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THE L,-APPROXIMATION ORDER
OF SURFACE SPLINE INTERPOLATION

MICHAEL J. JOHNSON

ABSTRACT. We show that if the open, bounded domain Q@ C R? has a suf-
ficiently smooth boundary and if the data function f is sufficiently smooth,
then the Lp(Q)-norm of the error between f and its surface spline interpolant
is O(67711/2) (1 < p < o0), where vy, := min{m,m — d/2 + d/p} and m is
an integer parameter specifying the surface spline. In case p = 2, this lower
bound on the approximation order agrees with a previously obtained upper

bound, and so we conclude that the Lo-approximation order of surface spline
interpolation is m + 1/2.

1. INTRODUCTION

Let d,m € N:={1,2,3,...} with m > d/2. Let H™ be the space of all tempered
distributions f such that D¥f € Ly(R?) for all |a| = m. We define the semi-norm
Il W g on H™ by

Mz o= 1 F |
where fdenotes the Fourier transform of f. Let IT; denote the space of all d-variate

polynomials whose total degree is less or equal to k. It is known [7] that if f € H™
and E C R? satisfies

Lo(R4\O)

(1.1) p(2) # {0} for all p € I1,,_1\0,
then there exists a unique s € H™ which minimizes |||s|| ;. subject to the interpo-
lation conditions S|z = f|'~" The function s is called the surface spline interpolant

to f at E and will be denoted by T=f. In case E is a finite subset of R satisfying
(1.1), T=f has the concrete representation as the unique function in S(¢,=E) which

satisfies S|z = f|5' Here ¢ : R — R is the radially symmetric function given by
b -2 if d is odd
T P Y10g || if d s even,

and S(#,ZE) denotes the space of all functions of the form

g+ Y Aed(-—8),

£eE

Received by the editor June 10, 1999.

2000 Mathematics Subject Classification. Primary 41A15, 41A25, 41A63, 65D05.

Key words and phrases. Interpolation, surface spline, approximation order, scattered data.
This work was supported by Kuwait University Research Grant SM-175.

(©2000 American Mathematical Society
719



720 MICHAEL J. JOHNSON

where q € II,,,_1 and the \¢’s satisfy
(1.2) S Xep(€) =0, VpeTl, 1.

tes

Surface spline interpolation is a prominent member of a family of interpolants
known as radial basis function interpolants. The approximation properties of these
interpolants have received considerable attention in the literature (for a sampling
see [8], [4], [26], [16], [9], [6], [19], [12], [22], [13], [23], [3], and the surveys [18], [5]).

In order to discuss the approximation properties of surface spline interpolation,
we assume that Q C R? is bounded and open and that the interpolation points Z
are contained within 2 := closure(Q2). The “density” of Z in Q2 is measured by

0(E,Q) = inf |z —¢|.
(2,9) = sup fnf [ = ¢

Roughly speaking, we say that surface spline interpolation provides L,-approzima-
tion of order ~y if for all bounded, open Q C R? having a sufficiently smooth bound-
ary and for all sufficiently smooth functions f,

If = T=fll; @ = O@Y) s §:=05(E,Q) 0.

The largest (or supremum of all) such « is called the Ly-approxzimation order of
surface spline interpolation. Duchon [8] has shown that the L,-approximation order
of surface spline interpolation is at least -, := min{m,m — d/2 + d/p} for all
1 < p < 00. The precise details are as follows:

Theorem 1.3. Let Q C R? be bounded, open and have the cone property. Then

there exists 8o > 0 (depending only on Q,m) such that if f € H™ and E C Q with
§:=6(8,Q) <, then

If = T=fll, @ < const(Q,m) 57| Taf — T=flll gm,

and

I Tof = Teflllgm — 0 as 6 — 0.

Actually, Duchon has assumed additionally that € is connected and has a Lip-
schitz boundary. Nevertheless, his proofs can be easily adapted to prove Theorem
1.3.

On the other hand, it is known [12] that the L,-approximation order of surface
spline interpolation is at most m + 1/p for all 1 < p < co. Specifically, it is known

that if Q is the open unit ball B := {z € R?: |z| < 1}, then there exists f € C>(R%)
such that

If = T=fllp, ) # o™ P) as §:=6(2,Q) —0.

For the sake of comparison, we mention that in the ideal case Q = R¢, & = hZ¢
(which of course violates our present setup), it is known ([4], [11]) that the L,-
approximation order of surface spline interpolation is 2m, a value at least twice
Yp-

The purpose of the present work is to show that the L,-approximation order of
surface spline interpolation is at least v, +1/2 for all 1 < p < co. In case p = 2,
this new lower bound matches the upper bound of m + 1/p, and so we conclude
that the Lo-approximation order of surface spline interpolation is m+1/2. In order
to state our main result, we need the following definition which is taken from [1,
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p. 67]. Our statement of the definition has been specialized (simplified) to the case
when A has a bounded boundary.

Definition 1.4. Let £ € N and let A C R? be an open set having a bounded
boundary. The set A has the uniform C*-regularity property if there exists a finite
open cover {U;} of 0A, and a corresponding collection of one-to-one transformations
{®,} with ®; taking U; onto B, such that

(i) For each j, the components of @, belong to C*(U;).

(ii) For each j, the components of @J belong to C*(B).

(iii) For some h >0, (0A+ hB) C |, <I>j_1(B/2).

(iv) For each j, ®;(U;NA) ={y € B:yq > 0}.

To illustrate this definition for d = 2, we mention that if g € C*(R) is positive
and 2m-periodic and if A is defined by

A:={(rcos,rsinf): 0<r < g(0), 0<0<2r},

then A has the uniform C*-regularity property. Furthermore, if {A;} is a finite
collection of translates of sets of the above form, then | J A; also has the uniform C*-
regularity property provided that the distance from A; to A; is positive whenever
i 7.
Our main result is the following:

Theorem 1.5. Let Q C R? be bounded, open and have the uniform C*™-regularity
property. There exists g > 0 (depending only on Q,m) such that if f € Bm"'l/2
and E C Q satisfies § := §(Z,Q) < &, then

NI Tef = T=fllgrm < const(Q,m)™? ||| gz
and hence by Theorem 1.3,
If = T=fllz, @ < const(Q,m)§» /2 ||fHB;"1+1/2 :

Here, B} - 172 denotes a certain Besov space which we define in Section 2.

An outline of the paper is as follows. In Section 2, we recall previous work
on this problem and state in Theorem 2.3 precisely what will be proven in the
present paper. In Section 3, we estimate the size of ¢ x u in various function spaces
under various assumptions on the compactly supported distribution u. A general
representation of T f is then obtained in Section 4 assuming only that A is bounded
and f € H™. The regularity of T f in the exterior domain Qg := R4\ Q is studied
in Section 5 and the global regularity of T, f is then deduced in Section 6. Finally,
in Section 7, the representation and global regularity of Tq f are employed to prove
Theorem 2.3.

Throughout this paper we use standard multi-index notation:D*:= ;:cfl (59:2 e
1
gma—d. The natural numbers are denoted N := {1,2,3, ...}, and the nonnegative in-
d

tegers are denoted Ny. For multi-indices a € Ng, we define |a| := a1 +as+- -+ ayq,
while for z € R?, we define |z| := \/z?+ 23 +--- +22. For multi-indices a,
we employ the notation ()* to represent the monomial z +— z% z € R? The
space of polynomials of total degree < k can then be expressed as Iy :=

span{( )% : la] < k}. The Fourier transform of an integrable function f is defined by
fRd —itwe f(x) dz. The space of compactly supported C* functions whose
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support is contained in A C R? is denoted C°(A). If u is a distribution and g is
a test function, then the application of u to g is denoted (g, 1 ). We employ the
notation const to denote a generic constant in the range (0..00) whose value may
change with each occurence. An important aspect of this notation is that const
depends only on its arguments if any, and otherwise depends on nothing.

2. A REDUCTION OF THE PROBLEM
The Besov spaces, which we now define, play an essential role in our theory.

Definition 2.1. Let Ay := B, and for k € N, let Ay := 2¥B\2*"'B. The Besov
space B;q, v €eR, 1< q< o0, is defined to be the set of all tempered distributions

f for which f is a locally integrable function and

I1£llg, = ||k = 2|

< 0.
£4(No)

Ly (Ag)

We also employ the Sobolev spaces W™P(A) defined for open A C R? and n € Ny,
p€[l..00] by

WmP(A) :=={f € La(A) : [|flwn(a) < o0},

where “f”wn,p(A) = (ngn ||Daf||1£p(,4))l/p for 1 < p < oo and ||f||Wn,oo(A) =
max|q(<n [[D*fll 1, 4)- The closure of CZ°(A) in W™P(A) is denoted

Wy (A) := closure(C°(A); W™P(A)).
For s > 0, the Sobolev space W* is defined by

W= {f € Lot [ Fllpe = |1+ H72F || < o).

All of the above defined spaces are Banach spaces. The following continuous em-
beddings can be found in [17] (they are also easy to prove from the definitions):

Bs»lth — B;?qz if 81 > s9,
Bg,ql — W? — Bg,qz if g1 <2< g9, s> 0, and

W31’—>B§’q‘—>Ws2 if 1 >8> 89 >0.

Moreover, if s > 0, then W* = B3, (with equivalent norms), and if n € Ny, then
W™2(RY) = W™ (with equivalent norms).

A significant part of our task (proving Theorem 1.5) has already been established
n [14]. Before stating the relevant result, we must define the convolution between
¢ and a compactly supported distribution. The Fourier transform of ¢ can be
identified on R?\0 with the locally integrable function c, |- 7*™, where is cy is a
nonzero real constant which depends only on d, m (see [10]). If p is any compactly
supported distribution, then we define the convolution ¢ in the Fourier transform

domain via
(¢ )™= 3R

That this is well defined stems from the fact that aﬁ is a tempered distribution
(as can be seen from the fact that i € C°°(R%) and |fi(x)| has at most polynomial
growth as |z| — 00). The following has been proven (in greater generality) in [14]:
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Theorem 2.2. Let Q be a bounded, open subset of R® having the cone property.
There exists 8y > 0 (depending only on Q,m) such that if f € C(RY) is such that

there exists q € Mm_1, p € B;;’;“/Q satisfying suppp C Q, (1,1 ) = {0}, and
q+o*u=f on, then

(i) Taf=q+¢*xp and
(i) Tef — T=fllgm < const(Q,m)s"/? Il pmrre
whenever Z C §) satisfies & := 6(Z,Q) < &.

In view of Theorem 1.3 and Theorem 2.2, the task of proving Theorem 1.5 is
reduced to proving the following;:

Theorem 2.3. Let Q be a bounded, open subset of R® having the uniform C*™-

regularity property. If f € ByiT'/?, then there ewists q € oy and p € By 7 /2

such that suppp C Q, (p_1,p ) = {0}, ¢+ ¢* u= f on Q, and ’
(24) HM”B2—‘2+1/2 S COI’lSt(Q, m) Hf“Bg:Lf'l/z .

We mention that in the special case d = m = 2, Q = B, it has already been
shown in [13] that such a g and p exist (without (2.4)) whenever f € C*°(R?). In
this special case, it is possible to express p explicitly in terms of the boundary data

and normal derivatives of f on 0B; however, such an approach would be hopeless
for general (.

3. AN EXAMINATION OF ¢ * [
The purpose of this section is to prove the following:

Proposition 3.1. Let r > 0 and let p € By 5" be supported in rB. The following
hold:

(i) If (Ip—1,u ) = {0}, then ¢ x u € H™ and
const(d, m) [ gy < [l * plll g < const(d, m, 7) [l g5
(i) If (gm—1,u ) = {0}, then ¢ x p € W™ and
const(d,m) [|ull gy < ||@* pllyym < const(d,m, ) ||ull g -
(1) 6% o € W™2(rB) and |6 % iy .z ) < const(dym, ) [l .
(iv) Ifp€ Lo, then gxp€ W2™2(rB) and ||¢ * pllyyom.s(, ) < const(d, m,r) ||l 1, -
Our proof of Proposition 3.1 requires the following two lemmata.

Lemma 3.2. If g € C°(RY) satisfies |g(w)] = O(jw|*™ %™ as |w| — 0, then

<9,$> =c4 /Rd g(w) Jw| 7™ dw.

Proof. The proof can be adapted from that of [13, Lemma 2.3] in a straightforward
fashion. d

Lemma 3.3. Letr >0,v>0,n€N, and let u € By ] be supported in rB. Then
WEllwnco gy < const(d, v, n,m) llull gy
and if (11,1, p ) = {0}, then

[z

< t dv s 1oy -
o < const(d 7o) il 5
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Proof. Since p is compactly supported, [ is entire. Let n € CZ° (R9) be such that
n=1on rB and for a € NZ, let 7, := ()*n € C°(R?). Note that

D = i1 ()2 0) "= 719 (naps) = i (2m) U +
Hence, for w € B,

|D*fi(w)| = (2m) 7

/ AT — ) dt
R4

< (2m)~¢

1 jw I+ 1) fla(w = )|, < comst(n,y,a) |l 55 -

Therefore, after a suitable choice of 1, |||l yyn.ce (g < const(d, v, n,7) [|ull p=7- Now
W (B) B

assume that (IL,_1,p ) = {0}. It follows that D*[i(0) = 0 V|a| < n. Hence,
by Taylor’s theorem, |f(w)| < const(d,n) [w|" |Zllyne(p) Yw € B. Therefore,

A0 < .
[, < comstldsr ) sl O
Proof of Proposition 3.1. Assume (Il,_1,p ) = {0}. Put f:= ¢ * p. Let |a| =

Then (D)~ = i™()f. If g € C(RY), then g = i™()*Jig € C°(R?) satisfies
lg1(w)| = O(jw]*™) as |w| — 0 and hence by Lemma 3.2,

(9,(D*f)" ) =

Lo

gla
_C¢/ |w|_2 w) dw = cyi™ / |w| 2™ wOi(w) g(w) dw.
Rd

The assumptions on 4 ensure that |-{7*™ ()*7i € Lo; hence, (D*f)~ € Ly and by
the Plancherel theorem, D®f € L. Therefore, f € H™. Now,

1 = 1177 gy = S 2o 172 2

\LZ(A,C)’

For k > 0 we have 27" ||fil| 1, 4,) < ”l-l_m’\

< gmo—mk |5 hil
e Iz, a,y while

for k = 0 we have ||l 1,5 < ll| - All < const(d, m,r) HuHB_m by Lemma
3.3. It now follows that const(d,m) ||u||B2 " < [f Nl ggm < const(d,m,r) H,uHB22

which proves (i). For (ii) assume (Igm—1, ) = {0}. The argument used to prove
(i) can be easily adapted to show that D*f € Ly for all |af < m. Hence f € wm.

Now
1 = (15 1) ) g(mt) ll—2mﬁL2(Ak)

For k > 0 we have
2 il < (L)
and for k = 0 we have
(1 1B)"
by Lemma 3.3. It now follows that
const(d, m) | g < |l < constld, m,r) il gy

< 22mpmk (IPRTRE
La(Ag)

150, ) < < const(d,m,7) |ull p;

La(B)
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which proves (ii). Turning now to (iii)-(iv), we no longer assume (II,,_1,pu ) =
{0}. There exist o € C°(rB) such that for all |a|,|8] < 2m, ()P, tta ) = da.s,

lll,uaHL2 < const(d, m,7), and [|¢ * fialyyem 2.5y < const(d,m,r). For |af < 2m we
ave

KO w01 = IDEO)] < IEllwzm e 5y < const(d,m,r) ||l g5 7
by Lemma 3.3. Put v := :“_Z|a1<2m<()a7ﬁ‘ Vio. Then suppy C B, (Ilgy—1,v ) =
{0}, and
(3.4)

”V“BZE" < “,U'“B;”Q” (1 +const(d, m, ) Z t|#a||B£gl < const(d, m,r) ”/JHBQ"Q” :
|a)<2m

Therefore,

ll¢ = MHWm,z(TB) < o= V“Wm»Z(TB) + ||o = Z (0% 1 ) a
|aj<2m Wm2(rB)
< const(d, m,7) (116 Vllym + Il g0 ) < const(d, m, ) ] s
by (ii) and (3.4). Hence (iii). In order to prove (iv), we assume p € L. It follows
from Lemma 3.3 that |[(()*, u )| < const(d,m,7) ||u]l;, ¥ |a| < 2m and consequently

|aj<2m

(3:5) v, < llellz, (1 + const(d, m,r) ) llﬂaHLQ> < const(d, m,r) [|ull L, -

Hence,

(3.6) o */J”Wmﬂ(rB) <= V“WZmﬂ(rB) + || * Z (ORNTRYTS

laj<2m

W2m.2(rB)
< const(d,m,) (|¢ * V|l yyam + H/"’”L2> .
Now,
65 vy = & (”(1 ) aH;(B) (1) ;(Rd\m>

< const(d, m) (H ||72m ,’)”2

~112 2
i~ W1 gmonm, ) < const(dmr) I,

by Lemma 3.3 and the Plancherel theorem which, in view of (3.6) and (3.5), proves
(iv). d

4. A REPRESENTATION OF T4 f

The following representation of T4 f is probably known, particularly by Duchon,
but to the best of our knowledge has yet to be clearly stated and proved. Since our

subsequent development relies heavily on this representation, we give it a careful
treatment.
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Theorem 4.1. Let A C R? be bounded and satisfy (1.1). For all f € H™, there
exists a unique polynomial q and compactly supported distribution p such that

Taf =q+¢xp.
Moreover, the following hold
(i) q € Mm—1, p € B33, and suppp C A.
(it) (-1, ) = {0}
(i) [l pyy < const(d, m) I Taf[llzm-

Proof. An important property of surface spline interpolation (see [15]) is that if
= C R? satisfies (1.1), then for all g € H™,

(4.2) llg = T=glll3m = gl = I1T=gl -
If 2 C E both satisfy (1.1) and g € H™, then Tzg = Ts(T=g) and hence
(4.3)
0 < || T=g — Teglllyy = N Teglll 7 — NT2gll7;m
= (NTeglll g — T2l o) N TGl e + T2 5rn)-

Let =, be an increasing sequence of finite subsets of A, each satisfying (1.1), such
that 6(Z,,A) — 0 as n — oo. Let f € H™. Duchon [7] has shown that there
exists ¢, € My,_1 and p, € span{de : £ € E,}, satisfying (Ilm—1, 40 ) = {0},
such that Tz, f = qn + ¢ * p,,. Here d¢ denotes the Dirac d-distribution defined
by (f,6¢ ) = f(€). Since E, C Enpy1, it follows from (4.3) that the sequence
{T=,, flll g }nen is monotonically increasing. Since this sequence is bounded above
by ||| £l 7, it is convergent. By choosing a subsequence of {Z,}, if necessary, we
may assume without loss of generality that |||T=, . flll ;. — IT&, flllgm < 272"
V¥n € N. Let 7 > 0 be the smallest positive real number satisfying A C rB. By
Proposition 3.1 (i) and (4.3),

s = il g < const(d, )% (s — o)l
= const(d,m)|[|Tz, ., f — T&, flll ;.. < const(d, f,m)27".

It follows that {u,} is a Cauchy sequence in the Banach space By 5", and hence
there exists p € By 5" such that pu,, — pin By 3" Since the space of distributions in
B, 5" which are supported in A and annihilate IT,,,_; is a closed subspace of By 5", it
follows that suppy C 4 and (IT,,_1, 1 ) = {0}. It follows from Proposition 3.1 (iii)
that ¢ * ju, — ¢* pin W™2(rB). Since m > d/2, the Sobolev Imbedding Theorem
[1, p. 97] asserts that W™2(r B) is continuously imbedded in C(rB) (taken with the
Loo(rB)-norm). Consequently f—¢#p, — f—¢*pin C(rB). But f—d*pu, = qn
on E,. Hence, there exists ¢ € II,,,_1 such that ¢, — ¢ in II,,_;. It follows now
that f = ¢+ ¢ * pu on A. By Proposition 3.1 (i), ¢+ ¢ x p € H™, and by (4.2),
g + ¢ * ulll g = limy—oo [0 pinlll g < M Ta Sl ggm . Therefore Taf = g+ ¢ * p.
Note that (i) and (ii) hold and that (iii) follows from Proposition 3.1 (i). It remains
to show that ¢ and p are unique. Assume that the polynomial ¢ and the compactly
supported distribution fi are such that T4 f = g+ ¢* . Then ¢—q+¢*(p—p) =0
and consequently (¢ — ¢) "+ qAﬁ (u — 1) "= 0. Since (¢ — q) " is supported on {0} and
b= Co |- 7*™ on R¥\0, it follows that (1 — i) "= 0 on R4\0 and hence p = fi. Thus
(¢ — q)” =0, which implies ¢ = q. O
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With the proof of Theorem 4.1 in hand, the following corollary, which generalizes
the latter half of Theorem 1.3, is irresistable.

Corollary. Let A C R? be bounded and satisfy (1.1). If f € H™, then for every
€ > 0 there exists § > 0 (depending only on e, f, A, and m) such that

WTaf = T=flllgm <€
whenever = C A satisfies §(Z, A) < 6.

Proof. Let f € H™, and let {Z,}, {un} be as in the proof of Theorem 4.1. Note
that since every function in H™ is continuous, Taf = Tzf. It follows from (4.3)
that if = C =, then

NT=F = Taflll g < /2T M m = IT2 A gy AU g

Hence, it £ C A and [Toflll gl fllln > WTafllzo I fll s — €/2, then
ITaf = Tefllym < <. Since IT=, fllm — ITaflllzn a8 n — oo, it follows
that there exists n € N such that |||Tx=,, f|| g |/l g = WTA S o 1 F 11| 7 — €2/4.
Let us write 2, = {£1,&2,...,¢n} and p, = ij:l Ak0¢,, where N := #=,. Since
the linear system of equations which determines {A\r} (see [22, eq. (1.2)]) depends
continuously on =Z,, it follows that {\;} depends continuously on Z,. Since the
mapping R? 3 € — ¢ € B 5" is continuous, and with Proposition 3.1 (i) in view, it
follows that there exists § > 0 such that if = = {El, . ,EN} satisfies ’ék — Ek’ <4

vk, then | T fll o e > WT, £1ll o N 11l e — €2/4. Now, let Z C A be such
that §(2,A4) < 6. Since Z,, C A, there exists = = {;,... ,{n} C E such that
Iék - Ek‘ < § Vk. Hence

Tz W Wz 2 T F W o W e > W T Mg W W e — €2 /4

> WTaf g L Mg — €2/2,
whence follows the desired conclusion. O

5. THE REGULARITY OF T f IN Qg

At this point we know that the u in the representation T f = q + ¢ * u belongs
to B, 5" whenever f € H™. The main hurdle in proving Theorem 2.3 is to show

that if Q has a sufficiently smooth boundary and f € By 2, then the regularity

2,1
of p1 increases to that of By ;ZH/ ®. As will become clear in Section 7, there is an

intimate relation between the regularity of u and the regularity of T f. We begin
by studying the regularity of T f in the exterior domain

Qext = Rd\ﬁ

We assume throughout this section that @ C R? is open and bounded and has
the uniform C?™-regularity property. It follows from this that Q. has a bounded

boundary and the uniform C?™-regularity property. Our purpose in this section is
to prove the following:

Proposition 5.1. If f € W™, then for all |a| = m, D*Tof € W™?(Qext) and
1D T f (e < cONSEQm) [ Fllyrar -
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We will employ a regularity result regarding a solution of a linear elliptic partial
differential equation. Since we are concerned only with the differential operator
A™, we will state a simplified result which applies to constant coefficient differential
operators. The following result appears as a remark generalizing [2, Th. 9.8].

Theorem 5.2. Let A C R? be an open set having a bounded boundary and hav-

ing the uniform C*™-regularity property. Let {aq,g}al,51<m be complex numbers
satisfying

(5.3) Re Y a0t > Elgf" vEeRr
e}, |B|=m
for some constant Eq > 0. Let b be the Dirichlet bilinear form
(5.4) b= S ans / D*u(z)DPu(g) da.
lal 18] <m A

Ifue W (A) and g € Ly(A) are such that

(5.5) biu,o] = [ g ds Yo e C(A),
A

then u € W2™2(A) and

il 2y < const(A,m, (o)) (gl puay + ) -

Proof. First of all, we point out that the assumptions on A ensure that A is of class
C?™ as defined in [2, Def. 9.2]. The case when A is bounded is covered by [2, Th.
9.8] so we assume A is unbounded. Let ¢ be the smallest positive real number
such that R\roB C A and put r := 7o + 4v/d. By [2, Th. 9.8],

(5:6)  Nullywanaganss < const(4,m, {aa,s}) (19l saca) + 16l i) -

The proof of (5.6) is done in two steps. First, it is shown that (5.6) holds with

lull () replaced by [[ullym 24y, and then Gérding’s inequality is employed to
show that

67 Nulwsa < constldm, {aasd) (lall gy + ol ) -

We turn now to A\rB. For j € Z¢, put G; := j + 2v/dB and éj = j +dB,
and let N := {j € Z¢ : G; N (A\rB) # 0}. Since A\rB = R¥\rB, the choice of
r ensures that G; C A Vj € N. By [2, Th. 9.6], for each j € N, ||ullyyamo(g,) <

const(d, m, {aa,s}) (911 2,(6,) + Nullywma(,) )- Hence,
2 2
“u”W?mxz(A\rB) < Z Hu“Wzmﬂ(éj)
JEN

2 2
< const(d,m, {aa,s) 3= (19136, + Nuliymoo,) )
JEN

< const(d,m, {aa5}) (I9113,ca) + Il

which, in view of (5.7) and (5.6), completes the proof. d
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In our proof of Proposition 5.1, we employ the following two lemmata in establishing

the hypothesis of Theorem 5.2. The first lemma is an immediate consequence of [1,
Th. 7.55].

Lemma 5.8. Let A be as in Theorem 5.2. If f € W™ equals 0 on R¥\A, then
f e Wy (A).

Lemma 5.9. If i is a compactly supported distribution, then
A™ (¢ p) = (=1)"cop,

where A 1= 8‘9—% + 3‘9—;% + ot 8—‘2—% denotes the Laplacian operator.
Proof. Let g € C°(R?). Then

(9 (A™(@x 1) ™) = (=)™ (g, | " D) = (=)™ (g [ .6 )

— (=)™ /R () ™ fw) | " dw, by Lemma 3.2,

=(=1)"cylg 1 ).

O

Before embarking on the proof below, an explanation is in order. Ideally, we would
like to choose u, in Theorem 5.2, to be f — T f. Unfortunately, we only know that
Tof € H™ which means that |Tof(x)| may grow as |z| — oo; hence we cannot
assert that f — Tq f belongs to W™?2(Qeys ). Fortunately, the offending part of T f

(¢ + ¢ *x v in the language of the proof below) can be subtracted off and treated
seperately.

Proof of Proposition 5.1. For |a| < 2m, let uo € C°() be such that ()%, 1q ) =
S, Yl , 18] < 2m and 30, oo ey, < const(,m). Let f € W?™ and let

q € lpm_1, p € By3" be as in Theorem 4.1. Then suppp C Q, (Il,—1, 1 ) = {0},
Tof =q+ ¢*p, and

(5.10)
Il g < comst(d, m)[|Taf Il g < comst(d, m)[[|f[ll ym < const(d,m) [ f]lyym -

Let r be the smallest positive real number for which Q C (r/2)B. Note that since
qg=f—¢+*ponand I, is finite dimensional, it follows that

lallyp2m 2 my < const(,m) [lgllyme2 o
< const(§2,m) (L fllym + 16 % Bllymaes )
< const(£2, m) (Hf”wm + ||#|‘B;;"> < const(Q, m) || f]|yym

by Proposition 3.1 (iii) and (5.10). Put v :=3" 1, <0, (0% & )la and note that
(Mop—1, 4 — v ) = {0}. Hence we can write Tof = ¢+ ¢ xv + ¢ * (u — v) with
¢ * (u—v) € W™ by Proposition 3.1 (ii). It follows from Lemma 3.3 that for all
la) < 2m,

KO% p )] = [D*E(0)] < [Bllyyom—1.0 5y

< const(§), m) ||u||B£31 < const(Q, m) || flyym
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by (5.10). Hence,
(5.11) Wi, < >0 KO% m ) e, < const(€,m) [ f]ym -

m<|al<2m
Consequently, we have by Proposition 3.1 (iv), that
6% vllyomz2ip) < const(€,m) [vll,, < const(,m) | fllym -

Let 0 € C2°(rB) be such that o =1 on © and [|o|lyy2m.ce(,p5) < const(,m). We
then obtain the estimate
(5.12)

If = alg+ o v)lyem < Ifllwam + lo(a+ & *v)llyam
SN llyyam + const(2,m) g + ¢ * vllyyzm 2y < const(Q,m) || £y -
Putu:=f—o0(qg+¢*v)—¢*(u—v). Note that u =0 on  and
lullym < NF—o(g+d*)llym + 16 (1= )llyym
< const (€, m) (||f||W2m +|lp— V"Bigl) , by (5.12) and Proposition 3.1 (ii),
< const(€,m) | lyan

by (5.10) and (5.11). By Lemma 5.9, A™(¢* (u—v)) = (=1)™(np—v) = 0 on Qexs.
Hence, if g := (—1)"A™(f —o(q+ 1)), then (—1)™A™u = g on Qeys. Note that
by (5.12),

lgll, < const(€,m) [ f]lyy2m -

Let {a}aj=m be the positive integers defined by |¢*"" = D laj=m Ca€®, € € RY
We wish now to employ Theorem 5.2 on the exterior domain ey with
¢o ifa=pand |a=m,
[N .
0 otherwise.
Condition (5.3) is satisfied with Ey = 1 since the quantity on the left side of
(5.3) equals |§|2m. Since u € W™ and v = 0 on €, it follows by Lemma 5.8

that u € Wy™?(Qext). Note that the Dirichlet form in (5.4) simplifies to blu, v] =
Ylal=m Ca Jo, , D*uD%v. To see that (5.5) holds, let v € C¢°(Qext). Then

blu, 7] = Z ca(D%, D% ) = (=1)™ Z ca(D**v,u )

laj=m jal=m
= (~)™ (AT u ) = (~1)™ (0, A ) = /Q o(2)g(z) de

where the first and last equality hold since supp v C Qext. Therefore, by Theorem
5.2, u € W2m™2(Qe) and

lellyem gy < const,m) (191 ) + 1l ) ) < OB ) [ F o

Now Tqf can be written as Tof =g+ ¢*xv+ f—o(g+d*v) —u. Let |a|=m
and note that D*(¢ * v) = ¢ x D*v. Since D*v € B, 3" and (I, 1, D*v ) = {0},
we have by Proposition 3.1 (ii) that ¢ * D*v € W™ and

6 D*v|ym < const(2,m) | D*v|| g

< const(§2, m) ||1/||L2 < const (2, m) || fllym
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by (5.11). Therefore,

1D T fllym 21y < cOmst(d,m) (|D(@ % v)lyym + 1 = 0@+ ¢ % 1) y2m)
+ ”u”WZ""vz(Qext) < ConSt(‘va) ”f“pVZ'm ’
(|

6. THE GLOBAL REGULARITY OF T f

As in the previous section, we assume throughout this section that O C R is
open and bounded and has the uniform C?™-regularity property. Our purpose in
this section is to prove the following:

Theorem 6.1. If f € By /*, then for all |a| = m, D*Tof € By/2 and

HDO‘TQfHB;g < const(Q2, m) HfHB;r:Li(—l/2 .
The following definition and theorem are taken from [1, p. 83-86].

Definition. Let A C R? be open. For given k and p, a linear operator E :
WHEP(A) — WFP(RY) is called a simple (k,p)-extension operator for A if for all
u € WkP(A),

(i) Pu(z) =u(z) a.e. in A and

(ii) ”Eullwkyp(n{{d) S COHSt(A,k,p) HUHWW(A)'
FE is called a strong n-extension operator for A if E is a linear operator mapping
functions defined a.e. in A into functions defined a.e. in R? and if for every k €
{0,1,...,n} and for every p € [1..00), the restriction of E to W*P(A) is a simple
(k, p)-extension operator for A.

The following theorem is proved in [1, p. 84].

Theorem 6.2. Let n € N. If A C R? is open, has a bounded boundary, and has

the uniform C™-regularity property, then there exists a strong n-extension operator
E for A.

The assumptions on € ensure that Qe := R¥\Q has a bounded boundary and

the uniform C?™-regularity property. Hence, by Theorem 6.2 there exists a strong
m-extension operator E for Qexy-

Lemma 6.3. If |a| =m and f € BZ‘;LUQ, then EDYTqf € B;/f and
HEDO‘TQfHB;Gz S const(Q,m) HfHB;f—l/z .
Proof. We employ a result regarding real interpolation of Banach spaces. If X, Xo
are two Sobolev spaces, then Peetre’s K-functional is defined for ¢ > 0, f € X; +X>
by
K(t, f):=mt{[|fillx, +tlfollx, : f = f1 + fo, f1 € Xa, f2 € Xo}
For0<f<land1l<q<oo,let
) 1/q
(X1, X2)o,q =1{f € X1 + X2 Ifll(x, %200, = </ tO K (¢, f)° dt) < oo}
0

It is known [24, p. 39-40] that if s1,52 € Ny with s1 # so, then (W, W*2)g , =
B3, (with equivalent norms) where s := s1(1 —0) + s26. Taking 0 = 1/(2m), ¢ =1
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yields (W™, W?2m)g , = B;’TIH/Q and (Lo, W™)g, = B;)/f. To see that the operator

ED®Tg is a bounded linear operator from W™ into Lo, we observe that

IEDTofll,, < const(Q2,m) [|D*Tafll;,q,.,) < const(Q,m) [D*Tafll,,
< const (2, m)|[|Ta f{l| g < const(Q,m) [ fllym -
In addition, ED®Ty is a bounded linear operator from W?2™ into W™. Indeed,
| ED* T fllyyn < const(€,m) [ D°Taf lym ey < const(€,m) [1fllyan

by Proposition 5.1. Tt follows by the interpolation property (see [24, p. 38]) that

ED®Tq is a bounded linear operator from B;’1 - 2 into B;Y/f. O

ext)

Our point of view now is the following: Assuming f € Bg? - 172 and la] = m, we

have that both D®f and ED*Tq f belong to 3217/12. The function DT f equals
D%f on Q and equals ED“Tof on ey, and based on this we wish to show that
DT f € Bé/ 020 The purpose of the following three lemmata is to relate the B;/ 020—

norm of a function g with the rate at which an approximate identity convolved with
g converges to g in the Lo-norm.

Lemma 6.4. Let A be an open subset of R? having a bounded boundary and the
uniform C'-regularity property. There exists € > 0 (depending only on A) such that
ifrell..c),y€(0..r] and h € (0..ev/r], then

ma((DA+ hB) N (z +~B)) < const(A)hy?™t Vo e RY,
where my denotes Lesbegue measure in R<.

Proof. Let U; and ®; be as in Definition 1.4. By replacing Uj, if necessary, with
@;1((1 — 7)B) for some sufficiently small 7 > 0, we may assume without loss of
generality that the components of ®; belong to C k(VJ) for some open V; containing

U;. It then follows from [20, Th. 9.19] and [21, Th. 7.26] that there exists ¢; > 0
(depending only on A) such that for all j

(6.5) 1®(2) = ®;(y)| < 1]z —y| Va,yeU;
and
(6.6) mq(V) < cymq(®;(V)) VopenV CUj.

Put f/j = <I>j_1(B/2). By Definition 1.4 (iii), there exists § € (0..1] such that
0A+6B C Uj ffj‘ Let € be the largest positive real number satisfying ¢ < ¢ and
U;+66B C Uj Vj. Let r € [1..00), v € (0..7], h € (0..ey/r], and z € R
Put F := (OA+ hB)N (z + vB). It is a straightforward matter to show that
mq(0A + hB) < const(A)h. Hence, if v > ¢, then my(F) < mq(0A + hB) <
const(A)h < const(A)hy?~!. So assume ¥ < e. Let a € F. Then there exists
a’ € OA such that |a — d/| < h. Put Fy := (0AN ¢’ + 2(h + 7¥)B]) + hB and note
that F' C F;. Indeed, if y € F', then there exists y' € &A such that |y — | < h.
Since |y — z| < v, we have |z — y/| < h + . Hence,

Iy —d| <[y —zl+|z—al+]a—d|<(h+7y)+y+h=2(h+).

Thus y' € AN(a’+2(h+v)B) and consequently y € Fy. Let N := {j : FlﬂlN/j #0}.
We note that if j € N, say y € Fy NUj, then o' —y| < 2(h+7v)+h < 3(h+7)
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and hence o’ € U; +3(h+7v)B C ﬁj +6eB C U;. Consequently, ®;(a’) is defined
whenever j € N.

Claim. If j € NV, then
®;(FNT;) C{w e R lwa < erhy |(wr,... ,wy_1,0) — ®;(a’)] < 3e1(h+7)}.

Proof. Let z € F1 N ffj and put w = ®;(z). Then there exists z/ € AN
(a'+2(h+~)B) such that |z — 2’| < h. Note that z’ € z+hB C ﬁj +eB CUjand
hence w' := ®;(2’) is defined. Since w), = 0, we have |wq| < |w —w'| < ¢ |z — 2| <
c1h by (6.5). And

(w1, ... ,wa-1,0) — ®;(a)] < |w—2;(a') <e1]z—4d|, by (6.5),
<a(lz=2+12 —d|) < cr(h +2(h +7)) < 3er(h+7)
which proves the claim. O

Since F'C Fy C 9A+hB C A+ 6B C |J,Uj, it follows that

<D ma(FiNT;) < ety ma(®;(FiNTy), by (6.6),

JEN JEN
<er Y ma({w € R |wgl < erh, [(wr,. .. ,wae1,0) — @;(a’)] < 3er(h+7)})
JEN
=0 Z const(d)c1h(3cr (k4 74))%7 1 < const(A)hy? L.
JEN

Lemma 6.7. For all f € B%{lz and h > 0,
1100 nm) < const(@R2 | fll gi/e -

Proof. We employ the atomic decomposition of B;/f (see [25, p. 70-81]). It is
known that there exists 7 > 1 and functions a,; € C*(R?%), n € Ny, j € Z¢,
(depending only on d) satisfying

(6.8) supp an; C 27"(j +rB)
and
(69) HDaa’TL,jHLOO < 2n(|a|+(d—l)/2) V|a| <1

such that for all f € 32 1, there exists {\, ;} such that
1/2
(6.10) > (Z lAn,jF) < const(d) || fll g1z »
n=0 Y

jezd

and

(6.11) f= Z Z An,j0n,; (convergence in Ly).

n=0 jezd
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Tt follows from (6.8) that for all n € N,

2

2 2
(6.12) Z An,jln,j < const(d) Z |An.;] ||an,jHL2(aQ+hB)'
jezd Lo (890+hB) jezs

We estimate Han’jung(athB) in two cases. Let ¢ > 0 be as in Lemma 6.4 with

A=Q. If h < &2 ", then by Lemma 6.4, mg((0Q + hB) N27"(j + rB)) <
const(Q)h(27"r)4"! and hence,

”an,j”2L2(aQ+hB) < Ilan,j“im(ag+h3) ma((0Q+hB)N27"(j +1B))
< 274" Deonst(Q)A(27 ")~ < const(Q)h.
On the other hand, if h > 27", then mq(27"(j +7B)) < const(d)2~"?¢ and hence
”an,j H2L2(8Q+hB) < “an,jHQL2 < Han,j”iC>o md(2_n(j +TB))
< 2D eonst(d)27" < const(d)2™™ < const(Q)h.
It therefore follows by (6.12) that

2

E An,jOn,j

jEZ

< const(Qh > An sl
L2(8Q4+hB) jezs

Hence by (6.11),

1£1l, 00:m8) < D

n=0

> Anjln

jezd

L2(8Q+hB)

1/2
< const(@)h'/2 Y (Z \An,jlz) < const(Q)Y | ] g2
n=0 '

= jEZd

by (6.10). 0

Lemma 6.13. Let ¥ € C°(RY) be such that $(0) = 1 and put vy, := h™(-/h),
h > 0. Then for all g € Lo,

@) llg — ¥ *gllp, < const(¥)h'/?|lgll g2 VA >0, and
(ll) Hg“B;/; < COHSt(¢7€) (“g”L2 + SUPp<h<e h_1/2 ”g — Pp * gHLz) Ve > 0.

Proof. Let g € Ly and h > 0. We first prove (i). If h > 1, then [[g — ¢ xgllp, <
L+ 119l,,) g, < const(¥) llgll 5172 < const()h'/? [lg]l 512 - So assume 0 <h <
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1. Let k be the least integer such that 2* > h=1. Then

(27T) llg — n *9“L2 = H (1- H Z “ L _d)(h ‘Lz(A )
< Z.: “1 SRL0] N
< const(¢) g/ <Z h2f 2™ + i 2_n>
>\ o n=k+1

< const(y) [lgly/z h

which proves (i). Let € > 0 and put M := SUPg e K Y2 g — by, *glp,. Let k

be the least positive integer such that 2% < ¢ and H?/J“ < 1/2. For
Loo(R4\2FB)

n € {0,1,... .2k} we have 2*/2|[gll,, s ) < 2|3, < const(,e) |lgl,,. For

n > 2k, puth = 2k=n+1 < ¢ Then

2 @ gaa,) < 2 (L= DG, =252 @m) 7 g — e gl
< 2WF2(2m) A2 MR < const (1, €)M

Therefore, [lg] 5272 = supen, 27/ [0, < const(y,e)([lgl, + M). O

Proof of Theorem 6.1. Let f € Bm"Ll/2 and || = m. Put g :== DT, f and note
that flgll, < (2m)¥2||Taflym < const(d,m) Il g 5272 Put Q= 0Q + hB,
h > 0. Let ¢ be the largest positive real for which md(Q\Qgs) > mg(Q)/2. Let
1 € C2°(B) be such that 1/)( ) = 1. We intend to estimate ||g||B;/2 using Lemma,
6.13. Let h € (0..¢]. Then -

llg — ¥n gI|L2(Q\Qh) = [D*f — bn * (Daf)”Lg(Q\Qh) SND*f — i * (Daf)||L2
< const()h'/2 D £l y1/2 < comst(m, h)hY2 | f]] yrsaa
by Lemma 6.13 (i). Similarly,

llg — ¥n * g”LQ(Qext\Qh) = ED*Tqaf — ¢ + (ED*Tqo f)
< |ED*Taf — n * (ED*Taf)||,,

< const(1))h!/? ”EDQTQf”B;/2 < const(m, y)h!/? “f“B;nif-l/2

“Lz(Qexc\Qh)

by Lemma 6.3. Define G := 9Xq,, - Then
lg = ¥n *gll () < NIG = %n * G|, < const(y) |G|, = const(t))
< const(¢)) (“Daf”Lg(th) + UEDaTﬂfHLQ(th))

< const(2, Y)h/2 (D° f]] /2 + |ED*Taf]|,2)
< const(Q, m, ¥)h'/? Hf“B;nl-I—l/2

”9”L2(92h)
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by Lemma 6.7 and Lemma 6.3. Therefore,
Hg — Yn * gHL2 < CODSt(Q,m,lf))hl/Q HfHB;niHﬂ VO < h<e.

Hence, by Lemma 6.13, ||g||B;/2 < const(Q2,m,Y) || fl| gm+1/2 which, after a suitable
;00 2,1
choice of ¥, completes the proof. O

7. THE PROOF OF THE MAIN RESULT
Proof of Theorem 2.3. Let {ca}|a|=m b2e the positive integers defined by |€ \2m =
lajem a2, € € BL Then |7 T ||| = Tiajem o D) Miya, 7 €
Lo, k € Nyg. Let f € ngll-'_l/2. Then ||DaTQfI|B;{020 < const(Q,m) ”f”B;’};“l/z

V|| = m by Theorem 6.1. Let p, g be as in Theorem 4.1. Since Tof = ¢+ ¢ * u,
1

it follows that /i = — |-*™ (T f) ~on R?\0. By Theorem 4.1 (iii),
¢

121 1y a0) < 0l gy < const(d, )| Ta flll g < const(d, m) [[f]| sz -
For k > 1 we have

o~ 1 33 m ~
||H||L2(Ak) < EJZMA ™ (T f) ||L2(Ak)
1/2
1 ~
= ‘C—¢|2Mk Z ca (DT f) ”2Lz(Ak)
|a]=m
1/2

IN

1
(m—1/2)k 2
\C¢|2 " > ca ID*Tef g2

la|=m
< const(Q, m) 2" AR | niie
2,1

by Theorem 6.1. Hence
— (—m+1/2
Il gy e SUp 2

. P il 4y < const(S,m) |l gy
0 ,
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