i=1

ie.,

(4.6)

d d
. 1
Use = bl = e = €1+ oo = ha(©) + T with [Jic| < — 3 [Gawie, 260

i=1 i=1

In view of (A.4) we have F(Uk) = A(wg) — Z;‘i:l Bi(hi(wk)). Hence

[F(UK) - F(k)} sen(Uy — k)

(4.7) d
= { A400) = 401 = S 1B (i) - B s ~ )
i=1
Now for wx — & > 0, we have by (A.2), h;(wgk) — hi(§) < 0, hence,
d
sgnf(wi =€) = Y (ha(wi) — hs(€))] > 0.
i=1

So, by (4.7) we get

d
@) [P - F(k)] sen(Us — k) = g — 14+ 3" [ha(wie) — hi(€)]B;.

=1



548 THEODOROS KATSAOUNIS AND CHARALAMBOS MAKRIDAKIS

Similarly, (4.7a) holds if wx — & < 0. Therefore,

d
[ 0) = P sen(Uic = ) = = €14+ 3 e = RE)B + i

(4.8) i:;

with |Hg| < Z |hi(wk) = zi.x || Bil -

i=1

Now we are ready to prove

Theorem 4.1. Let u be the entropy solution of the conservation law (1.3) with
initial data uo € BV (R?) N L= (RY). For Uy = wy — S5y hi(wy), where (wn, Zp)
is the solution of the semidiscrete finite volume scheme (2.2), assume that the as-
sumptions of Lemma 3.4 hold and for some 1 >n >0, el=m < Ch. Then, for any
time t < T and R > 0, there exists a constant C = (R + MT)¥4T"/2c(a,b) such
that the following error estimate holds

lu(-,t) = Un( D)l 21 so.my) < ChY A+ [[ul-,0) = Un(-,0) 1 -
If in addition ||uo — (w§ — Y0, hi(w§))|| 12 < Ce, then
(-, ) = Un( )| 1(Bio.r)) < CRM*.

Proof. To apply Lemma 4.1 we consider a nonnegative test function ¥ with compact
support, supp ¥ = 2. We also set

Vi :=|Ux —k| and Vg = [F({Uk)— F(k)lsgn(Uk — k).

Then, we would like to estimate the following quantity

(4.9) E = ——/ Z / [VK\I!t +Vrk- Vm‘If]dx dt =1 —(E1 + Es).
KeTy, K

For the first term, we have

E1=/ Z / VK\I/tdxdtzf Z VK/ U, dz dt
K K

(4.10) e KeTh
= Z /VK\iff{dt where \TJK:/ W, dt.
KeTy, K

For the second term we have,

E2=/ 2 VF)K/sz\defl?dt: 2 2 VF,K‘Ve,K/\Ddet

(411) KeTy, KeT, ecOK
=/ Z(VF,K‘Ve,K+VF,Ke‘Ve,Ke)\i’edt where \i’EZ/\I’dS.
ecl'y e

Now (4.8) and (3.7) (cf. Remark 3.1) imply

d
Vini - Vex = DE (wic,wi) + Y D™ (zi,x0, 2i,x) + Hic - vesc -
i=1
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Combining (4.9), (4.10) and (4.11) we have

Z/ lwi — §|+Z|ZU< }‘I’f{dt

KeT,

_Z/ DE wK,wK)-I-D “(wk,,wk,)]

ecly
(4.12) )

+ Z[Di’K Zi K, %K) T Di’Ke (#i,K.» Zi,KE)]}\i’e dt

- Z /JK\IJKdt-l—/HK /v \Ild:cdt

KeT,

There holds ), .55 |e|D§<(wK,wK) =0and > 5k |e|Dé’K(z¢’K,zi7K) =0,1i=

., d. Thus, if we multiply the discrete entropy inequality (3.8) by ¥X and sum
for all K € 7, and get

- > /{le §|+lelx I}\Tlf{dt

(4.13) et )
+ > /Iel{ (FE + FEY 43 (FE 4 FEe }dtgo,
ecly i=1
where
1 _
K K K
‘Fw |Kl[D5 (’LUK,’LUK) Dg (wKﬂUK)]\II )
1

fzIf IKI[DZK(Zi,K7zi,Ke) _DE’K(Zi,K7Zi,K)]®K 5

and FKe fsz e are defined by the same formulas with K and K. interchanged. In
view of (4.13), we see that (4.12) implies

E<-> /|e|{ (FE 4 FKey 4 Z(fgf +f§§e)}dt

ecl'y, =1
_ Z /{DE wK,wK) +D§ (’LUK , WK, )}\De dt
ecl'y
(4.14) ) |
Z /{Z Dl’ (%55 2i,x) + DE’KG (Zi,KeaZi,Ke)]}‘i’e dt
ecly =1

= / JK®§<+HK./ vw\pdaz) dt.
K

KeTy,
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Now for the w-terms in (4.14) we have, using the properties of the discrete fluxes,

|Ifi'}|{D§ (Wi, wi, ) — Dé{(wl{,wl{)}‘i’K

€ _
- l—}K!{D?e(WKE:wK) —D?E(wKe,wKe)}‘I’Ke

- {D?(w;{,w;{) + Dé{e (wKe,wKe)}\ile

+ {D?(wK,wKE) + D?e(wKE,wK)}\i'e

= {D?(wz{,wz{e) - D?(WK,wK)}{\ile _ \]]il|\pK}

+ {D?%wKe,wK) - DI (e ) H{ 9~ }j‘elw}
¢

K

lel g
K]

A similar inequality holds true for the z-terms in (4.14). Hence, summing back to
the elements K,

\\IIK\+Cae|wK W, |

E< Z Z /{aele Wk, I+Zb \ZzK Zi K, \} e lel Idt
Tk
(415) KeT, ecOK
- / (T + Hic / V. Wdz) dt
KeT), K
To adjust to the notation of Lemma 4.1, let S, = {SX}, S¥ = [ +00) x K),

K € T, be a partition of [0,+00) x R%. Then, for any ¢ > 0, (S¥),
Further, we set

By (V,¥) SK(x 1) = ]Kl le|¥(z,t) — \I/e(t)].
Then, since x € K, we have
(4.16)
1 I/ €
IK‘ le|U(z,t) — W (t)‘ IKI le|U(x,t) — /e\I/(S,t) dS)
|K|ChK]e| sup Vo (z',t) < C sup V(' t)],

i.e., (4.4) is satisfied.
In view of (4.15), U, satisfies (4.2) with S, = {S¥}, K € 7}, as above, and

aH|5K21HK1 aG‘sKZlJKI7

ﬂH\ =C > {aele Wk, |—|—Zb |2i,c — 2.k, |}-

e€OK

(4.17)

Next, we will estimate the terms on the right-hand side of (4.5) in our case for
v=0,A = A" and uj, = Up,. The only nonzero E-terms are Ef, E¢ and Ef. By
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(4.17), (4.8) and Lemma 3.3, we obtain for R, T fixed,

ER s% / / S (aH(t,x))2dxdt}1/2{ /0 cer lBt|dt}1/ :

(R + MT)d/2T1/2061/2

l>l

Similarly, (4.17),

~

(4.6) and Lemma 3.4 imply

E¢=(1+ w) sup / ag(t,z)dx
A 0<t<2T J B,

< (R+MT)2C,(1 + MAT) 12-n/2

Finally, (4.17) and Lemma 3.3 yields

PS5 e 2 M 2

KnB§ ecOK

{ae]wK wK|+ZblZ1K Z1K|}

Ch:l

(R+ MT)Y?T'/?

Using the above estimates in Lemma 4.1 we have, for ¢t < T,

/ lun(t, ) — u(t, z)|dz
|lz|<R

MT d/2Th1/2
<o(a+ EXMD )+ [ 1040,2) = u(0,2)laz,
A Bo
and the proof of the theorem is complete by minimizing over A. O

5. FULLY DISCRETE SCHEMES

In this section we will briefly discuss the convergence of fully discrete finite

volume schemes for (1.1~1.2) defined in Section 2. One can prove the following
result:

Theorem 5.1. Let u be the entropy solution of the conservation law (1.3) with
initial data uo € BV (R?) N L®(RY), and let |jug — (w§ — Zle hi(w§))||Lr < Ce.

We denote Uy 5 = wp s — Zle hi(wn.s), where (whs, Zp5) is the solution of the
finite volume scheme (2.7). In addition to (A.1-A.3) we assume that

(5.1) ( az - Zl ) >e >0 in RO

Let €'=" < C6, where 1 > n > 0 is any small number. If the CFL condition
5%%{' < Cy holds, then for any time t < T, and R > 0 there is a constant C' =

(R+ MT)Y*TY?c(a,b) such that the following error estimate holds
e 8) = Uns (5 D)l B0,y < € (B 4 6M%) + [lu-, 0) = Uns(-, 0] 11

A detailed proof of Theorem 5.1 can be found in [KM]. It requires to prove
the time discrete analogs of the estimates in Lemmata 3.1-3.4. In addition the
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following estimate is needed:

3 |K|<1w’}(+1 — |+ Z P zng|) < C.

KeT,

It should be emphasized that the additional assumption (5.1), which was used in

the error estimates of [KT1] and [KKM] but not in Theorem 4.1 for the semidiscrete
schemes, is now used only to prove

(5:2) > K| (jwk —wid + X Iz — 2Dxl) < €6,

KeTy,

which in turn is used in the proof of

(5.3) IR IGi(wh, 2P < G

KeTy, i

Therefore Theorem 5.1 still holds true if we replace assumption (5.1) by (5.2).
Note that most of the additional technical difficulties in the proofs of the time

discrete stability estimates are focused on the time discrete analog of Lemma 4.3
and in the proof of (5.3) above.
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