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WAVELET BASES IN H(div) AND H(curl)

KARSTEN URBAN

ABSTRACT. Some years ago, compactly supported divergence-free wavelets
were constructed which also gave rise to a stable (biorthogonal) wavelet split-
ting of H(div;2). These bases have successfully been used both in the analysis
and numerical treatment of the Stokes and Navier—Stokes equations.

In this paper, we construct stable wavelet bases for the stream function
spaces H(curl; Q). Moreover, curl-free vector wavelets are constructed and
analysed. The relationship between H(div; ) and H(curl; ) are expressed
in terms of these wavelets. We obtain discrete (orthogonal) Hodge decompo-
sitions.

Our construction works independently of the space dimension, but in terms
of general assumptions on the underlying wavelet systems in L?(Q) that are
used as building blocks. We give concrete examples of such bases for tensor
product and certain more general domains 2 C R™. As an application, we
obtain wavelet multilevel preconditioners in H(div; Q) and H(curl; §2).

1. INTRODUCTION

The spaces H (div;2) and H(curl; Q) arise naturally in the variational formu-
lation of a whole variety of partial differential equations. Two prominent examples
are the Navier-Stokes equations that describe the flow of a viscous, incompressible
fluid and Mazwell’s equations in electromagnetism. For the Navier—Stokes equa-
tions, H (div; Q) plays an important role for modelling the velocity-field of the flow.
The space H (curl; ) has to be considered, when one is interested in a formulation
in nonprimitive variables such as stream function, vorticity and vector potential,
[25].

Certain electromagnetic phenomena are known to be modelled by Maxwell’s
equations. Here, the space H (curl;2) appears when linking the quantities electric
and magnetic field, magnetic induction, and flux density, see for example [4, 6, 24]
and the references therein. For the numerical treatment of these equations, it is very

helpful to have at hand bases for the kernel of the curl operator and its orthogonal
complement.

Received by the editor January 4, 1999 and, in revised form, May 24, 1999.

2000 Mathematics Subject Classification. Primary 65T60; Secondary 35Q60, 35Q30.

Key words and phrases. H(div; ), H(curl; Q), stream function spaces, wavelets.

I am very grateful to Franco Brezzi and Claudio Canuto for fruitful and interesting discussions
as well as helpful remarks. This paper was written when the author was in residence at the Istituto
di Analisi Numerica del C.N.R. in Pavia, Italy.

This work was supported by the European Commission within the TMR project (Training and
Mobilty for Researchers) Wavelets and Multiscale Methods in Numerical Analysis and Simulation,
No. ERB FMRX CT98 0184 and by the German Academic Exchange Service (DAAD) within the
Viconi-Project Multilevel-Zerlegungsverfahren fir Partielle Differentialgleichungen.

©2000 American Mathematical Society
739



740 KARSTEN URBAN

Wavelets have become a powerful tool in both pure and applied mathematics
during the past years. For example, they allow us to extend classical results of
Fourier analysis to a much wider class of function spaces [29]. On the other hand,
wavelet and multilevel systems are by now very widely used in many fields of science
and technology, such as signal analysis, data compression and image processing
[22, 31, 34]. More recently, starting from [5], they have shown promising features
for the construction of efficient numerical schemes for solving operator equations,
see e.g., [11, 16]. Moreover, it has been shown that the flexibility and freedom in the
construction of biorthogonal wavelets can be used to adapt these bases to special
requirements imposed by the problem at hand. For instance, wavelets have been
adapted to the Stokes and Navier-Stokes equations [17, 26, 32, 33].

In this paper, we adapt wavelet bases to the spaces H(div;2) and H{(curl; Q).
We construct a biorthogonal wavelet basis for H(curl;{2) and introduce curl-free
vector wavelets. It is well known that the spaces H°(Hdiv; ) and H°(curl; Q) of
divergence-free, resp. curl-free, vector fiels in L*(Q) (the space of square-integrable
vector fields) are linked by certain interrelations. These play an important role when
one considers the splitting of L?(Q) into H°(Hdiv;Q), H O(curl; ), respectively,
and some complement. Using divergence-free wavelets [26, 32], it was shown that
there exists a stable (biorthogonal) Helmholtz decomposition of H (div; Q) [33],
but this is no orthogonal decomposition. Now, with the construction of wavelet
bases in H{(curl;{2) at hand, we can give an explicit orthogonal decomposition of
L?*(Q). Using this decomposition, we construct wavelet multilevel precondition-
ers in H(div;Q) and H(curl;{2) that give rise to uniformly bounded condition
numbers.

Our construction starts with some wavelet systems on 2 that have to fulfill
certain conditions. These conditions are formulated in a rather general assumption
that allow us to proceed with the construction in H(div; ) and H(curl; Q). It
turns out that this assumption is mostly a condition on the domain . After
proving the results concerning the new wavelet bases, we show concrete examples of
domains and corresponding wavelet bases that realize our general conditions. These
examples are at least twofold: Firstly, all tensor product domains are covered by
taking wavelets that are built by tensor products of univariate systems. However,
our construction is not restricted to this case. In particular, we give at least two
extensions, namely when () is the image of a reference cube Q = (0,1)" under
certain parametric mappings.

The paper is organized as follows. In Section 2, we review the basic facts both on
wavelets and on the spaces of vector fields under consideration. Section 3 is devoted
to our construction of wavelets in H (div;{2) and H(curl;{). Also, the general
assumption mentioned above is stated there. In Section 4, we show examples of
domains and wavelet bases fulfilling the general hypothesis and compute curl-free
vector wavelets explicitly starting from biorthogonal spline wavelets. We finish with
one application, namely multilevel preconditioning in H (div; Q) and H (curl; Q) in
Section 5.

2. NOTATION AND BASIC FACTS

In this section, we set up our notation and review the basic facts both on wavelet
bases and the spaces of vector fields under consideration that are needed here. We
begin with the spaces of vector fields and follow the description in [25].
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2.1. Stream function spaces. Let 2 C R™ be some open bounded domain with
Lipschitz-continuous boundary. Then, for ¢ € L?(f2) and a two-dimensional vector
field v = (v1,v2)T, we define

(2.1) curl ¢ := (9p¢, —019)7, curlv := 01v9 — vy,
Here and in the sequel, we use the short-hand notation ¢; := 3%_ for1<i<nand

we assume the partial derivatives in (2.1) to exist in the distributional sense. We
will always denote vector fields and any related quantities such as function spaces,
by boldface characters. If needed, the spaces of vector fields have an additional
superscript indicating the number of components of the vector fields. For three-
dimensional vector fields ¢ = ({1, (o, (3)7, we set

(2.2) curl ¢ := (a3 — 032, 03C1 — D1C, 01 Co — Bala) T,

where again the partial derivatives should exist in the distributional sense.
With these definitions at hand, we define the following stream function spaces

(for n = 3):
(2.3) H(curl;Q) := {¢e L*Q): curl¢ € L*(Q)},
(2.4) H%curl;Q) := {¢€ H(curl;Q): curl¢ =0}

We will be mainly concerned with the 3D case here. When nothing else is said,
n = 3 is assumed. We will treat the curl-spaces for n = 2 separately. All these
spaces are Hilbert spaces with the corresponding norm

(2.5) HCH%—I(curl;Q) = HCH%?(Q) + ”CurlCHiQ(Q)'
Finally, we define

(2.6) H(curl; Q) := closg (cur;0) C5° ()
and
(2.7) H(curl; Q) := Ho(curl; Q) N H’(curl; Q).

Since these spaces model the stream function in the Navier—Stokes equations for
nonprimitive variables, we also call them stream function spaces.

2.2. Flux spaces. It is known that the stream function spaces are heavily linked
to a second class of spaces induced by the divergence operator. Since these spaces
often model the flux of some physical quantity, we follow [24] and call these spaces
flux spaces. As usual, the divergence operator is defined for any vector field ¢ =

(Ch' e aC’n)T by

(2.8) div ¢ o= 0; G,

i=1

where it is again assumed that the partial derivatives are well defined in the distri-
butional sense. Then, we define

H(div;Q) = {¢eL*(Q): div¢e LX)},
H°(Hdiv;Q) = {¢e€ H(div;Q): div ¢ =0}
Also these spaces are Hilbert spaces under the norm

(2.9) 1€ 22 i) = HC“%Z(Q) + || div C“i?(g),
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and we define

(210) Ho(dlv, Q) = CIOSH(diV;Q) C(())o (Q),
as well as
(2.11) HY(div; Q) := H(div; Q) N H°(Hdiv; Q).

2.3. Hodge decompositions. There are some well-known relationships between
stream function and flux spaces, which we will review now. Especially for the analy-
sis and numerical treatment of partial differential equations involving div-operators
and curl-operators, one is interested in the following orthogonal decompositions:

(2.12) L*(Q) = Hy(div;Q) @ H)(div;Q)*
(2.13) = Hj(curl;Q) @' H(curl; Q)+,
which are often referred to as Hodge decompositions. Both decompositions are also

of great interest for replacing L*(Q) by Ho(div;Q), Ho(curl; Q), respectively.
For (2.12), it is known that

(2.14) HY(div; )t = {gradq: ¢ H'(Q)} = H’(curl;Q)

for simply connected bounded Lipschitz domains Q (see [25]). The second decom-

position (2.13) for L*(Q) replaced by H(curl; Q) is somewhat more involved, one
has (see for example [25], p. 50) that

(2.15) H{(cur Q)" = {¢ € Ho(curl; Q) : (¢,grad @)z =0 Ve € Hy(Q)}.

Moreover, the fact that HQ(curl; Q)" is isomorphic to H*(2) N H°(Hdiv; Q) N
H(curl; Q) can also be found in [25].

2.4. Multiscale methods and wavelets. Let us briefly review the main proper-
ties of multiscale methods and wavelets. We will focus on only those facts that we
will need in this paper and refer to [11, 16] for extensive surveys.

We call a system of L?(2)-functions ¥ := {¢, : A € V} a (primal) wavelet basis
if they form a Riesz basis for L*((2), i.e., each L?(2)-function can be expressed as
a linear combination of the functions in ¥, and

1/2
20 ldllez) = (Z Idﬂz) , di={dahev.

AEV

216) | D dain

AEV

Here, V denotes some appropriate (infinite) set of indices and by A ~ B we abbre-
viate cA < B < C'A with absolute constants 0 < ¢ < C. By Riesz’s representation
theorem, (2.16) implies the existence of a biorthogonal wavelet basis W of L%(f2),
i.e., (2.16) holds for ¥ and one has

(¥, Ua ) L2@) = San,s M eV,
With the aid of this system, the expansion coefficients dj, dy of a function

Q)3 f=) dr=) dh

Arev AEV

with respect to the wavelet basis can be written as

dy = (£, 2),  da=(f,¥a)12(0), AEV.
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Hence, (2.16) (for the primal as well as the biorthogonal wavelets) may be rewritten
as

. 1/2 1/2
217) !lfHLz(mN(Zl(f,w)Lz(mIQ) ~(Za<f,w>mm!2) |

AEV AeV

The couple ¥, ¥ is often referred to as biorthogonal system. Note that here ¥ needs
not to be an orthonormal basis. However, orthogonal wavelets like Daubechies’
wavelets [22] of course fulfull (2.16) with “=" instead of “~”. In this case, one has
U=

One may think of the indices A € V as a couple A = (j, k), where j € Z denotes
the scale or level of a function, whereas k refers to the location in space and the
type of wavelet. We will often use

|/\| =7, A= (]a k),

to abbreviate the level and

Vj={neV:|ul=j}
to denote all indices on a certain level. B
Moreover, we will frequently use the biorthogonal projectors induced by ¥, W.

To define them, we set for any subset A C V
(2.18) Py = {'lﬁ)\ t A€ A}, \i/A = {1,2)}\ i AE A}
as well as the generated wavelet spaces

S := closp2(q) span Wy, Sy = clospz(q) span Ty
Then, the projectors Qa : L2(Q) — S, Qx : L?(Q) — Sy are defined as
(2.19) Qnf =Y (fd)evn,  Qaf =Y (fida)rz@) ¥,

AeA AEA

and it can easily be seen that they are adjoint operators. Finally, we will use

Q= Qv as well as Q; := Qv

Remark 2.1. Of course, one can formulate all that is said about wavelets so far also
for Hilbert spaces H instead of L2(f) [16]. Note that in this case, the biorthogonal

wavelet bases W usually characterize the dual space H'. This will be of some
importance in the sequel. O

Remark 2.2. Tn many cases, the estimate (2.16) ((2.17) resp.) can be extended
from L2(€)) to a whole range of Sobolev (and even Besov) spaces including L3(9).
In fact, under appropriate assumptions on W and ¥ there exist constants v, > 0

(depending on the approximation properties and the regularity of ¥ and \i/) such
that

1/2
(2.20) H};vd/\'lw‘”;[a(ﬂ) - <AEZVQQGWIMQ> ’

holds for all o € (—%,) [16]. This means that the Sobolev norm of a function can
be estimated by a weighted £2-norm of its wavelet coefficients. O
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Vector fields For the space L?(Q) of square integrable vector fields, we denote

wavelet systems by boldface characters, i.e., ¥, and in (2.16) one uses the standard
norm

n
]]fHQLQ(Q) = Z ”fi||2L2(Q)
=1

for f € L*(Q)™. Moreover, in many cases, we have to equip the index A € V labeling
the scalar wavelets with some additional index indicating the component of the
vector field. For example, let WVl .= {z[)[;'] c A e vy, ol = {QZJE\V] c A e vy,
1 < v < n, be (possibly different) biorthogonal systems in L?(2). Then, the vector
fields

P = Yo, Py = PN, aeviii<i<n,

obviously form a biorthogonal wavelet basis for L?(Q). Here 8; := (814, .. ,0n4)",
1 <4 < n denotes the canonical unit vector in R™. Denoting by

ve= UGN, A=0GN,

=1 eVl

the corresponding set of indices, we obtain the biorthogonal vector wavelet system

U={,: AeV}, T={,:AecV}

3. WAVELET BASES FOR STREAM FUNCTION AND FLUX SPACES

In this section, we construct wavelet bases on the various stream function spaces
defined in Section 2. Moreover, we recall the known construction of wavelets in

the flux spaces and show relationships. We end up with Hodge decompositions of
L*(Q).

3.1. General assumptions on the wavelet systems. We will formulate our
results in terms of quite general assumptions with respect to wavelet systems in
L2(2). Since the construction of wavelets on general domains is still a field of
intensive research (see, e.g., [9, 10, 15, 19, 20]), we want to clearly identify those
properties of wavelet systems on 2 that are needed to proceed with the subsequent
construction of wavelet bases for stream function and flux spaces. Thus, the task of
constructing appropriate wavelets on L?(€2) is separated. We will show two concrete
examples of bases fulfilling the latter assumptions in Section 4.

The assumption we will formulate now, will, roughly speaking, allow us to “play”
with partial derivatives and wavelet systems. The motivation for this is the follow-
ing result of P.G. Lemarié-Rieusset:

Theorem 3.1. [26] Let "), ) e L2(R) be biorthogonal wavelets on R (i.e.,
1!)5},3, ’J)J(llg, j,k € Z, form a biorthogonal system, where f;x(z) = 29/2f(27z — k),

x € R), such that P e HY(R). Then, there exists a second pair O, 15(0) of
biorthogonal wavelets fulfilling

d d -~ ~
(@) =490@), 0@ = ()9 @). O



WAVELET BASES IN H(div) AND H(curl) 745

\I,(l 1)
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(1,0)

oA

FIGURE 1. Relationships between wavelet systems for n = 2
according to Assumption 1.

What we need is a suitable generalization to the n-dimensional case, partial
derivatives and domains 2 C R”™.

Assumption 1. For all v = (y1,... , )" € E™ := {0,1}", and all i € {1,...,n}
such that v — 8; € E™, there exist biorthogonal systems W), ¥ on L2(Q) with
the following properties:
(a) O, &™) correspond to the same set of indices V = {(j, k) : j > jo, k € V;}
for all v € E™, where jy € Z denotes some coarse level.

(b) The functions 1/)5\7), A € V are compactly supported.
(¢) One has

(3.1) 8,0 = pOyr=38:)

b

where here U(7) is viewed as a column vector of functions and D) are sparse
transformations. By “sparse” we mean here that for each A € V, there is only
a small and fixed number of nonzero entries D( , of D @) (e W).

(d) For all A € V with |\] > jo (i.e., ¥y is not a coarse level function), there exists
an index iy € {1,...,n} such that

(3.2) D™ = (D

is invertible and

) W EV A=, =N

(DS D <1

holds for all y € V|5 independently of |\, where || - || denotes some matrix
norm. }
(e) We assume that D(;)u # 0 only if |u| = |\ and iy = 1,. O

Let us illustrate this assumption for n = 2 by Figure 1. Assumption 1 states
here, roughly speaking, that we can apply partial derivatives in the indicated way.
Moreover, it states that the partial derivative for each wavelet can be expressed by
a finite linear combination of few wavelets of a “lower” system. The conditions (d)
and (e) are of a more technical nature. However, they are very important for the
subsequent construction, since they allow us to express each wavelet in terms of
linear combinations of certain partial derivatives of a “higher” system. The easiest

example to think of occurs for Q = R? and simply taking tensor products of the
functions arising in Theorem 3.1.



746 KARSTEN URBAN

Remark that condition (a) is by far not automatically fulfilled. It is a matter
of adjusting certain parameters that enter the construction of wavelet bases on
bounded domains . However, for a significantly large set of examples this problem
has been solved in [15, 21, 33]. We will focus on this later in Section 4.

Assumption 1 has some important immediate consequences, which will be used
in the sequel: For each A € V, we obtain by (3.1)

(33) W = X DO = DEPee,
KEV x|

as well as 0; ﬂbh) [D(“)]’\\Il 7=%ix) where [A]* denotes the \-th row of A. More-
over, for the biorthogonal system \I/('Y) we have

(3.4) 8,V =%) — (DT,
which is easily seen.! Hence, the corresponding biorthogonal projectors fulfill

35)  8,QMv=Q0 ) (30),  8QMv=0Q" (o), j>o0.

3.2. Norm equivalences. We can use Assumption 1 to derive a different way to
estimate the H'(Q)-norm of a function than the “standard” one given in (2.20) for
s = 1. It will turn out later that this new estimate is in certain cases better suited
for characterizing the spaces H(div; Q) and H(curl; Q).

Denoting by £(V) the space of all series that are labelled by the set of indices V,
we define the operator d( : £(V) — £(V),i=1,...,n, by

(3.6) = > D cu=DYIve,  cev),
HEV x|

where [A]) denotes the A-th column of A. Moreover, d®) is defined in a straight-
forward manner. Then, we obtain

Remark 3.2. Under the hypotheses of Assumption 1, we have for each function
f=Y cven WP e H'(Q) the estimate

(3.7) I£1 () ~ lelln vy = (lelzqy + llgrad ellz )2,
where

(3.8) grade:= (dWe, ..., d™ )T e (V)

and hence

n
lgrad ¢ 2wy = Y _ 149 e] (v
i=1

n fact, using the notation (0, ®) := ((6, ¢)L2(Q))ee@ bed for two systems of functions, we

obtain by integrating by parts and taking the compact support of w(;’) into account
D@ = p® (pr=6:1) Fr=6:i)y = (5, (M) F(y=8:)y = (_1)(\1}(‘!)’67:@(’7—51'))‘

Now, due to (3.1) and the biorthogonality, we know that 8; U(Y=61) is some linear combination of
U | which shows (3.4).
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In fact,
i iy i —0;
o = X T el = T (3 D)
(39) /\EV/.LGV|>\| rev [.LGV‘M
D NCCERT
Aev

Note that we may change the ordering of the sums in the second equality above
due to Assumption 1 (c) and (e). Using the norm equivalence (2.16) for ¥(*) and
-9 1 <<, yields

11 E = If172 + lgrad fl72(q

~ ||C|(§2(V) + Z jd® clliw) = HCH%LI(V),

i=1
which proves (3.7). O

We compare the estimates (3.7) and (2.20) by the following
Example 3.3. Let us consider the univariate case 2 = (0,1) and choose a wavelet
(M) X\ = (j, k), such that
W @) =2y @ -k, z e 0,1, e e = 1.

Then (2.20) gives an estimate of ||z[1/(\1)||H1(071) by the term K4 := 27, whereas
(3.7) results, in view of Theorem 3.1, in an estimate by Kyew := V1 +422%. On
the other hand, since HwE\O) llz2(0,1) = 1, again Theorem 3.1 implies

1 1 i (0 j
(e )H?{l(o,n = ||y )”2L2(0,1) + 1427 )”2L2(0,1) = 1422072,
so that in this case K ;o = quf\l) | 10,1, i-e., we obtain an ezact estimate. O

3.3. Wavelet systems for Hy(curl;2). Now, we define a wavelet basis for the
space Ho(curl; ) in 3D. The definition is also valid for the 2D case, where one
has to consider the space H(curl;2)? defined in an obvious fashion.

Definition 3.4. Let 1:=(1,...,1)” € E™ and define vector wavelet functions for
A=A eV ={GN:i=1,...,n;A € V} by

(3.10) =g, P =g 5

Accordingly, we define T := {4 A € V}and T = (¢57 : Ae V). O

For the above-defined basis, we want to derive a norm equivalence that allows us
to estimate the || - || g (curt;0)-norm of each function ¢ € H(curl; 2) by a (discrete)
norm of the coefficients in the expansion of ¢ in terms of ™!, Let us now define
this norm, where we restrict ourselves to the 3D case, while a similar definition
applies to n = 2. For a given sequence ¢ € £(V), we define

(3.11)  curle = (d® & — 4 @) 43 (0 _ d<1> 3 (1) (@ _ g ()T
where we have used the short-hand notation ¢ := {c(; y)}rev. Then, we set

(3.12) llellneurwy = (lellZe vy + IICur'C{lzzw )2
Now, we are ready to prove
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Theorem 3.5. Under the hypotheses of Assumption 1, we have for n = 2,3 that

~ curl
the systems WU & ! form a stable biorthogonal wavelet basis for Ho(curl; Q).
Moreover, for ¢ € Ho(curl; Q) =3\ o ca ! we have

(3.13) HC”H(curl;Q) ~ ”C“h(curl;V)~

Proof. We will only give the proof for n = 3 and remark that the case n = 2 can
be treated completely analogously. Let us first check that the functions S,
A € V, are indeed in H(curl;{2). To this end, set again A = (i,\) € V.
Then, we have [curl¥$™]; = 0, which is trivially in L?(€2). For i # i’ we ob-
tain 9y [, = Dy \Ilg»l_'si ~%) which, by assumption, is a function in L2 )
and hence curl ™ € L*(Q).

The biorthogonality is readily seen:

(5 by JL2(9) = i (1/)§1 ),?ZJ(;/ ))L2(Q) =800 =0, AXNEV.
Next, we have to show that each function ¢ € Hy(curl; ) has a unique expan-
sion in terms of ¥, By assumption, each W~%) 1 < i < n, forms a Riesz basis
for L?(Q). Since ¢ € Ho(curl; Q) € L*(Q), this function can in fact be uniquely
be expanded in terms of T,

Finally, we have to prove (3.13). The norm equivalences for ¥{1=%) imply that
I¢llze@) ~ llellew). By (3.9), we obtain

(curl¢); = Z(curl c)in wg‘si), 1<i<n.
Aev

Using the norm equivalences for W% leads to

3
(3.14) leurl¢ |3 20y ~ D D leurle)i oy = lleurl el72 (v,
i=1 \eV

so that we obtain (3.13). O

Remark 3.6. The estimate (3.14) shows that curl¢ = 0 in L*(Q) if and only if
curl ¢ = 0. Hence, given a wavelet expansion of ¢ € H (curl; Q) in terms of ™ we
can check whether ¢ is curl-free or not by only considering the wavelet coefficients.
This will turn out to be very useful in the sequel. Moreover, (3.14) implies for
¢ € L*(Q) that ¢ € H(curl;Q) if and only if curlc € £2(V). O

Remark 3.7. When skipping hypothesis (b) of Assumption 1, it is also possible to

study wavelet bases in H (curl; Q) instead of Hy(curl;Q2). The above theorem
remains valid for this case. O

Remark 3.8. For later purposes, we note the following estimate

2
S| oY e
)

A€V AEV

(3.15)

Hs(Q

provided that all systems W(1=%) 1 <4 < n, allow the characterization (2.20) for
o = s € R. In fact, (3.15) is an easy consequence of Definition 3.4 and (2.20). O

Let us finally mention that the functions

~ curl =cu

, rl Jo
W=l wn =ale
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for any wavelet systems Ul in L2(Q), 1 < z < n, give rise to a wavelet basis in
H(curl; Q) provided that the functions w/\ are sufficiently smooth (in order to

ensure 1,b X - € Hy(curl; Q). However, the corresponding norm equivalence will
then in general not take such a nice structure as in (3.13). By “nice” we mean
that curlc vanishes for ¢ € HY(curl; Q) (see Remark 3.6), which is due to the
special choice of the basis functions. Such a property cannot be expected by using
arbitrary systems. Moreover, it will become clear in the next subsection that this
particular choice enables us to construct curl-free vector wavelets.

3.4. Wavelet bases for Hy(curl; ). In this subsection we construct curl-free
wavelet bases, which will be defined as follows. Let us again focus on the 3D case.

Definition 3.9. For A € V and 1 < i < n, we define
c 5i) (1-6:,)
(316) ( )\f)! = [ 'Ai] \Iji(;' ) 'd])\ = [( [N )) ] qjiki g 6

as well as O .= {450 : X e V}, 3 = {'&if :AeV} O
We remark that we have

(3.17) Ps' = grady(Y,

which is in the spirit of (2.14).

Theorem 3.10. Under the hypotheses of Assumption 1, we have that for n = 2,3,
~ cf
the systems U, T° form a stable biorthogonal wavelet basis for H{(curl; Q).

Proof. Tt can easily be seen that w‘f\f are in fact curl-free. Moreover, they are obvi-

~ 1
ously linear combinations of <! and T , respectively, and hence in Hg(curl; Q).
Using (3.1), integration by parts, and the biorthogonality of the scalar systems, we
obtain the biorthogonality of the vector fields:

of 7cf NG = (1-6:y,)
@S, 3@ = (8,0 (D) By ™

) L2(Q)

Il

3N (1 6L /)
(=1) (3, (D) 1 05, B

) v
WV, 9 2y = v, AN €V
Now it remains to prove that the system ¥ is in fact a basis for H{(curl;Q),

i.e., that each vector field in H 0(curl; Q) has a unique expansion in terms of wef,
To thls end, let ¢ € HY(curl; Q). Since Hy(curl; Q) € L*(Q), Assumption 1 yields

Ci = Z(CM pio )L2(Q)¢§1_6i)7

AEV
(3.18) = < o+ ) )Q, B0 pagey w7
AEV AeV

ix=1 ixFEL
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for 1 <i < n. For the first sum in (3.18) we obtain

Z (€, 98 6'))L2(Q) &1_6”

AEV
A=
1 (1-64,) (1-83y)
— Cia Dz( 2) TD(U)\I, Y A
(3.19) 2 (6wl A )Lm)%

=
_ T §(1-68;) (ix)7A g, (1—63y)
= 2 (G @) TR ISP

BN

For the second term in (3.18), we use the fact that 0;(;, = 0;,(; for 4 # ¢y, which
is a consequence of curl ¢ = 0. In this case (¢ # iy) we obtain

G0 e = CDIDE) T (G B ) e
= (-1 )[(D(“ i (Czua‘l’&s o ))L2(Q)

)
= (D) O (G B s

which, in turn, implies

Z (Cu 7(1- 61))L2(Q) E\l—5i)

aev
ixd
i _ =~ (1-6;,) i 1-6;
= 37 (G (D)) oy DG w0
eV
i)\?éi

Finally, using the latter equation, (3.18) and (3.19) yields
i 1-6:,) ~cf ¢
G= 30 (G (D) T ER ) e 0 = 3 (63 ) gy @5

AEV eV
for 1 <14 < n, which completes the proof. O

The above result also gives rise to a characterization of H§(curl; Q). Of course,
since the space HY(curl; Q) is a closed subspace of L*(Q) (see, e.g., [25]), the dual
space of H g(curl; Q) is isomorphic to the space itself. However, it may be helpful
to have a concrete representation at hand. We would like to point out first that

the dual system & isin general not i 1n HS{(curl; Q). The biorthogonality between
@ and & , however, ensures that ¥ c HY olcurl; ). In view of Theorem 3.10,
this already proves the following result.

Corollary 3.11. A vector field ¢ € L*(R) is in H)(curl; Q)’ if and only if

(3.20) Z G D@l <o O

AEV

Finally, we derive some norm equivalences. If Q is a bounded domain, (3.17)
and the Poincaré-Friedrichs inequality imply the estimate

2
YRLU MRS SECCUATS

AEV H*(Q)  »ev

(3.21)
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provided that the norm equivalence (2.20) holds for ¥ and ¢ = s+ 1. Again, we
obtain another estimate using the operator grad defined in (3.8).

Proposition 3.12. Under the hypotheses of Assumption 1, we have

PIRERTN

AEV

Lo [grad el ¢2(v).
L>(Q)

Proof. For each component (i = 1,...,n), we have by (3.9)

_5;
S @)= (grade) i

eV A€V

Using the norm equivalence for W(1=%4) yields the desired result. ]

3.5. Wavelets in flux spaces. All constructions and facts in this subsection are
basically known and can be found in [17, 26, 32, 33]. However, we simplified and
generalized them somewhat and recall them in order to show the interrelations to
the wavelet bases in H (curl; Q).

3.5.1. Wavelet bases in H(div; Q). With the technology of Section 2 at hand, it is
not hard to see that the wavelet systems \I'div, i’dw defined by the functions

(3.22) W=y 6, Dy =008, A=(i,N eV,
form a biorthogonal system in H (div; ). Moreover, the norm equivalence
(3.23) HCHH(div;Q) ~ HCHh(div;V)

holds for any ¢ =3\ c¢ exh Y e H(div; Q), where we have defined
div: (V) = £(V),  dive:=Y dc,
i=1

and

lellnivwy = (HCH%z(V) + [|div C||%2(V))1/2-

In fact, by using reasoning similar to (3.9), we obtain

n 2
85
113y = NCITe@ +{ D D exds o
i=1 A€V L2(9)
n 2
o o
= ¢y + | D S @),
AEV i=1 L2(Q)
~ ”C||§2(V)+Z|(diVC)/\|2 = el vy
AEV

which proves (3.23). Finally, by using the standard estimate (2.20), we obtain
(3.24) ||C||2HS(Q) ~ Z 2%Als leal®
AeV

provided that all W) 1 < < n, fulfill (2.20) for o = s.
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3.5.2. Divergence-free wavelet bases. Let us recall the construction of divergence-
free wavelets. The construction of compactly supported divergence-free wavelets

was initiated by P.G. Lemarié-Rieusset [26] (see also [32] for the generalization to
nontensor product functions).

Definition 3.13. For
AeVi = (A=(i,\): eV, 1<i<n,i#ir},

we define
0, v € {i, i,\},
(3.25) @ =q o =
~0,(DSM)~ 1\I’l( N Sy =iy,
as well as
(3.26) Py =90, Ae v
The systems T and \idf are defined in a straightforward way. O

For convenience, let us briefly check that these functions are divergence-free. In
fact, using (3.1) again, we obtain

div gl = 0 — 0,0,D() e

i (6:+0:,) i (8:+64,)
= 0, 0,(DIM)T TN — 0, 0D T T = o,
In summary, we have

Theorem 3.14. [26, 32, 33] Under the hypotheses of Assumption 1, the following
statements hold:

(a) @I, & form a biorthogonal system for Ho(div; Q).
(b) ¥ forms a Riesz basis for H)(div; Q). O

Finally, we aim at deriving a norm equivalence in H*(§2). Since this result is
not included in the above-mentioned references, we will give it in detail. Let us
consider a divergence-free vector field:

(3.27) = > oy, cel (VY
Aevdf

Proposition 3.15. Under the hypotheses of Assumption 1, the following estimate
holds for the vector field ¢ in (3.27):

€15y ~ D 2% eal”.
Aevdf

Proof. Since ¢ is in particular in Ho(div; Q), it has a unique expansion in terms of

\I,div
C Z e ,d]dlv )

AEV

By construction, we have éx = cx for all A € V. Since ¢ is divergence-free, its
coeflicients ¢ fulfill divé = 0 (see (3.23)) and hence

4l &) = = 57 g0 60 — - 37 g o0,

z;éu\ 7.757,)\
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which implies

(3.28) ) — Z(d(ix))—l d@® )
i#ix
Now, we use the norm equivalences for ¥4 and obtain
n
(3.29) 1C13r ) ~ D 2% €972 ()
=1

so that by (3.28)
I S D 22 PMeDEw) + D 2 @)1 dD W) o
i;é’i)\ i#ik

S Z 22 ||C(i)||%2(vy
iin

where we have used Assumption 1, (d). On the other hand, again by (3.29),
n
13y 2 D22 M 1oy = D0 22 Do,
i=1

isiy
which proves our assertion. O

3.5.3. A biorthogonal Helmholtz decomposition. The wavelets defined in (3.25) give
rise to a Helmholtz decomposition of H(div;§). This was introduced in [33] and
may be summarized as follows. Using the same notation as above, we define

(3.30) PR =6 Ae v
The induced spaces

SjA := closgr(giv;n) span ‘I’f, S?f = closgr(givin) span \I’?f
fulfill

S5 -82 68
where S’?i" is induced by ¥ in (3.22) in the natural way. This results in a splitting
H(div; Q) = H(div; Q) & H(Q),

where H”(Q) = S(¥4) (and also for L*(Q) instead of Ho(div;Q)). This decom-

position is not orthogonal, but stable, which can be shown by introducing the dual
functions

Py =906, A=(i,n) e V¥
as well as
~A i) -
@) =0, =D, 1<v<n
Then, the following orthogonality relations hold [33]
~A ~df

(WS o)z = (Px i) L) =0
for A\ e V¥, X eV, and

~A ~df

(R o)z = 0vs (WX, Ya)rz) = o

for all A\, N € V and A\, X" € V.
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3.6. Interrelations and Hodge decompositions. With the above constructed
various wavelet bases for flux and stream function spaces at hand, we obtain
some relationships between the bases (and induced spaces, of course) as well as
Hodge decompositions. Firstly, we may reformulate the norm equivalence (3.13)
for Ho(curl; Q) in the following way:

1€ (eurti) ~ Z {16¢, ™) 2@ + |(curl &, 3™ 2o}

A€V

for ¢ € Ho(curl; Q). Let us now consider the two Hodge decompositions (2.12)
and (2.13).

Theorem 3.16. Under the hypotheses of Assumption 1 we have that for any sub-
sets A ¢ VU A © V| the induced spaces

(3.31) S4 = clos g9 (givi) Span \I’?\fdf, S = clos g (curl;2) SPan O,

are orthogonal with respect to (-,-)2(q) and

(3.32) agiv (¥, v) 1= (U, v) p2(q) + (div u,div v)r2(q),
as well as
(3.33) Aeur (W, V) 1= (U, V) p2(q) + (curlu, curlv) 2(q).

Proof. Using integration by parts and (3.1), we obtain

WY o = @8, gradvll) )

= (D) @iv i )@ =0, Aev¥ XNev,

since d:if is divergence-free. The orthogonality w.r.t. agiv(+,+) and acun(:,-) au-

tomatically follows from the fact that 1,b‘§\f, ‘f\f are, respectively, divergence- and
curl-free. O

The latter theorem obviously gives rise to a Hodge decomposition in the spirit
of (2.12). Note that Theorem 3.16 holds for any subsets A%, Af) so that these
bases may also be used for an adaptive approach. Moreover, it should be noted
that ¥ in the latter theorem need not have vanishing traces on the boundary of
Q. Recall that, due to Remark 3.7, this is also provided by our construction. The
second Hodge decomposition (2.13) now involves the space HJ(curl;Q), i.e., the
trace of these functions vanishes on the boundary of Q2. The price we have to pay

for this is a higher smoothness of the divergence-free wavelet functions (and hence,
in general, a larger support).

Theorem 3.17. In addition to Assumption 1, assume that ¥(© C H}(Q). Then,
the subsets S and S give rise to a Hodge decomposition relative to (2.13) w.r.t,
('7 ')LQ(Q)) adiv('7 ) and acurl('a )

Proof. Since ¥(©) ¢ H}(Q), we obtain S%° ¢ H*(Q)nH (Hdiv; Q)N Hy(curl; Q)
which is isomorphic to H{(curl; Q). The orthogonality was already shown in the
proof of Theorem 3.16 above. |



WAVELET BASES IN H(div) AND H(curl) 755

4. EXAMPLES

Our construction is so far based on the general hypotheses stated in Assumption
1. In this section, we give examples of wavelet bases on certain domains 2 C R™
that fulfill this assumption.

The first example is related to tensor product domains. On these domains,
wavelet bases can be used that are tensor products of corresponding functions
on the interval [0,1]. Hence, we consider Assumption 1 for wavelet systems on
the interval. Moreover, we show concrete examples for Daubechies’ orthonormal
wavelets as well as biorthogonal spline wavelets (adapted to the interval).

Of course, tensor product domains are of limited use when one thinks to applica-
tions in numerical analysis. Hence, we consider two types of generalizations. Both
treat domains that are the image of () = [0, 1]™ under certain parametric mappings.
The first example are affine mappings, the second one conformal mappings in 2D.
Finally, we outline further extensions using domain decomposition ideas.

Scaling systems. Before going to these examples, let us recall the basic facts on
scaling systems. They will be of some importance in checking the conditions of
Assumption 1. In many cases, the (primal) wavelet system V¥ is constructed with
the aid of a family of L?(Q)-functions ®; := {p,x : k € A;}, where again j € Ny
can be understood as the scale or the level and A; is some (finite) set of indices.
Thinking of ®; as the column vector with components ¢;, k € A;, we say that
{®;}jen, is refinable if there exists a matrix Mjo € RI2+11XI4il such that

(4.1) ®; = MjT,oq)jﬂ-

In other words, (4.1) means that each function on level j can be represented as a
linear combination of the basis functions on level j+1. A refinable system {®;};en,
of linearly independent functions (where the constants in the corresponding norm
equivalences do not depend on j) is also called a (primal) single scale system,
generator or scaling system. The refinement equation (4.1) in particular implies
that the induced spaces

S; == S(®;) := span(®;)

are nested: S; C Sji1.

The biorfhogonal wavelet system U is generated by a (dual) single scale system
formed by ®; = {@;x; k € Aj}, ie,

(4.2) (04,6 Pi k) L2(Q) = Okk!s
for j € No and k, k" € A;. )
Now, biorthogonal wavelet spaces W;, W; are defined by

(4.3) Wj =041 O Sj, Wj = ~j.|_1 S Sj, Sj 1L Wj, Sj 1 Wj,

where the orthogonality is to be understood with respect to the L2-inner product.
Constructing biorthogonal wavelets then amounts to finding bases

(4.4) \I’j = {1/)]',1C ke Vj}, \i’j = {T,Zj’k ke Vj}, (V] = Aj.|_1 \AJ)
of Wj, Wj, respectively, such that

T T T & Y A1 XV
Uy = M @0n, U= M@y, My, Mjg € RV
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as well as

(4.5) (wj,k,@j,k/)w(m = Ok ks j € No, k, k' €V,
and the collections

(4.6) U= {¢y: A eV}, U= {¢y: Ae V}, V= U V;
i>-1
(U_p =By, U_; := $o,V_1 := Ag) form Riesz bases for L2(0).
One may also view the construction of wavelet systems as follows (see [16]).
Given a rectangular matrix M; o, find a sparse completion M; ; such that the com-

posed matrix M; := (M;o M;1) is invertible, its inverse is also sparse, and one
has

1M1, 1M = 0(1), j — 0.

4.1. Tensor product domains. Now we are ready to consider wavelet bases on
tensor product domains that fulfill the conditions of Assumption 1. We start by
the univariate functions on the interval.

4.1.1. Univariate functions. Since we will be concerned with tensor products of
univariate scaling and wavelet systems, it will be convenient to use a different
notation for the systems in 1D. We will denote by

(4.7) Ei={&n:keL},  E={Gr: ke
the univariate dual scaling systems, and by
(4.8) Yi={nx: ke T;t,  Ty={i: ke T}

the univariate biorthogonal wavelet systems (Z;, J; being appropriate sets of in-
dices). Using, as above Y _; :=Eg, T_; := E, we obtain the full set of wavelets
(4.9) T:= U T, T:= U 15,

j>-1 Jjz-1
and the corresponding set of indices

(4.10) J=J %
Finally, we introduce the abbreviation
(4.11) Tie :={ i

4.1.2. Differentiation and integration. In order to check the conditions of Assump-
tion 1, we first need the following extension of Theorem 3.1 (which was stated
for the real line) to systems on the interval [0,1]. The proof can be found e.g., in

[21, 28, 33]. So far, to our knowledge, the result has been proved for three examples
of wavelet systems on [0, 1]:

(a) Orthonormal wavelets on [0,1], see [13]. In this case, all what is said below
holds for T = 7.

(b) Systems arising by iteratively applying Theorem 4.1 below to the systems in
(a) and the arising results. Le., these are biorthogonal systems arising from
orthonormal ones by differentiation and integration.

(c) Biorthogonal spline wavelets on [0, 1], see [18].
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Theorem 4.1. Let = ”(1) :S-l) be one of the above listed systems of univariate

scaling functions and Tgl , T;l) be the induced biorthogonal wavelet system on

Qe {[0,1], R, T (the torus)} such that Y C HE(Q). Then, there exists a second

system of dual scaling functions E;O), égo) and induced biorthogonal wavelets Tgo),

Tgo) (w.r.t. the same set of indices I, J;, respectively) such that

d=(1) _ ~(0) d=0) _ _ T =1

(4.12) dz =] = Djo —j dz =) - DJGO =j
’ d (1) (0) d A~(0) T (1)
@l = DTy, w1l = DTy,

where D; . € RITielxTiel e = 0,1, are sparse matrices such that Dj 1 is regular
and || Dy { Djoll < 1 independently of j. O

Obviously, Theorem 4.1 implies the validity of Assumption 1 in 1D and Q €
{[0,1], R, T}. Using again the abbreviations A\ = (4,k) and [D;]*, [D,]x for the
A-th row and column of D;, respectively, we can also reformulate (4.12) for each
wavelet function:

1 —(0 ¢! =(0
ws) &80 = DPE?, &Y = [Jﬁdéﬁ
) 1 0 (1
3%775\ e [Dja]* T; ), 77,(\ b= —[Djal} d(iT

4.1.3. Tensor product wavelets. Next, we build tensor products of the univariate
systems in the following way. For any index vectors e = (e1,...,e,)Y € E* :=
{0,1}7\ {0} and k = (k1,... ,kn)?, we define

n

. 1/:17
419 s = [[Oened o= { F5 ¢

gjyku7 e, = 0.

v=1

Here, k ranges over the set of indices

= U vj,ea

ecE*
where Vo 1= TJje; X -+ X Jje,, see (4.11).

Moreover, we define the scaling functions by

e ngk x,), keA; =1

The wavelet spaces are then defined by

= U 1I’j,ea

ecB*

and all definitions hold similarly for the dual/biorthogonal systems of functions.
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4.1.4. Differentiation and integration continued. Now, we use the systems induced
by 21, 2(1) as well as 2(®, 20 within a tensor product framework. For v =
(v1,--+ )T €40,1}" =: E™, we define

(4.15)
77;~,1;3U, w=1 e =1,
(0)
n ik '71/:0) ey =1,
(7) ('Y) Yv Yv 7y
x) =Y, )= ) ), 19.6 =
@) = Ve p (@) Vl:[_l I I
53('33,,7 v =0, e =0.

All systems of functions \Ilg") as well as its duals are defined in a straightforward
manner. Now, we may collect all what is said in this subsection to obtain:

Proposition 4.2. The biorthogonal systems ), W)~ € E™ fulfill Assumption
1 for @ =1[0,1]™. O

4.2. Parametric mappings. In this section, we consider domains Q C R™ that

are images under certain parametric mappings F' : R" — R" | i.e., Q = F({2), where
Q:= (0,1)™ denotes the reference cube. Of course, F has to be bijective.

4.2.1. Affine images. If Q is a parallelepiped in R”, it is known that there exists
an affine mapping F such that Q = F(Q) In particular, there exists some A €
GL(R™,R") and some b € R™ such that F(&) = A& + b, € Q. Hence, the linear
tangent mapping DF as well as the Jacobian J of F' are constant with respect to
Z. Moreover, we denote by |J| the determinant of J.

Now, define for any & € H(div; Q)

1

DF#(3), z=F(&)eQ.
Tt is well known (see for example [30]) that the mapping © — v is a bijective affine
transformation from H (div; Q) onto H (div;{2). Moreover, one has

(4.17) /Q o) div v(z) dz = /Q §(#) div 9(2) di

for all § € L2(Q), where
(4.18) q(z):=q(&), z=F(&)e.

Let us now consider wavelet bases ¥ and ¥ on Q as defined in (3.22) and
Definition 3.13 above. Then, we define ¥4 and ¥ by using (4.16). Since ¥ — v
is a mapping onto and because of (4.17), the latter wavelet systems are in fact
wavelet bases for Hg(div;Q) and H{(div;Q), respectively. Finally, concerning
Hj{(curl; Q), we remark that (4.17) implies

(4.19) /Q grad q(z) - v(z) dz — /Q grad §(z) - (2) da.
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Now, define U(1) starting from W) using (4.18). Then, we obtain that grad wg\l)
is orthogonal to ¥ for all A\ € V in view of (4.19). Hence, (2.14) implies that

grad U™ is in fact a wavelet basis for Hy(curl; Q). Note that the duals are defined
by

o(z) == DF T o), z=F(&)eqQ.

4.2.2. Conformal images. Conformal mappings have been used extensively both for
the analysis and the numerical solution of incompressible flow problems. This is
due to the fact that mappings that are conformal (and orthogonal) preserve certain
simple differential operators as div and grad, see [8, 23]. On the other hand, these
mappings are restricted to the 2D case.

In contrary to (4.16), we define in this case for any © € H (div; Q)

v(z) = 0(2), z=F(z)eQ.

Since div and grad are preserved, it is obvious that this gives wavelet systems in
H(div; Q) and H (curl; Q) as well as, respectively, divergence and curl-free wavelet
bases (in 2D using (2.1)). In this case, one may define the dual system by

1
/()]

v(z) = o(%), xz=F(%)eQ.

4.3. Domain decomposition. The construction of wavelet bases on more general
domains is still a field of very active research, see [9, 10, 15, 19, 20]. The basic idea in
all those references is to decompose the domain €2 of interest into nonoverlapping
subdomains €;, ¢ = 1,...,N. Each of the subdomains is then mapped to the
reference cube ) with the aid of parametric mappings. Finally, additional care
has to be taken with respect to the interfaces between the subdomains in order to
obtain global continuity, for example.

Now, one could try to use the bases created above within this framework in order
to obtain wavelets in H (div; Q) and H (curl; ?) on more complex domains. How-
ever, since we used integration by parts, the traces of the divergence- and curl-free
wavelets vanish on the boundary. Hence, one has to add certain functions near
the boundary in order to generate the full spaces H(div;Q) and H°(curl;Q),
respectively. These functions then have to be combined across the interelement
boundaries while preserving their div and curl, respectively, which might be some-
what unsatisfactory as well as very technical.

A different approach was proposed in [7]. Here, the global continuity is enforced
by means of Lagrange multipliers and hence one does not need to take care explicitly
on the interelement boundaries. However, on each of the subdomains 2; one still
has to have a full basis, i.e., one in H°(div;(;) and HY(curl; Q;) rather than in
H g(div; Q,;) and H 8(cur1; Q). Hence, one is still left with the problem of adding
appropriate functions near the boundary. This problem as well as possible further
extensions to more complicated domains will be treated in a forthcomming paper.

4.4. Examples. In this section, we show concrete examples for our construction.
We would like to mention, that all computations needed to produce the figures
below have been made using the Multiscale Library that is documented in [3].
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FIGURE 2. B-spline generators (left) Na, Ny g (top) and N3, Na;
(bottom) and biorthogonal wavelets (right) generated by these
functions.

Let us start with some remarks on the structure of the matrices D;; and the
support of the wavelets. For biorthogonal systems on R, it was proven in [26] that

(4.20) (Dj o)k =27 (6 pr — Sppr—1), (Dj1) kg = 27725 .

Note that D;; is a diagonal matrix. Adapting these systems of functions to [0, 1]
as in [18], leads to matrices of the form

DL

(4.21) D, = D! e RIVaslXIVisl 4 — 0,1,

)

DH

The large central block D! is of the form (4.20) and the two blocks D¥, D that
correspond to the modifications of those functions living near the boundary, are
small. For D; 1, it is obvious that the inverse is (block) diagonal. Hence also those

~ cf

dual functions involving the inverses (such as ¢ ) are locally supported. As can
be seen in Definition 3.13, this is important for the locality of the divergence-free
wavelets as well as for the norm equivalences.

4.4.1. Biothogonal B-spline wavelets. Let us denote by Ny, the cardinal B-spline
of order L > 1. It is W~6H known thz}t Ny, is refinable. In [12], a Wpole family of
dual scaling functions N, j for L + L even, was constructed. Here L is related to
the smoothness (and hence also to the size of the support) of N 1.7 in the sense

that for growing L ztlso the smoothness grows. It can be shown [26, 32| that for
©® = Np, 30 = N j one has oM = Npyy and g = Ny 1 7_1- We display
these functions and the associated biorthogonal wavelets in Figure 2 for L = 2 and
L=28.
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Fi1GURE 3. Daubechies’ orthogonal scaling function (left) and
wavelet (right) for N = 3 (up) and arising functions y¢*), y@t),
N, N,

4.4.2. Orthogonal wavelets. One may wish to have an orthonormal wavelet basis for
H(div; ) and H(curl; Q). As already stated, orthonormal wavelets are a special
case of biorthogonal ones where primal and dual functions coincide. Hence one
can, in principle, apply our construction. However, a closer look to (4.12) shows
that even if Eg»l) gives rise to orthonormal wavelets Tg»l), the second system Ego))
Tgp) is mot orthogonal, but biorthogonal. Hence, all constructed wavelet bases
are not orthogonal even when Daubechies’ wavelets are used on [0,1], see [22].
For divergence-free wavelets it is moreover known that no basis for H(div; Q)
consisting of compactly supported orthogonal divergence-free wavelets exists, see
[27].

However, as already mentioned, we may apply our construction to Daubechies’
orthogonal wavelets. In Figure 3, we display the orthonormal scaling functions
0@ = ypand ¥® = yo for N = 3 (ie., the mask has 2N nonvanishing
coefficients). Moreover, the functions Ncp(l), Nw(l) as well as their duals from
(4.12) are shown. The duals show strange graphs, but note that these functions are
only used for the analysis. They do not enter in a numerical scheme.

4.4.3. Bivariate curl-free wavelets. For graphical reasons we display only 2D func-
tions here. Then, we end up with three types of wavelets (corresponding to e € E?)

. ©)(2) — O (£ — 1))@
fon = (T daien )

o 49O ()M (y)

5 (z,y) ( w(n(x)(@(o)(y) _ 90(0) (y—1)) > )
. 425 (0) (1)4h(1)

Sy = ( 41£(1)Exg2[2(0)g; >’

that are displayed for using biorthogonal B-spline wavelets with L = 2, L=28in
Figure 4.
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o - m ®
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FIGURE 4. Components of the three different types of curl-free
wavelets in 2D for biorthogonal B-spline wavelets with L = 2,
L = 8 (first component left, second right).

5. ONE APPLICATION:
MULTILEVEL PRECONDITIONING IN H (div; Q) AND H(curl; ()

Let us finally consider the following two variational problems for given data
feL*(Q):
(5.1) u € Hy(div; Q) : agiv(u,v) = (f,v)r2@)y v E H,(div; ),
(5.2)  w € Ho(curl; ) : Geun (U, v) = (F,0) 1200y, v € Ho(curl ),

where the bilinear forms are defined in (3.32) and (3.33), respectively. The aim of
this section is to provide asymptotically optimal multilevel preconditioners for the
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corresponding matrices

(5.3) AY = (g ($YY, §%V))A7x/eAd1vcv>
(54) A%url = (acurl( CAul‘l, Ckgrl))}\,A’GAc‘”lCV'

The corresponding discrete formulations arise in many problems of practical inter-
est such as time-discretizations of Maxwell’s equations, the sequential regularization
method for the nonstationary incompressible Navier—Stokes equations and also cer-
tain plate problems, see [1, 6] and the references therein. In the context of finite
element discretizations, this has recently been studied in [1, 2, 4, 24]. We want to
use the discrete Hodge decompositions for developing preconditioners. Then, we
apply the following result which is well known (see [16] and the references therein):

Theorem 5.1. [16] Let the wavelet system ¥ be stable in H*(Q), t.e.,
(5.5) 1 Wy ~ Do 2 PKADOP, e (i),

AEV

for some constants ,v > 0. Let L : H'(Q) — H™*(Q) be a boundedly invertible
operator, i.e., |[Lv||g-t(q) ~ ||vlmiq), and assume moreover that the Galerkin
method @ACQAuA = QAf is t-stable in the sense

(5.6) 1QALQavAl -1y ~ lvallme(),  va € Sa,
such that |t| < #,~v. Then, defining the matrices
Dj :=diag(2*M)xen,  An = ((LYr, Pa))aven,
the matrices
B, :=D;'A\D}"
have uniformly bounded spectral condition numbers
[Bal B3 =0(1), ACV,#A—co. O

Let us start by considering (5.3). Using the Hodge decomposition in Theorem

3.16, we may subdivide the set of indices as AYY = AU A, Tt is readily seen
that

(5.7) agiy (PN, X)) = (W, P2, AN € AT v,
as well as
Qs ( cf cf _ cf cf di cf di cf
av(P5, %) = (5,95 ) L2 + (div Y5, div ¥5) 2

(5.8)
= (A, AY) 120 + (grad 9§V, grad v{) 12 o)

for A\, \ € At C V. Hence, (5.1) behaves like an elliptic fourth-order problem.
Corollary 5.2. The matrices

Bj = DXc2f (chiXiv)lACf
' IAdf

| It
(ALY par I
have uniformly bounded condition numbers, where I \x denotes the identity matriz
w.r.t. some index set AX C V.
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Proof. With the above preparations at hand, we use the standard norm equivalence
(2.20) for ¥V in order to precondition (Aji\w)| act, and Proposition 3.15 with s = 0
for (Ac}\iv)mdf . O

Finally, consider (5.4). Again, we may subdivide the set of indices as above.
Note that in this case, we have to pose the additional condition W(® C HJ(Q)
according to Theorem 3.17. We obtain

(5.9) At (WS, YS) = (WS W) L2y, AN €A C VL
For 'gbif, we cannot simplify the bilinear form any more. This shows

Corollary 5.3. The matrices

—1 Acurl) a -1
) | Lt | o
A [ D/ (AL pet Dk

have uniformly bounded condition numbers.

Proof. The preconditioning of (Aj{“l)| act follows by (5.9), Theorem 5.1 and (3.21)
for s = 0. For the remaining block (Af{“l)| Adf, we use the well-known fact

(grad u, grad v)2(q) = (div u,div v)12(q) + (curly, curlv)2(q),

i.e.,

a0111'1(¢§f7¢c>1\f/) = ( c>1\f>¢§f’)L2(Q) + (grad 'l/f)l\fvgrad ¢§€)L2(Q)’

so that the claim follows by using Theorem 5.1 and Proposition 3.15 for s =1. [

A few comments on the results obtained in Corollaries 5.2 and 5.3 are in order.
It is clear that the Hodge decompositions enable us to separate the two parts of the
operators in (5.3) and (5.4) in such a way that for both parts standard multilevel
preconditioners are available. Here, the orthogonality of the decomposition is really
crucial. Consequently, the biorthogonal decomposition described in subsection 3.5.3
would not give rise to the same results.

On the first look it seems that the preconditioning in Corollary 5.3 may be
better since one has to deal with a second-order problem, whereas Corollary 5.2
deals with a fourth-order problem. Hence, one expects worse condition numbers in
the latter one. On the other hand, one should note that for the decomposition used
in Corollary 5.3 one has to use smoother functions which also may have negative
influence on the constant in O(1).

Finally, we would like to mention that numerical experiments in [14] have shown
that the multilevel preconditioning simply using the diagonal matrix as proposed
in Theorem 5.1 by far do not give optimal condition numbers. In [14] spy precon-
ditioners based on local inverses have been tested and gave very good condition
numbers (for systems on the interval). It is obvious that we could also insert such
preconditioners in the above results. Since the Hodge decompositions decouple the

problems, we may use any appropriate preconditioners for the remaining subprob-
lems.
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