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CONVERGENCE OF RELAXATION SCHEMES
TO THE EQUATIONS OF ELASTODYNAMICS

LAURENT GOSSE AND ATHANASIOS E. TZAVARAS

ABSTRACT. We study the effect of approximation matrices to semi-discrete
relaxation schemes for the equations of one-dimensional elastodynamics. We
consider a semi-discrete relaxation scheme and establish convergence using the
LP theory of compensated compactness. Then we study the convergence of
an associated relaxation-diffusion system, inspired by the scheme. Numerical
comparisons of fully-discrete schemes are carried out.

1. INTRODUCTION

Relaxation approximations of hyperbolic conservation laws appear in diverse
models in continuum mechanics and kinetic theory of gases, and serve as a ground-
stage for the design of numerical schemes for hyperbolic systems of conservation
laws (see [9, 4, 5, 23, 2] for a range of perspectives and [16] for the related subject
of kinetic schemes). The convergence properties of relaxation systems and associ-
ated relaxation schemes for scalar conservation laws are presently well understood
(e.g., [4, 15, 1, 21, 10, 11]). By contrast, when the zero-relaxation limit is a system
of conservation laws, the dissipative effect of relaxation is subtle to capture and
convergence results were only recently established [22, 23, 17, 12].

The issue of dependence on the approximation matrix, familiar from the theory
of viscosity approximations, has a counterpart in the theory of relaxation approxi-
mations and their associated relaxation schemes. As a test case to investigate this
issue, we consider the system of one-dimensional elastodynamics,

Uy — v = 0,
1
g v = g(u)e =0,
where u stands for the (shear) strain and v for the velocity in the direction of the
motion.

We compare two relaxation systems, both having as zero relaxation limit € — 0
the equations (1). The first system reads:

u — v, = 0,
(2) V¢ — Og = 07
(o0 — Eu)y = —%(o —g(u)).
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It is a model in viscoelasticity [7, 23], and it may be put into the equivalent form

u —v, = 0,
3
( ) Ut — g(u)z = €(Evzz - Utt) 5

of an approximation of (1) by one wave equation. The second system is of the type
proposed by Jin and Xin in [9]:

— Pz = 07
Vg — T = 0,
4
@ po—rw = L),
_)\Uz = _E(r_g(u))a
and it may be written in the equivalent form
U — vy = &(KUpp — Unt),
5
(5) —g(w)s = e(Avgy — vtt)

of an approximation of (1) by two wave equations.
For stress-strain functions g satisfying ¢’ > 0 the system (1) is strictly hyperbolic

with characteristic speeds A; 2(u) = £(g'(u))/2. The zero-relaxation limit from (2)
to (1) is performed in [23] under the hypotheses g(0) = 0,

(6) 0<y<g'(u)<T, uweR,
for some positive constants v, T,
(7) (u—wug)g"(u) #0 foru # ug, and

g",9" € L? N L*°(R).

and for the parameter E selected so that £ > T'. Note that (2) is a model in
viscoelasticity and that the subcharacteristic condition ¢’ < E guarantees that
the model is consistent with the second law of thermodynamics [7, 23]. The zero-
relaxation limit from (4) to (1) is established in [17], under the following hypotheses:
g is stricly increasing, g convex for v > 0 and concave for u < 0 and k = A
sufficiently large.

The objective of this article is to study the effects of different relaxation approx-
imations on the associated numerical schemes. Each of the systems (2) and (4) can
be put into diagonal form and suggests, by upwinding, very natural relaxing and

relaxed schemes. For instance, upon introducing the Riemann invariants, (2) is put
into the diagonal form

0% + 57p) ~VEO: (55 + 5y5) = —=plo—9W),

®) 0.8 — o) £ VEO(f — o) = (o - o(w),
2w>g) = —(gw) o)

Performing upwinding in (8) yields a semi-discrete scheme, for the values of (u, v, o)
on the lattice Z,

t— (uj(t),vj(t) Jj(t)> ’

JEZL
that reads
(uj)e = g5 (Vj41 = vj—1) 55 (0541 — 205 + 0j-1),
©) (vj)e — '21_h(0J+1 oj-1) = 2_;?(”)-&-1 = 2v; + vj-1),
Eu])t = _2(0] —g(Uj))
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In a similar fashion, (4) is diagonalizable and has corresponding upwinding relaxed
and relaxing schemes (see Jin and Xin [9]).

In Section 3, we establish convergence of the semi-discrete scheme (9) to the
elasticity system, under the hypotheses (6), (7) and E > T, in the parameter
range h — 0, ¢ — 0 with ¢ = O(h). The restriction e = O(h) does not appear
in convergence results of semi-discrete schemes to scalar conservation laws [1, 11],
nor in a recent convergence result for fully disrete schemes patterned after the
relaxation system (4) (see [12]). This restriction reflects the nature of the relaxation
approximation, as is explained in this article.

Note that (9) is a formal first order discretization of (2). Experience with dis-
cretizations of hyperbolic systems would suggest that the behaviour of (9) is char-
acterized by the associated relaxation-diffusion system

U — V —h——1 o
t T 9 /—E TTy
vE
(10) V= Oy = thm,

(0 = Bu) = (0 - g(u).

In principle, the presence of diffusion should reinforce any stabilizing effect of relax-
ation and provide a more stable response. Indeed, this is the case for a relaxation-
diffusion system that looks exactly like (10) with the notable exception that the
term o is replaced by u,, (see Lu and Klingenberg [13]). However, for the system
(10) this is not the case; the slight difference in terms makes a large difference in the
analysis, which is based on using the stabilizing effect of relaxation to compensate
for the missing control of incomplete diffusion matrix. We establish convergence
of (10) to (1) as € — 0, h — 0 in the parameter range h = o(e). Somewhat
surprisingly, this is the opposite range from the convergence range of the relaxing
semi-discrete scheme. We discuss this discrepancy at the end of Section 4.

In order to investigate whether the parameter range e = O(h) is a real restriction
for convergence (of the semi-discrete scheme) or a deficiency of our analysis, we
performed extensive numerical runs, comparing fully discrete schemes based on (4)
with fully discrete schemes based on (2). It turns out that both discretizations are
very stable in the parameter region e = O(h), but the one based on (2) develops
oscillations as we move to the boundary of the parameter region (see Section 5).
On the other hand, in the region that both are stable, the upwind discretization of
(2) is far less diffusive than the upwind discretization of (4).

The main ingredients for both convergence results are the theory of compensated
compactness (Tartar [20], Murat [14]), the L? theory for the reduction of generalized
Young measures for the equations of elastodynamics (DiPerna [6], Shearer [19],
Serre-Shearer [18]), and a priori estimates—valid under the hypothesis 0 < ¢’ < E—
measuring the dissipative strength of the semi-discrete relaxation scheme (9) and
of the relaxation-diffusion system (10). The a priori estimates are quite different
in spirit for the two cases. In the former case, diffusive effects of the semi-discrete
scheme dominate the relaxation effects (using the fact that for a scheme there can
be no oscillations below the scale of the grid), while, in the latter case, relaxation
dominates diffusion—in the range h = o(¢).

To illustrate the analytical aspects, we start in Section 2 by proving convergence
for a variant of (4) (see (14) in Section 2) to the equations of elasticity in the limit
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¢ — 0. This result indicates the robustness of the method, relative to different
approximation matrices. In all cases some version of the subcharacteristic condition
must be satisfied to ensure stability and convergence.

Let us mention a different perspective that links (9) to discrete kinetic schemes
(see Aregba-Driollet and Natalini [2]). When (8) is expressed in terms of the Rie-
mann invariants

o v o v o
(11) fl—ﬁ_l_—z_\—/_—ﬁ’ f2=ﬁ—m, f3—U—E‘,
it leads to a system for the evolution of {fi, fa, f3)
6tf1_\/Eazf1 = _%(fl_Ml(u,v))>
(12) Oifo+ VEO.fa = —%Efz—Mz(u,U)g,
Ofs = —¢(fa —Mas(u,v)),
where
_gw) v _glw) v IO
Mi=%g Tove M aE s Mt TR

Then (12) may be interpreted as a discrete BGK-approximation; u, v and o are
recovered as moments
(13) u=ftfotfs, v=fVE-FVE, o=fE+fE;
and the Maxwellian functions My, My, M3 satisfy

o= Mi(u,v) + Ma(u,v) + Ms(u,v),

v = Mi(u,v)VE - My(u,v)VE,

g(u) = Ml(uvv)E + M2(u, U)E

Therefore, (2) describes the evolution of moments for the discrete kinetic model
(12), and the upwinding scheme studied here is the natural kinetic scheme for (12).

2. RELAXATION APPROXIMATIONS

In this section, we discuss the convergence of the relaxation system

a2 ) e (2) ()

to the equations of elasticity as ¢ — 0. Note that (14) is an approximation of the
type proposed by Jin and Xin in [9] and (4) corresponds to the special case that A
is diagonal. We refer to Serre [17] for a convergence result for (4) under a different
methodology.

First, we state a general estimate from [23]. Consider a system of N conservation
laws

(15) U+ F(U), =0

that is equipped with a strictly convex entropy H(U), and let Q(U) be the cor-
responding flux. Recall that entropy-entropy flux pairs H — @) are generated by
solving the system of linear hyperbolic equations

QI=HI‘F/)

where H' = VH stands for the gradient of H and H” for its Hessian matrix.
Consider the relaxation approximation of (15)

(16) Ut + F(U)z = E(AUzz - Utt) )
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where A is a positive definite and symmetric matrix. We have

Proposition 1. Assume that (15) is equipped with a strictly convex entropy H(U)
satisfying, for some o > 0 and u > 0,

(1 H'(U) —al>ul,

and suppose that the positive-definite symmetric matriz A satisfies, for some v > 0,
1

(18) 5 [(H"(U)A)" + H'(U)A] — oF' (U)TF'(U) > vI.

Then smooth solutions U of (16), that decay fast at infinity, satisfy the dissipation
estimate

(19)
Oe + 0.QU) + ep|U)? + ev|Uy|* < dp(eH' - AU, + 2¢%al; - AU,),
where
1 s
e = H(U +&U)) + €20, - [%aI _ / / H"(U + erU,) dr ds] U,
(20) 0 0

+ %a%]Ut[? +e?al, - AU,.

The system of elasticity is equipped with the strictly convex entropy (the me-
chanical energy)

H(u,v) = v+ G(u), where  G(u) = [ g(£)d¢,

Qu,v) = -vg(u).
Under hypothesis (6) we may select o < min{vy,1}. Then (17) is fulfilled for
0 < p < min{y - a,1 - a} and

1
5(1;2 +yu?) < %vz +G(u) <

Now «a is fixed and (18) becomes

1 g 0 g 0 (ORI
({7 ) (4 YA (8 )z
If (6) holds, then (21) can always be fulfilled by selecting A. Proposition 1 yields
for solutions (u,v) of (14)

(v? + Tu?).

N

t
(22) E(t) + s/ / u? + v + up? + v 2dzdr < O(1)E(0),
)
where O(1) stands for a constant independent of €, and
E(t) = / u? + 0%+ &2 (ut2 + v +u?+ va) dx.
R

These estimates suffice to apply the LP theory of compensated compactness and
deduce:

Theorem 1. Let g € C? satisfy (6) and (7). Let (u®,v%,0°) be a family of smooth
solutions of (14) on R x [0,00) emanating from smooth initial data subject to the
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e-independent bounds
£(0) ::/u82+v82dm
R
2 [ 0E(@,07 + 02,07 + 05, + 05, o < O,
R

and let A be a symmetric, positive-definite matriz subject to (21). Then, along a
subsequence if necessary,

w—u, v —ouv, ae (z,t) andin LY (R x (0,T)), forp <2,

and (u,v) is a weak solution of (1).

Proof. Let (u,v°) be a family of solutions to (14). The proof uses the theory of
compensated compactness [20]. Typically, in such proofs, the goal is to control the
dissipation measure and to show

(23) A (uf, 1) + 0zq(uf,v°) lies in a compact of H; !

for a class of entropy-entropy flux pairs n — g for the equations of elasticity. In the
presence of uniform Z>°-bounds, the theorem of DiPerna [6] guarantees compactness
of approximate solutions and implies that, along a subsequence, u* — v and v* — v
a.e. (z,t).

In the present case L*-estimates are only available in the special case that
A is a multiple of the identity matrix (see [17]) and, in view of (22), the natural
stability framework is in the energy norm. Convergence of viscosity approximations
to the equations of elastodynamics in the energy framework is carried out in Shearer
[19] (for the genuine-nonlinear case) and Serre-Shearer [18] (for loss of genuine-
nonlinearity at one point). In [19] two classes of entropies, with growth controlled
by the wave-speeds at infinity, are constructed ([19] Lemma 2) for which Tartar’s
commutation relation is justified (Lemma 3) and are used to show that the support
of the (generalized) Young measure is a point mass (Lemma 7 and Theorem 1-
(iil)). When o(u) has one inflection point, the reduction of the Young measure is
performed in [18] Lemma 3 and Section 5.

To ensure the dissipation estimate, we are operating under (6). It then it suffices
to establish (23) for entropy pairs n — ¢ satisfying

(24) N @ Mus Mos Nuws Nuws Mow € LO(R?) .

This class of entropy pairs contains (under the auspices of (6)) the test-pairs that
are used in [19, 18] in order to prove the reduction of the generalized Young measure
to a point mass and to show strong convergence in L for p < 2. Hypothesis (7)
reflects the assumptions needed in those works.

To complete the proof, we prove (23) for entropy entropy-flux pair n— g satisfying
(24). From (14) we have

oot vty =, (14 (2 )) e (- ()
® t

— e(ug vz) -n”A( Y > +e(ug ve) -’ ( e )
Vg Ve
=L +L+Is+1.
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From (22) and (24), the terms Iy, I lie in a compact of H~1, the terms I3, I, are
bounded in L!, and the sum y_ I, lies in a bounded set of W~1°°. Murat’s lemma
[14] implies that (23) holds, and this concludes the proof. O

3. CONVERGENCE OF UPWIND SEMI-DISCRETE SCHEMES

1. Derivation of a numerical scheme. In this paragraph, we construct sta-
ble numerical approximations for solutions of system (2) by a natural upwinding
treatment of the linear convective part. We place the hypotheses g(0) = 0 and (6)
on the function g, which ensure strict hyperbolicity for (1). We introduce a regular
grid on the real axis with a uniform space-step denoted by A > 0. It is expedient
to formulate the problem in terms of the Riemann invariants

Uﬂ:i and o — Eu.

VE

Then (2) is put into diagonal form:

o o 1
(v+ \/—E)t -VE@+ ﬁ)w = —E(U - g(u)),
(v— \/— )i+ VE(v - \/— \/— —— (0 — g(u)),

(0 = Bu) = ~~ (o — g(w)

We derive a numerical approximation by means of the following semi-discrete
algorithm, which consists in an upwind treatment of the characteristic variables
(whose propagation speeds are fixed):

(v + —=

(0j — Buj)e = —é(%‘ - g(uy)).

Let t — (u;(t),v;(t),0;(t))jez denote the solution of the preceding differential
system on the lattice Z for ¢ > 0. The subscript j means that the quantity is an
approximation of the average of the exact solution of (2) in the interval centered
at x; = jh of length h. The system may be rewritten as

(25)
(F5)e — é—f(vm —0j-1) = F(og41 — 20+ 0yp) = =g,
(0)s = 2 (0511 — 0j1) — YE(vj41 — 20j +vj_1) = 0,
(05 — Buy)i = —2(05 — g(uy)).

It is convenient to replace the first equation by

1 1
(26) (ug)e = 57 (Vi1 —vj-1) = m(%’ﬂ — 205 +0;-1) =0.

The classical theory of differential equations in Banach spaces implies that, for
fixed h,e > 0 and for initial data (v;(0), u;(0), c;(0)) in £>°(Z), there exists a unique
solution of (25),

(uj,vj,0;) € CH([0, +00),£>(Z)) .
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This is a consequence of the Cauchy-Lipschitz theorem (cf. [3] p. 104), since each
equation in (25) depends on a finite number of values.
We define for each h > 0,& > 0 approximations of (2) denoted by

(uh’e,vh’s, ah’s) et ([0, +0), L= (R))

such that
h

(™, 0%, o) (2, 1) = (uy(t), 05(t), 05(t))

27
27) formEIQz[(j—%)h,(j—l—%)h),t€R+.

The goal is to prove compactness of the sequence of approximations as € and h are
sent to zero with € = O(h).

3.2. Energy and relaxation estimates. In this paragraph, we work with the
upwind discretization (25). Following the ideas previously introduced for the con-
tinuous problem [23], we first prove

Lemma 1. Let (ul® v}, 0l%) be uniformly bounded in L*(R). If0 < ¢ < E,
then we have the following bounds for oll T > 0:

(28)

. Huh’s(h )”L2(R) A )”LZ(R):‘ llahs( )||L2(R) <0(1),
o ||7h(v™F) — P HL2 ([0, 7] xR) + |7 (0™%) - o HL2( [0,T)xR) = < O(h),
hd HG _9( )HL2 ([0,T)xR) = < 0O(e),

where Ty, stands for the h-translation operator
() (, 1) = v (. + R, ).

Proof. The viscoelastic model (2) is endowed with a free energy function
o _ ey — & -1
Y(u,0) = 2 5 + $(o = Bu), where ¢'(a) = —5 —h7(a),

and h~! is the inverse function of h{u) = g(u) — Fu. For 0 < ¢’ < E, the function
¢ is well defined and has the properties

Y 1 _ g (u r
) "<EE- =Y T EE- ) S EE-T)
(u= b (@) (o~ h(w) > (o — h(w))?.

Multiplying the three ordinary differential equations of the scheme (25) by - \/E’
vj, ¢'(0j — Euy), respectively, and adding yields

2 ()2

dt
o
- jl(vjﬂ —vj-1) — 2h\/—[ j(0j41 —05) —ojloj —0j-1)]
1)]‘ \/E

= 57 (0541 = 0j-1) = o[V (V41 — vy) = v (v; — vi)]
2h 2h

2[4 9'(03 — Buy)l(o; — glu;) = 0.

=
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From (29),

(% + /(0 Buy)) (0; = 9(u)) > (0 — 9(u,))?.

Summing over j € Z and using

1
o Zh[vj(ajH —0j-1) +0;(Vj41 — vj_l)] =0

JEZ
we obtain
d v;)? VvE
pr > h F—é—)— +¢(uj»0j)] + 5y > h(vj41 —vj)
JEL jeZ
> h(oj4 - Zh g(u;))? <0.
\/_ JEL ]EZ

As a first consequence, we have for ¢t > 0

s ()2 v;(0))?
S [( 3(275)) +1p(uj(t),oj(t))] <> h {(]—(20))— +¢(uj(0)aaj(0))} :

JEL JEZ

Since % + 9 (u, o) is equivalent to the L? norm, this inequality implies the energy
estimate (28); and the bounds

| [y =022 4 (ma(o") = o™ 2dade < O1)
0 JR

and

/ t 4,9 = g(u) o 5) s < O
0 JR

for all t > 0. O

Lemma 2. Under the hypotheses of Lemma 1, we have for T' > 0
(30) 17 (™) = w13 0, 71x2) < O(h) + O(e).
Proof. Using the identity
mi(g(u) — () = (g ) — M%) + (1h(6™7) — ") + (67 — g(u))

and the estimates in (28), we derive the desired result. O

Remark 1. Lemma 2 shows that control of the numerical derivative for o/ and the
distance from equilibrium ¢"* — g(u’) entails control on the numerical derivative
of g(uM¢). Such a result is clearly false for actual derivatives, and is due to the fact

that for numerical approximations there are no oscillations below the scale of the
grid.
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3.3. Entropy consistency and convergence. In order to use the L? theory of
approximate solutions for (1) [19, 18], under the framework of (6), we need control
of the entropy dissipation for entropy pairs 1 — ¢ satisfying the growth restrictions
(24) (cf. Theorem 1).

Lemma 3. Under the hypotheses of Lemma 1, if e = O(h), then

(31) n(ul® 0", + q(uF,0"e), lies in o compact of H '(R xRT)

for any entropy-entropy flux pair n — q satisfying (24).

Proof. We introduce the notations

Dloj) = (0541 — 0j-1)/2h,
AM(oj) = (041 — 205 + 0-1)/h?,

and write the scheme in the form

(uj)e — DR (vj) = 55=AMo;) = 0,
(v;)¢ — DM(g(uy)) — BYEAR(v;) = Doy — g(uy)).

Let K; denote the cell [(j — 3)h, (j + 3)h). A computation shows that

Omu ve) + Bpq(uc 0" = A+ B+ C,

where
A= Bpq(us oM + [(mw); + (1) DX (g () s,
JEZL
VB
Zh(nu Mok, + —Zh ) A () 1k,
JGZ JEL
1 VE
=Bt B,
2\/— 1 2
C= Z T’U j c Jj -—g(uj))nKﬁ
JEL

and we used the notation

(M); = nu(ujvi), (M) = Nwluy,v;) -

Now A, B,C are considerered as elements of D'(R x RT) and are estimated for
e = O(h). For instance, for ¢ € D(R x (0,00)) a test function, we have

(B1, ¢ / Zh Nu)j U])/ o dxdt
K

JEZ J

< mall o= I (07%) = 0™ 2llpell 2

1
+ pllm(o"™) = o™ lle () = mullzz liglleo
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and
= E Do — glu; T
<C’(p>_/1R+ ~ (m)gDc( J q( J))/Kjﬁpd dt

< ol o™ = g(u™)z2 llpallra

+ 3 10m = 9w 12 lrnlm) — ol liloo.

Therefore, B and C' are split into two terms: one going to zero in H~!, and one
that is bounded in measures.

Since (u€,v"*) are piecewise constant functions, q(u™*,v™¢), is a countable
sum of Dirac masses. We split the centered differences into the average of two
upwind differences, 4 = %[A"‘ + A7), where the terms A* read

AT=>" [Q(Uj+1»’l1j+1) - q(uj’vj)]é(j—l-%)h
JEL
3 [0 = 93) + 050 (s0) — ()] e,
AT = Z [q(Uj,Uj) - q(uj—lavj—l)](s(j_%)h
JEL
3 [00)3605 =v52) + 00 (900s) — gy )],

By the mean-value theorem we can linearize the jumps of ¢ and g. For a test
function » € D(R x RT), we have

o= [ (S ) [ ot

JEZ

Vip1 — Uj
+aulEay) [ plogiy,t)de] LY
K;

+ 30 [l )6 Gry) [ olotdo

JEL E
Ujp1 — Uj
+ Qu(§j+%) / @(xj+%at) dl’} “J—_'_—lh“—l} dt.
K;
Using the entropy /entropy flux compatibility gives

(AT, ) =/R+ {; [(nu(uj>vj) —nu(ﬁj%))/Kj o(z,t) dz
+nu(£j+%) /}; oz, t) — Sp(xj+%,t) da:] Pi—-HT_—E—J-

+ (G0 (Ge) =)o 6r1p) [ (ot

jez j
)5/ (€1p)) [ o(o.0) = el t)do

+ (10 (5, 05) = 10 (G1))9 (G 1) /K #(z,1) dm} Lh_u]} .

J
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This implies

(at0) < LI L ) I ) = P g2 + () =

< (71 020-9) = m-lla + 19l Nra(na) = mollze ) }
+ [l 7 (@) = "< e
Tl g o () = ) 2] a2

Then (24), in conjunction with Lemmas 1 and 2, ensures that

(AT, ) <OW)[l@llco + O(VR)ll@all e

Similar estimates hold for A~. The statement follows from Murat’s lemma [14]. [

We conclude as in the proof of Theorem 1:

Theorem 2. Let (ul*, 0%, 00 be uniformly bounded in L*(R), let g satisfy (6),
(7) and E > T. Consider the family (e, ule oMY of numerical approzimations
of (9). If e,h — 0 with e = O(h), then, along a subsequence,

uht = wu, W =, ae (x,t) and in LT (R x (0,T)), for p <2,

loc

and (u,v) is a weak solution of (1).

4. CONVERGENCE OF RELAXATION-DIFFUSION APPROXIMATIONS

In this section, we study the relaxation-diffusion system

h
Ut — Vg = Eo'a:ma
(32) Vi — Op = QhUgy,

(0~ Bu)y = ~=(0 - g(u),

inspired by the semi-discrete numerical scheme (9). Comparing to (9), the quantity
a stands for v/E and h stands for half of the cell width. Note that (32) approximates
the equations of elasticity when ¢ and h are small:

h
Ut — Vg = — Oz,
a

(33)
v = g(w)e = haves + [0 — 9(u)lz

where

(0—g(uw)e = —e(o—Eu)e
= €(a®vpp + 2haVULLt — h2a*Vyp0e — Vit) -

Hypotheses (6) and (7) are imposed on the function g.
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The system (32) may be written as a reaction-diffusion system

%Ut — Vg = %U:ca: - %(0’ - g(u))>
(34) vy — 0 = haUgq,

(0 = Eu) = =2 (0 = g(u)).

Due to (6), the reaction term in (34) is globally Lipshitz and global existence
follows from general semigroup theory (e.g., Henry [8]). If the data vg, o9 € H%(R),
ug € H'(R), then for any T' > 0 there exists a unique globally defined solution

v, 0 € C([0, T}, H*(R)), wueC(0,T],H'(R)).
We assume that the data satisfy the uniform bounds

Jo@y™? + (5™ + (05™)? dz < O(1),
(35)

e? Jr( an: %+ (vg) Ok (UOI) + h2(ug) ") dz < O(1),

and proceed to study the compactness of the family of solutions

{(ue,h’ ,Ue,h7 O'E’h)}a,h>0

as h and € are sent to zero. For notational simplicity we drop the superscripts.
In the course of the proof we use estimates that require additional smoothness for
their derivation. This can be removed by using standard density arguments.

4.1. Energy estimates on the relaxing approximations. As in the previous
section, we use the free energy function ¢ (u, o) introduced in the proof of (28).
Lemma 4. If E > T and the data satisfy (35)1, then for all T >0

o [lu(, T)llze@) + lloC Dllewy + o, Tl 22wy < O(1),
(36) o vzl 20,1y xry T Rllowll7eorxr) < OL),

o [lo = g(u)ll72(01xr) < O(e):

Proof. First (32)5 is rewritten as

(0~ Bu)u = ~2(0 ~ g(w) = ~= (g = By~ (y(w) = Bu)).
o h(w)

We multiply the equations in (32) by o,v, (u — h™1(a)), respectively, and use (29)
to obtain

ISHS

2
(5 +0two)) = (o0)a+ 202 + ha(er)? + (0 - ()

< <’—laom + havvm> .
a x

Then (36) follows from integration over [0,T] x R. O
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Lemma 5. The following identities hold:

(37)

0, (5 + G(w) + evv, +cha(w,)?) - 0. (v(w))
+ela?(v,)? — (v)?] + eh?a®(vea)?

(37)1 +%9(u)mam + ha(vm)z = 31(}7'1),

F o= %g(u)aaC + (ea + h)avv, + 2ehavvg
—eh2a?vv,p + €h%a2 V3 V05,

O (3 (ha + ea®)(va)® + 5eh?a® (vgz)® + 3e(ve)?)
(37)s +1(ve)* = g(u)orr] + 2eha(ver)® = 0:(F2),

Fy := (ea + h)avvy + 26havivy — eh?a? (ViVpoe — VatVax),

0 (3ea®(ug)? — (v + €0y )uy — e+ L) (ve)?)
+(g(u)pus — (v2)%)
(37)3 { —(eha + h?)(Vpe)? — E2(044)? + haUgVze = 02 (F3),

a

F3:= —(eha + h?)vavz, — u(v + €04),

O (35 (02)% + 5 (v2)?) — Ou(02vs)
(37)4 +Elgaw[‘7 -9 + %(Uzac)z + ha(vee)? = 05 (Fy),

.__ h
L F4 = EUIUIZ + hav:cv:m:a

O ((v+e0, — eBug)? + G(u) — teha(vg)?)
0, (vg(u) + e2Eoyvy) + ha(vy)? + Lg(u)p00 + chauzve,
(37)s +e [(ogc)2 — g(u)eoz + Eg(u)yuy — (vt)Z] = 0,(F5),
Fs = 2g(u)o, + havv, — ehavyv; — e2a%v,0,,
where

G(u) = /Ou g(s)ds.

Proof. The first identity is obtained if we multiply (33)1 by g(u), (33)2 by v, add
the results and rearrange the terms via some integrations by parts.

For the second identity, one has to multiply (33)2 by v; and perform a few
integrations by parts.

To derive the third identity, we multiply (33)2 by u, and use (32)3 to arrive at

g (W) (uz)? = up(vy — havgy — €Euq: + €04¢)
= uy(v+€e0.) — haugVyy — a2 UgUsy -

At this point, we use the equality e, f; = e:fo — (fer)e + (fex): for f = v + €0y,
e = u. This leads to the identity

<%5E(uz)2 —uz(v+ saI)> + ¢/ (u)(ug)? + hauy vy

(38) !

— (v + %om)(vm +e0pz) = —[u(v+€0z)e -
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Then the third equality follows from (38) and the observation that, due to (32)s,
there holds

[(v2)%]¢ = ha(Vevaz)e + ha(vee)?.

NN

Ve Ogq =

From (34) we have

(39) {%Uzt — VUgg = %Uzmz - sLE(U - g(u))zy

Vgt — Oze = hQUzze.

The fourth identity is obtained from multiplications of (39); by o, of (39)2 by v,
adding the resulting equations and integrating by parts.

To derive the fifth identity, one adds (37); + eE(37)3 + €2E(37)4. After rear-
ranging the terms and using (33)2, one obtains the desired result. O

We introduce the notations

L = L(w+eo, —eBuy)?+Gu) + S [E(v)? + h2E(v,2)2 + (v1)2],
Ly = wvg(u)+e*Eo,v,. '

Combining (37)2 and (37)5, we get
(40)
(L1)s + €l(02)? = 29(w)z0p + Eg'(u)(ug)?]
+2e?ha(vy)? + ha(vy)? + %g(u)maz + eha®uyvee — €hag()eVes
= (Ly+eFy + Fy),.
Observe now that, under the condition E > ¢’(u) > 0, the quadratic form
Q = (02)% 29 (Wueo, + Eg'(u)(us)?
= (02— 9(w:)” + 9/ (W) (B~ ¢'(u))(us)? 2 0
is positive definite.

4.2. Entropy consistency and convergence.

Lemma 6. Under the assumptions (6), E > T and (35) the following estimates
hold for h = o(e) and T > 0:

(41)

ellual?e @mxio,my + Ellvellie@miory + €lowlz@xpm)

IAIA
Q
=

hl|ves 22 @0, + €2 RIOwe I 2@y 10,1y)

Proof. From (40), we obtain with unambiguous notations

(42) (I)e + (e + oy [(ua)® + (02)?] < O(Dh[(uz)? + (04)?]
+0(1)eh|ugvs |,
where Iy > 0. From (37)2, we get

(Iz)t + (JQ)I +

o) < 0Welus),

where I > 0. From (37)4, we have
e2h

(I3)e + (J5)z + (02)* + W[(U:m)Q + (v22)%] < O(De(uz)?,

9
o)
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where I3 > 0. We add these relations with a large weight factor onto (42) and we
obtain

€ e2h
I T 71 T 2 T 2 2 ZYZE T 2 TT 2
P+ +O(1)[(u )"+ (02)" + (v) ]+O(1)[(U 2)” + (Vae)”]
< O(D)h[(ug)? + (02)%] + O(D)eh|uzvey|.
Provided h = o(e), the right-hand-side can be absorbed in the left for e small
enough. Since I > 0, this yields that

/ e[(12)? + (02)2 + (00)%] + 2 R(000)? + (von)?] dxdt
Rx[0,T]
(43) <o) [ [wal? + (w0 o

+ /]R»\Ez[(uogc)2 + (v02)? + (002)?] + €212 (vozs)? dm}

is bounded in terms of (35). The L' estimate on ev? follows from (37)1, (35) and
(43). O
Lemma 7. Under the assumptions of Lemma 6,
(44) n(u,v)¢ + q(u,v), lies in a compact of H;! (R x R™)
for any entropy-entropy fluz pair satisfying (24).
Proof. We consider the system (32) written in the form (33). We use the chain rule
for the smooth approximate solutions:

n(u,v)¢ + q(u,v), = %nu(u, V)02 + Mo (U, V) [haves + (0 — g(u))a].
We split the right-hand-side the following way:

Oy (%nu(u,v)oz + 1o (u, v) [havy + (o — g(w)])
—%nuu(u,v)uzagc — Mo (U, U)[%Uzdm + haugvg] — Nuo (U, v)ha(vy)?
—[o = g(w)] [T (1, )tz + T (1, v)v,]
déf (Io)z + I+ Ls.

We notice that Zo rewrites

o —g(w)
Under the assumptions of Lemma 6, Zy — 0 in L2(Rx [0, T)) and Z;,Z, are bounded

in L' (R x [0, 7)) for all entropy pairs satisfying (24). Then (44) follows from Murat’s
lemma. [14]. O

Iy = _\/f:T [ﬂuv(ua V)Ug + ﬂvv(u>v)vm]

As in Theorem 1 we conclude:

Theorem 3. Let the initial data satisfy (35), let g satisfy (6), (7) and E > T, and
consider a family of solutions {(u®",v®" 0™ }enso of (33). If h = o(e), then,
along a subsequence,

whsu, v >, ae (z,t) and in LY (R x (0,T)), forp < 2,

loc

and (u,v) is a weak solution of (1).
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Remark 2. Theorem 2 guarantees convergence for the semidiscrete scheme in the
range € = O(h) while Theorem 3 states convergence of the associated relaxation-
diffusion system on the complementary range h = o(e). The origin of this discrep-
ancy at the level of the proof is the following. For the scheme it is easy to control the
numerical derivative of u, (see Remark 1). By contrast, for the relaxation-diffusion
system, the energy estimate in Lemma 4 does not yield control of u,. In our proof
we used the stabilizing control of relaxation to obtain control of u,, which leads
to the restriction h = o(e) stating that relaxation dominates. We do not know if
the analytical result for the relaxation-diffusion system is optimal. Regarding the
scheme, the numerical experiments in Section 5 suggest that the range e = O(h) is
optimal and that oscillations develop as we approach the boundary of this parame-
ter range. This indicates that the behavior of the relaxation-diffusion system does
not accurately describe the behavior of the relaxing scheme.

5. NUMERICAL EXPERIMENTS

In this section, we present and discuss some numerical experiments that we
obtained for fully discrete versions of the scheme (25). We also display comparisons
between this approach and the Jin and Xin algorithm [9]. In all computations, we
used a splitting technique to treat the stiff relaxation term. This type of algorithm
has been studied, for instance, in [1] in the context of relaxation approximations
for one-dimensional scalar conservation laws.

5.1. Comparison with the Jin-Xin scheme for ¢ = h?. We considered a Rie-
mann problem for (2) with the following initial data:

u = 2 ur =1
(45) =2 and { v, =2
o =1 or = 1.

We chose g(u) = u + u? and fixed E = 100. The CFL condition implies that the
time step At and the cell width h have to satisfy the relation At < h/20. Figures
1, 2, and 3 display the numerical results obtained for both relaxation schemes with
step h = 0.01 at time T = 0.2, and also for the associated relaxed schemes (obtained
by fixing o = g(u) in (25)). We selected € = h/100, in order to let the relaxation
process fully operate in each cell of the computational grid. It is clear that a first-
order scheme of the current approach is less diffusive than a first-order Jin-Xin

scheme (for which we fixed the parameter £ = X\ = v/E so as to use the same CFL
numbers).

5.2. Comparisons in the range ¢ ~ h. The preceding results ensure the con-
vergence of the relaxation scheme (25) for values of € which are of the order of h.
In practice, one notices easily that oscillations degrade these numerical approxi-
mations as soon as a certain value of £/h is reached. For example, we illustrate in
Figures 4 and 5 the appearance of oscillations in the relaxation term for the problem
(45) at T = 0.1. On the other hand, the relaxation terms involved in the diffusive
Jin-Xin approach remain acceptable. This provides a numerical justification of the
restriction on the ratio €/h made in Theorem 2.

On the other hand, the approximations generated by the Jin-Xin approach are
more diffusive, but remain stable in any range of parameters e, h. We illustrate this

statement in Figure 6 where the variable u is shown for A = £''%! and 0.0002 < h <
0.02.
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"urel.num" —+—
"urel_jx.num" ---x---

1 1 I
-0.5 0 0.5

1.5

FicURE 1. Comparison between Jin-Xin and the proposed relax-
ation scheme on u/<.

0.4 ' ' '

FIGURE 2. Comparison between Jin-Xin and the proposed relax-
ation scheme on v/,
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0.002 T

"equi.num" —+—
"equi_jx.num" ---x---

0.0015

0.001

0.0005

-0.0005

-0.001

-0.0015

-0.002

-0.0025

-0.003

-0.0035 . . .
-0.5 0 0.5 1 1.5

F1GURE 3. Comparison between Jin-Xin and the proposed relax-
ation scheme on o/ — g(u/*).

0.15 T T

"equi.num" ——
"equi_jx.num" -----
0.1 |

0.05 |- e -

-0.05 |-

-0.15 |

-0.3 | 1 Il 1
0 0.2 0.4 0.6 0.8 1

FIGURE 4. Numerical profiles of the relaxation terms for both
schemes with h = 0.005, ¢ = 0.0002.
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3 T T T T

"equi.num" ——
"equi_jx.num"

.4 1 | 1 Il

0 0.2 0.4 0.6 0.8

FIGURE 5. Numerical profiles of the
schemes with h = 0.005,& = 0.0004.

relaxation terms for both

"u_jx_002"
"u_jx_001" - - -
"u_jx_0005"
"u_jx_0002"

1 1 1 1 1

0 0.2 0.4 0.6

FIGURE 6. Convergence
variable for h = 101,

of the Jin-Xin approximations in the u
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: “urel.num" -o—
A : "uas.num" -+---
19 | k! :

1.7 +

1.6

114 F

1 L L L 1

-15 -10 -5 0 5 10

"urel_jx.num" -o—
"uas_jx.num" -+--

FIGURE 8. Long-time behavior of the Jin-Xin relaxation scheme on u™*.
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0.2 T

T T T
‘ "equi.num" ——
"equi_jx.num" -+---

_05 1 L I 1

-16 -10 -5 0 5 10

FIGURE 9. Comparison between Jin-Xin and the proposed relax-
ation scheme on o™¢ — g(u*).

5.3. Large-time behaviour of the proposed scheme. To check the stability
of the numerical wave profiles, we performed a numerical run on a bigger domain
and during a longer time T = 3. In Figures 7 and 8 we display both relaxing and
relaxed numerical solutions for the two possible relaxation schemes. In Figure 9
we compare the values of the relaxation term for both schemes. We fixed h = 0.1,
e = 0.005 and used the same Riemann problem (45) and the same CFL restrictions.
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