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GAUSSIAN EXTENDED CUBATURE FORMULAE
FOR POLYHARMONIC FUNCTIONS

BORISLAV D. BOJANOV AND DIMITAR K. DIMITROV

ABSTRACT. The purpose of this paper is to show certain links between uni-
variate interpolation by algebraic polynomials and the representation of poly-
harmonic functions. This allows us to construct cubature formulae for multi-
variate functions having highest order of precision with respect to the class of
polyharmonic functions. We obtain a Gauss type cubature formula that uses
m values of linear functionals (integrals over hyperspheres) and is exact for all
2m-harmonic functions, and consequently, for all algebraic polynomials of n
variables of degree 4m — 1.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let R™ be real n-dimensional Euclidean space. The points of R™ are denoted
by * = (x1,%2,...,%,), and |z| is the Euclidean norm of z, that is, |z| :=
>, x%)l/z. For any positive 7, we denote by B(r), B(r) and S(r) the open
and the closed balls and the hypersphere with center 0 and radius r in R™. Pre-
cisely,

B(r) = {z : |z| <7},
S(r) = {z : |z[=r},
B(r) := B(r)uS(r).

In case r = 1 we shall omit the notation of the radius. The outside normal derivative
on S is denoted by %. Finally, dzx is Lebesgue measure in R"™ and do is the (n—1)-

dimensional surface measure on S(r). Recall that the area o, (r) of the sphere S(r)
in R™ is

on(r) = nr" a2 T (n/2 + 1),

where T' is the Gamma function.
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The iterates A™ of the Laplace operator in R™ are defined recursively by

n 62

_ Al_\N"9
A = A 57

i=1

A" = AA™TL

The function u is said to be polyharmonic of order m, or m-harmonic, in B if u
belongs to the space

H™(B):={ueC’™ Y B)nC*™(B) : A™u=0 on B}.

In particular, if m = 1 or m = 2, u is said to be it harmonic or biharmonic,
respectively.

Being null spaces of the even-order differential operator A™, the polyharmonic
functions of order m inherit many of the properties of the univariate algebraic poly-
nomials of odd degree 2m — 1. Some recent developments reveal the importance
of polyharmonic functions as an appropriate tool in multivariate approximation.
Classical results in approximation theory have been extended to theorems treating
approximation of multivariate functions by m-harmonic functions (see [4], [1], for
example, and the references in the papers therein which contain such results). The
purpose of this paper is to show certain links between univariate interpolation by
algebraic polynomials and the representation of polyharmonic functions. We give
natural polyharmonic analogues of the Lagrange and Hermite representations of al-
gebraic polynomials. This allows us to construct cubature formulae for multivariate
functions having highest degree of precision with respect to the class of polyhar-
monic functions. We obtain a Gauss type cubature formula that uses m values of
linear functionals (integrals over hyperspheres) and is exact for all 2m-harmonic
functions, and consequently, for all algebraic polynomials of n variables of degree
4m — 1. In order to formulate this result precisely, let us first recall some definitions
from [3], where polyharmonic extensions of other well-known quadrature rules have
been obtained.

Every linear functional Q(f) approximating the integral I(f) = [, f(z)dz in
terms of values of A’f, i = 0,1,..., at certain points and/or surface integrals of
them and their normal derivatives is called an extended cubature formula or extended
cubature rule. An extended formula is said to have polyharmonic order of precision
m (indicated briefly as PHOP(Q) = m), if I(f) = Q(f) for all f € H™(B) and
there exists a function f such that A™f £ 0in B and I(f) # Q(f).

Typical examples of extended cubature formulae are the Gaussian mean-value
property

(1.1) / w(@)de = r™ (72 /T(n/2 + 1)]u(0)
B(r)
and the following consequence of the first Green formula,
(12) / w@)dz = r/n / w(€)do(©),
B(r) S(r)

which hold for every harmonic function u(x). They can be looked upon as striking

multivariate analogues of the midpoint and of the trapezoid quadrature formulae,
respectively.
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Note here the following immediate consequence of the above formulae, which
also holds for every harmonic function u(z):

(13) /s<>“<s>da<s>=wn-lu<o>, = na2 [T (/2 4 1),

A univariate function p(t), defined on the interval [a, b], is said to be a weight

function on [a, b] if u(t) is nonnegative there and all the moments f; tPu(t)dt, s =
0,1,..., exist.

In this paper we prove the following.

Theorem 1. Let u(t) be any given weight function on [0,1]. There exist a unique
sequence of distinct radit 0 < Ry < -+ < Ry, < 1 and real weights A, k =

1,-+-,m, such that the extended cubature formula
1.4 / u(x T Ak/ u(§) do (€
(1.4) : (z) p(lz])d Z s )do(§)

has polyharmonic order of precision 2m. Moreover, the radii Ry, coincide with the
positive zeros of the polynomial Poy,(t; u*) of degree 2m, which is orthogonal on
[—1, 1] with respect to the weight function p*(t) = [t|" *u(|t]) to any polynomial of
degree 2m — 1.

There is no extended cubature formula of the form (1.4) with PHOP > 2m.

The coefficients { A} are explicitly determined as integrals of univariate poly-
nomials and they are positive.

Formula (1.4) can be considered as a polyharmonic extension of the relation (1.2).
The problem of extending the Gaussian quadrature formula to the multivariate
setting has been of constant interest. The central concept was developed in an
attempt to answer the following natural question: Are there ordinary cubature
formulae (linear combinations of values of the integrand at certain points) of highest
possible total algebraic degree of precision, and what is the relation between the
number of the values of the integrand involved and the highest possible algebraic
degree of precision? Although upper and lower bounds are known, and a few
explicit examples have been constructed, there are still many open questions in
this difficult domain of ordinary cubature formulae. The above result solves the
problem of existence and uniqueness of extended cubature formulae for integrals
over balls in R™.

Note that the Gaussian extended cubature formula (1.4) approximates the inte-
gral of f over B in terms of m pieces of information about the integrand, namely, the
“average” values of f over m hyperspheres. It integrates exactly all polyharmonic
functions of order 2m. The space H?™(B) obviously contains the class my(R™)
of all algebraic polynomials of n variables of total degree N := 4m — 1. Thus the
extended cubature (1.4) is precise for any polynomial from 7 (R™) and particularly
for the basic polynomials there. Observe that, if n > 1, the number dim (7 (R™)) of
these polynomials is essentially greater than the number m of pieces of information
(the spherical integrals) the cubature unvolves. The classical Gaussian quadrature
formula integrates exactly the polynomials in the space ma,,—1(R), whose dimention
is only two times bigger than the number m of the function values the quadrature
uses. It is shown in the proof of Theorem 1 that (1.4) is the cubature of highest
algebraic degree of precision of the type considered. Cubature formulae which are
precise for algebraic polynomials have been intensively studied (see for example [8],
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where the results of Kantorovich and Lusternik concerning the algebraic degree of
precision of formulae of type (1.4) are given). We show here that some of these
known polynomial type formulae integrate exactly the wider class of polyharmonic
functions.

The problem of extending Hermite interpolation formulae and multiple node
Gaussian quadratures is also considered in Section 5.

2. REPRESENTATIONS OF POLYHARMONIC FUNCTIONS

In this section we discuss various representations of an m-harmonic function
which are induced by univariate polynomial bases. In particular, we get a repre-
sentation that is similar to the Lagrange interpolating polynomial.

Our results are based on the following fundamental result in the theory of poly-
harmonic functions, known as Almansi’s expansion (see Proposition 1.3 on p. 4 in

2])-

Lemma 1. If u € H™(B), then there exist unique functions ho(x),hi(x),
hm—1(x), each harmonic in B, such that

m—1
(2.1) u(x) = Z |z|*hi(z) for z € B.

=0

It is also known that any expression of the form (2.1), with harmonic functions h;
on B, is an m-harmonic function on B. Thus (2.1) exactly describes the structure
of the m-harmonic functions. Because of Almansi’s expansion and the fact that
harmonic functions in B form a linear space, the following lemma concerning the
representation of m-harmonic functions easily holds.

Denote by 7, the set of algebraic polynomials of one variable, of degree less
than or equal to m.

Lemma 2. Let ¢o(t), - ,¢m—1(t) be any basis in the space m,_1 of univariate
algebraic polynomials of degree not exceeding m—1. If u € H™(B), then there exist
unique functions bo(x),b1(x), - ,bm-1(x), each harmonic in B, such that

(2.2) Z ¢;(|z|*)b;(x) for z € B.

As an immediate consequence of Lemma 2 and the fact that the polynomials
1,t— R?, (t— R%)?,.-- ,(t — R*)™ ! constitute a basis in ,,_1, we obtain

Corollary 1. If u € H™(B), then there exist unique functions bo(x), b1(z),

bm—1(x), each harmonic in B, such that

m—

(2.3) Z (|z|*> = R*)7b;(x) for x € B.
7=0

H

The latter representation is related to a recent result of Hayman and Korenblum
[6, Theorem 1].

Let us mention another representation which could be of some interest.

Let f be a given univariate function, defined at the distinct points ¢;, i =
1,...,m. In what follows the set of points t¢1,... ,t, will be denoted by T. The
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unique algebraic polynomial of degree m — 1 which interpolates f at ¢1,... ,t, can
be represented in the form

L1 (f38) = Y (B T) f (),

k=1
where the basic polynomials I (¢;T), k=1,... ,m, are given by

h(tT) = w(t)/((t — tr)w' (tk))
in terms of the polynomial w(t) := (¢t —t1) - (t — tm).

Corollary 2. Let 0 < t; < to < -+ <ty < 1 be any set of distinct points. Then
for any uw € H™(B) there exist unique harmonic functions by(x),be(x), -, by (x),
each harmonic in B, such that

u(z) =Y (|2’ T)bi(z) for = € B.
k=1

Moreover, bi(x) is the unique harmonic function on B which coincides with u

on S(vtx).

This is the Lagrangean type representation of polyharmonic functions in terms
of traces over (n — 1)-dimensional spheres.

Note here that the same statement holds in the slightly more general case al-
lowing ¢t; = 0. Then b;(0) = u(0), but this condition does not characterise b
completely. We mention, however, that the condition b;(0) = u(0) defines the in-
tegral |, s(t) b(€) do(€) uniquely (because of (1.3)), and this is what is important in
the study of integration problems.

3. GAUSSIAN CUBATURE FORMULAE

In this section we give a simple relation between the univariate quadrature for-

mula for algebraic polynomials and extended cubature formulae for polyharmonic
functions.

We shall use the mean value

1
_— d
e o, €4

as a main piece of information for approximate evaluation of the integral of f over
B. Let us accept here the convention to use the same notation in the case t = 0 as
well. Then clearly the mean value is just f(0).

Lemma 3. Assume that u(t) is a fized weight function on [0,1]. Let 0 < t; <
<o <ty < 1. The extended cubature formula

N
1
3.1 dx ~ ap ——— d
(3.1) /B ) (a1 = Y /S MGEG

I
'Yntz

is exact for every polyharmonic function f € H™(B) if and only if the quadrature
formula

1 N
(32) o [ O PE) de Y P ()
0 k=1
is exact for every algebraic polynomial P € mp,_1.
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Proof. Let f be any polyharmonic function of order m. Then, by Almansi’s repre-
sentation, there exist harmonic functions {hy} in B such that

Set

We have

/ (i) f)de =
B

S
=
)
B
N—r
>
E
—
-~
8
o
ol
QL
8

and therefore

1
(3.3) [ ntiahste)de =1, | wtor=teya
On the other hand, by (1.3),

N
kZ e [ 0w = Sac [ Z_j\f\’“h (¢
N m—1
= > ar Y t7h;(0)
k=1  j=0
N
= Zakpf(ti).

k
The assertion of the lemma then follows by comparing both sides of (3.3) and the
last equality. O

The next theorem is an immediate consequence of Lemma 3.

Theorem 2. Let ju(t) be a given weight function on [0,1]. If the coefficients ay, k =
1,...,m, of the extended cubature formula

(3.4) /B (lz]) f (z) dz =~ Zak / o (€)

S(Ry)
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are given by

1 ].
(35) ag = n—1 / lk(tZ; Ri e 7R72n):u’(t)tn_1dt>

R} 0
with some 0 < Ry < -+ < Ry, < 1, then it is precise for every f € H™(B).
Conversely, if an extended cubature rule of the form (3.4) is precise for each f €
H™(B), then its coefficients are uniquely determined by (3.5).

For the proof, one needs to observe only that the coefficient aj, can be found just
by applying the corresponding univariate quadrature formula (given as in (3.2)) to
the function I (t%; R?,- -, R2,).

Now we can give the proof of Theorem 1.

Proof of Theorem 1. In view of Lemma, 3, the only thing we need to do is to charac-
terise all quadrature formulae of the form (3.2) that are exact for all even algebraic
polynomials of degree 4m — 2 (i.e., for all P € Ty, 1). Assume that (3.2) is such
a formula. Then the quadrature

1 N
1o [ D@t~ 3 ax[QUee) + Q)]
- k=1
will be exact for all Q € myy,_1, since it integrates all even polynomials of degree
4m — 1 by assumption, and all odd ones by construction. Note that it is based
on 2N nodes. For N = m it must coincide with the Gaussian quadrature formula
n [—1, 1] corresponding to the weight p(|¢|)|t|" . Since the weight is symmetric,
then the nodes are symmetric too, and moreover they are located at the zeros of
the polynomial of degree 2m which is orthogonal on [—1,1] to all polynomials of
degree 2m — 1 with respect to the weight p*.

The positivity of the coefficients follows from the corresponding property in the
univariate case. The proof is completed. O

Corollary 3. Let

Punlel ) = [T af -

be defined as in Theorem 1, i.e., let Ry, k =1,...,m, be the radii of the Gaussian
extended cubature formula (1.4). Then Py, (x|, u*) is orthogonal on B with respect
to the weight function u(|x|) to every harmonic function of order m.

Proof. We need to show that

/ Ponnle), 1 um (@)p((al)dz = O for every up € H™(B).
B

Expressing u,, () in terms of its Almansi’s expansion, one concludes that the prod-
uct Pop (||, 1" )t () is in H*™(B). Then an application of (1.4) to this product
and the fact that the radial polynomial Pa,,(|x|, u*) vanishes on the hyperspheres
S(Rg) yield the desired orthogonal property. O

It is clear how Radau and Lobatto type extended cubature formulae

[ utiahs da:~ch | 59t + Bor (o),

S(Ry)
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| @) dw~20k/

S(Rk)

€)do(€) + Bof(0) + By /S £(6) do(€)

of highest polyharmonic order of precision can be constructed. The free “nodes”
Ry,..., R, are determined as the positive zeros of the polynomial Ps,, of degree
2m which is orthogonal on [—1, 1] with respect to the weight functions ¢2(|t|)|¢|*~*

and t2(1—t2)u(|t])|t|* 1, respectively, to all polynomials of degree 2m —1. We omit
the details.

4. AN EXTREMAL PROBLEM

Similarly to the univariate case, the problem of least integral of positive expres-

sions of the form f(z) = |z|*" +wu(zx), where u is 2m -harmonic, can be solved using
the extended Gaussian theorem.

Theorem 3. Among all nonnegative functions of the form f(zx) = |z|*™ + u(z),
u € H*™(B), the function

@ (z) := [[(le® - B,
k=1
where { Ry} are the Gaussian radii, has the minimal integral over B.

The proof goes as in the univariate case and uses the positivity of the Gaussian
coefficients. Since f(x)—Q*(x) belongs to H*>™(B), the extended Gaussian cubature
integrates this function exactly. Thus we have

m

/B (@) =¥ @ds = 3 /S @) 2@l

k=

= ZAk/ (z)do >0,

S(Ry)
which shows the extremality of Q*.

5. MULTIPLE NODE CASE

The approach illustrated in the previous sections can be applied to the con-
struction of extended cubature formulae that are based on integrals of f and its
consecutive normal derivatives (or other differential operators of f) over fixed hy-
perspheres S(Ry),...,S(Ry). To do so we need to follow, by analogy, the so-called

multiple node quadrature formulae in the univariate case. These are formulae of
the form

1 m v;—1
(1) [ 0=y > an )
-1 i=1 A=0
Given any set of distinct nodes t; < -+ < t,, in [—1,1] and the corresponding
multiplicities v1,... ,Vm (M = vy + -+ + vy — 1), there is a unique quadrature

formula of the form (5.1) that integrates exactly all algebraic polynomials of degree
M. Tt can be obtained by integration of the Hermite interpolating polynomial

m vi—1

Hy(f5t) = ZZf(’\)

=1 A=0
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where the basic polynomials {®;,} are determined by the the conditions
i emyy,  OW() =800, hi=1,...,m, LA=0,...,5—1

The Gaussian approach to multiple node quadrature formulae has encountered
serious difficulties that arise from the nonlinearity of the corresponding extremal
problems associated with the characterisation of the extremal nodes. It was easy
to observe that for given vy, ..., v, the highest algebraic degree of precision that
can be achieved by a quadrature formula of the form (5.1) is &1 + -+ + D, — 1,
where ; denotes the smallest even number which is greater than or equal to v;.
For example, if v; is odd then #; = v; + 1. The complete characterisation of the
quadrature formulae of type (5.1) that have a highest algebraic degree of precision
has been done by the efforts of several outstanding mathematicians. First Turdn [10]
proved the existence and uniqueness, and gave the characterisation of the optimal
nodes of (5.1) in the particular case when all multiplicities are equal, i.e., in the case
v =+ = Uy = v. Then the Bulgarian mathematician L. Tschakaloff [9] proved
the existence of optimal nodes for any fixed system of multiplicities {v;}. The
uniqueness remained an open problem for more than 20 years. In 1975 Ghizzetti
and Ossicini [5] published an elegant and ingenious proof of the uniqueness of the
optimal nodes. Independently the uniqueness was shown in a more general situation
by Karlin and Pinkus [7].

We are going to show here that the quadratures (5.1) have natural analogues in
the polyharmonic setting. In order to do this, we first need to present the following
polyharmonic extension of the Hermite representation of algebraic polynomials.

Corollary 4. Let 0 < t1 < -+ < tyy, < 1 be fixzed numbers and v1,... ,Um any
giwen multiplicities associated with them, such that M = vy + -+« + vy, — 1. Set
R?:=1t;, i=1,...,m. Then every M-harmonic function u can be presented in
the form

m I/i—l
(5.2) u(@) =) Y @iyl (),

i=1 j=0

where the h;j are harmonic functions on B and the ®;; are associated withty,. .., ty,.
Moreover, hyj is a harmonic function on B which is uniquely determined by the

values of Z>u(z), on S; = S(R?), for j=0,...,;5—1(i=1,...,m).

Proof. The existence of the harmonic coefficients follows immediately from Lemma
2, taking into account that the polynomials {®;;} constitute a basis in mp;_1.
To determine the functions hg;, notice that for A € {0,... v, — 1}

8)\ m v;—1 a)\ )
| = LY {5 @ulePing) )
Sk i=1 j=0 Sk
m vi—1 X
1 A ® o)
- Z Z Z <3> [(I)ij( 2)] t=Ry {mhij(x)
i=1j s=0 Sk

o(r—s)
t=Ry { Ov(r—s) hkj (37)}

Sk
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The last equality is justified by the observation that
(@45 ()]

=0 fori#k, s=0,1,...,v,—1,

=g

as seen from the definition of ®;;. Besides,

[@rs (]|,

=0 fors<yj

=Ry
and

@ (END| = QR + 2y (R)Y + -} _

where the expression in {---} is a linear combination of derivatives of ®;; of order
smaller than j. Then it vanishes at t = Rj. Recalling that ®;(R2)() = 1 by
definition, we finally get

(5.3)

8/\ A—1 A (s) a(}\ s)

pule)) =% () )|, srmhn@)| + @R R
S 7=0 s=0 Sk

Thus, if hgg, ... ,hkr—1 are found, we can determine hyy uniquely from this rela-

tion. The proof is complete. O

Now we are going to integrate (5.2) over the ball in order to get a cubature
formula. The following observation will be very useful.

Lemma 4. If h is a harmonic function on B, then

/S 8’;@(5) do(§) =0 foreveryk=1,2,....

Proof. The claim is well-known for k = 1. It follows directly from the Green formula

/BAhdxz/Saﬁh(g) do(¢)

Then one can prove the lemma by induction. To do this, note first that if h is
harmonic in B, then the function

n

Oh
>

1 Ti
is harmonic too (see Proposition 1.1 in [2]). Since

z; Oh(x
Z |z| 8%

at any point = € S, we conclude that the function g1 (z) := |z| %, and consequently
the k-th iterate

O0gr—1
ov

is harmonic. Next we show that gx can be presented in the form

d*h A &'h
_ k
(5.4) gk () = la] ayk+;¢kj(|x|) %

gi(z) = |z| . k=1,2,... (go:=h),

I
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with certain functions gy;(t). Indeed, assume that the representation holds for gy.
Then, taking into account that %'f—l =1, we get

Jg LOF LR 6 h
Ik+1 = |317|‘_Vl2 = |x|{|x| EY k+1+k| | o

j+1
+ Z[% o el |>§]+11}

oF+1h a h
= | |k+18 k+1 +Z<Pk+1,3 | |)

where the functions @11 can be given explicitly in terms of ¢;. Having (5.4)
proven, we use it to perform the induction step. Assume that

0 h
61/

do=0 for j=1,...,k—1,

and for every harmonic function h. Since gi_1 is harmonic, then

0 — Sagkl /||gkld0—/gk()d

= /| |k da-q-Z(pkj (lz]) /—da

oFh
= S—a‘;‘k‘d(f.

The induction is completed, and so is the proof of the lemma. O

Now, integrating both sides of the Hermite representation (5.2) over B and
making use of the radiality of some of the terms, we get as in the Lagrangean case
the following extended cubature formula for polyharmonic functions.

Theorem 4. Let 0 <t; < -+ <ty <1 be fized numbers and v1, ... , v, any given
multiplicities associated with them, such that M = vy + -+ v,,. Then there exists
a unique cubature formula of the form

m vip—1 A
— 0
(55) [ @ntiada Y3 o [ e dote)
s, OV
k=1 A=0 k
which integrates exactly all M -harmonic functions. Moreover,

1 ! 2\ n—1
Ak,l/}c—l = 2Vlc—'1Ri(n_l)+V’C_1 /O /.L(t) @k’yk_l(t )t dt.

Proof. Integrating (5.2), we get

(5.6) /B w(la)) u(z) do ="

k=1 A=0

—

Vi —

1
/ 1(t) B (t?) / hia(§) do(€) di.
0 S(t)
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Note that

n—1
[, 12© 470 =@ = () [ hea(© o)

Now, integrating (5.3) and using Lemma 4, we find that
o / )
q)k / hk do f
o SZ AV, [, ei©) dot©)
R [ hia(©) do(6)
Sk
This is a linear system of equations in the unknowns
X, = / hia(€) do(€), A=0,... v, — 1.
Sk

The determinant is triangular with nonzero entries on the diagonal, thus nonzero.
Then the quantities X are uniquely determined as linear combinations of

P &) doe), j=0,... A

Y= s, OV

More precisely,
1
Xy = ——=Y Y.
A (2Rk;)/\ )\+j§0ak] J

with certain coefficients {ay;}. Then (5.6) becomes

[ wtiabu(e) do
B
SEa ik £\t 1 A—1
-2 o () (G|

which is a formula of the desired form (5.5). It is clear that the coeflicient Ay ., —1
can be found by the formula given in the theorem. The existence part of the
theorem is proved.
In order to show the uniqueness, put u(z) := ®;(|z|?) in (5.5). Then we get
vp—1

/ i) () do = 3 AR {20 S

) j=O7"'>Vk'_1)

t=Ry
which is a linear system for {Ak..—1} with a nonzero determinant. Thus the
coefficients of the cubature are determined uniquely. O
Let us turn now to the optimal choice of the nodes. Assume that v1,... , v, are

arbitrary positive integers. Set M := vy + -+ + v, and consider cubatures of the
form (5.5).

Using the example
fla) = (a* =) (2 = )

one can deduce that the maximal PHOP(5.5) < M + m. The next theorem
characterises the optimal cubature of this type. Set

Q) = (2 =)=t (82 =2 )L
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Theorem 5. For any given set of odd multiplicities v, ... vy with M = v +
-+ vy, there exists a unique extended cubature formula of the form (5.5) that is
exact for all (M + m)-harmonic functions. The nodes R1,... ,R,, of this cubature

are located at the positive zeros of the polynomial Q(t) satisfying the orthogonality
relations:

/1 QE)QUEH™  u(jt) dt =0 for every Q€ Tm1.
-1

Proof. Consider the interpolatory type cubature with multiplicities {vy + 1}. It
would produce a rule of a maximal polyharmonic order of precision if Ay ,, = 0.
But, as is seen from Theorem 4,

1 m
Agy, = C/O H(t— te)”s Qu(t)t" u(t) dt,
s=1

where Q) is a polynomial of degree m — 1 and C is some constant. Thus the

existence and uniqueness of the extremal points t; follows from the corresponding
univariate results. O
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