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ABSTRACT. Define ,, to be the smallest strong pseudoprime to all the first
m prime bases. If we know the exact value of ¥, we will have, for integers
n < Pm, a deterministic primality testing algorithm which is not only easier to
implement but also faster than either the Jacobi sum test or the elliptic curve
test. Thanks to Pomerance et al. and Jaeschke, ¥, are known for 1 < m < 8.
Upper bounds for g, %10 and 111 were given by Jaeschke.

In this paper we tabulate all strong pseudoprimes (spsp’s) n < 1024 to the
first ten prime bases 2,3, - ,29, which have the form n = pq with p,q odd
primes and ¢—1 = k(p—1),k = 2,3, 4. There are in total 44 such numbers, six
of which are also spsp(31), and three numbers are spsp’s to both bases 31 and
37. As a result the upper bounds for ¥109 and 11 are lowered from 28- and
29-decimal-digit numbers to 22-decimal-digit numbers, and a 24-decimal-digit
upper bound for 112 is obtained. The main tools used in our methods are
the biquadratic residue characters and cubic residue characters. We propose
necessary conditions for n to be a strong pseudoprime to one or to several
prime bases. Comparisons of effectiveness with both Jaeschke’s and Arnault’s
methods are given.

1. INTRODUCTION

If n is prime, then (as Fermat knew) the congruence
(1.1) " '=1 modn

holds for every b with ged(n,b) = 1. In general, if (1.1) holds, then we say that
n passes the Fermat (pseudoprime) test to base b; if, in addition, n is composite,
then we call n a pseudoprime to base b (or psp(b) for short). It is well-known that
for each base b, there are infinitely many psp(b)’s. There are odd composites n,
called Carmichael numbers, which are pseudoprimes to every base relatively prime
to m. Alford, Granville and Pomerance [2] proved that there are infinitely many
Carmichael numbers.

For these reasons, in some cases it will be difficult to find proofs of compositeness
using the Fermat test (1.1). A stronger form of the test does much better. Write
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n — 1 = 2°d with d odd. If n is prime, then
(1.2) either b =1 (mod n) or b*'¢ = —1 (mod n) for some r = 0,1,--- ,5 — 1

holds for every b with ged(n,b) = 1. If (1.2) holds then we say that n passes the
Miller (strong pseudoprime) test [12] to base b; if, in addition, n is composite, then
we say n is a strong pseudoprime to base b, or spsp(b) for short. Monier [13] and
Rabin [15] proved that if n is an odd compoite positive integer, then n passes the
Miller test for at most (n — 1)/4 bases b with 1 < b < n — 1. Thus the Rabin-
Miller test appeared: given a positive integer n, pick k different positive integers
less than n and perform Miller test on n for each of these bases; if n is composite
the probability that n passes all k tests is less than 1/4".

Define 1, to be the smallest strong pseudoprime to all the first m prime bases.
If n < 4,,, then only m Miller tests are needed to find out whether n is prime or
not. This means that if we know the exact value of ¥,,, then for integers n < ¥,
we will have a deterministic primality testing algorithm which is not only easier to
implement but also faster than either the Jacobi sum test [1, 6, 7, 8] or the elliptic

curve test [5]. From Alford et al. [3] we know that, for any m, the function ¢,
exists.

From Pomerance et al. [14] and Jaeschke [11] we know the exact value of ,, for
1 < m < 8 and the following facts:

W < My = 41234 31613 57056 89041 = 4540612081 - 9081224161,
P10 < Mo = 155 33605 66073 14320 55410 02401 (28 digits)
= 22754930352733 - 68264791058197,
P11 < Myp = 5689 71935 26942 02437 03269 72321 (29 digits)
= 137716125329053 - 413148375987157.

Jaeschke [11] tabulated all strong pseudoprimes < 10'2? to the bases 2, 3, and 5.

There are in total 101 of them. Among these 101 numbers there are 75 numbers n
having the form

(1.3) n = pq with p,q odd primes and ¢ — 1 = k(p — 1),k = 2,3,4.
For short we call strong pseudoprimes having the form (1.3) K2-, K3- or K4-spsp’s
according as k = 2,3, or 4.

In this paper we tabulate all strong pseudoprimes n < 10?4 to the first ten prime
bases 2,3,---,29 which have the form (1.3). There are in total 44 such numbers,

among which six numbers are also spsp(31)’s, and three numbers are spsp’s to both

bases 31 and 37. As a result the upper bounds for ¥ and ¥, are considerably
lowered:

P10 < Nyg = 19 55097 53037 45565 03981 (22 digits)
= 31265776261 - 62531552521,
P11 < Npp = 73 95010 24079 41207 09381 (22 digits)
= 60807114061 - 121614228121,
and a 24-digit upper bound for 15 is obtained:
P12 < Nip = 3186 65857 83403 11511 67461 (24 digits)
= 399165290211 - 798330580441.

The three integers Nig, Ni1, and Nig, should have the same style as integers
My, Mo, and M;q, (above), i.e., insert a small space for each 5 digits. The main
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tools used in finding these numbers are biquadratic residue characters and cubic
residue characters defined in certain Euclidean domains which are larger than the
integer ring Z. Let D be such a domain and «, 8,7 € D. If 7 is a nonunit and such
that if 7 | @8 then either = | @ or 7 | 3, then 7 is called irreducible. By a prime
we will always mean a positive prime of Z. Note that a number n having the form
(1.3) is determined by a prime ¢, and the prime g is determined by an irreducible
. We propose necessary conditions on 7 for n to be a strong pseudoprime to one
prime base or to the first several prime bases. Thus we have a certain number of
candidates n (determined by candidates for irreducibles) strong pseudoprimes at
hand. Then we subject these candidates n to Miller’s tests, and obtain the desired
numbers.

Arnault [4] used a sufficient condition for finding K2-spsp’s and successfully found
a 337-digit K2-spsp to all the prime bases < 200. But his condition is too stringent
for most K2-spsp’s to satisfy. Examples found by the condition are usually much
larger than the corresponding v,,. Our bounds Nig, Ni; and Nis could not be
found by Arnault’s condition. Jaeschke [11] used Jacobi sysbols (quadratic residue
characters) as his main tools for finding large K2- and K3-spsp’s; thus his methods
are less effective than ours. See Remarks 3.1 and 3.2 for comparisons in details.

Notation. Let r be a prime and b a positive integer with r ¥ b. Denote by ord,(b)
the order of b in the group Z* . We write vs(z) = s iff 2° | z and 257! } z for z a
positive integer.

With the above notation we state a lemma which is fundamental for our methods.

Lemma 1.1 (a part of [11, Proposition 1]). Let n,p,q,k be as in (1.3), and let b
be a positive integer. If n is an spsp(b), then ve(ord, (b)) = ve(ordy(b)).

In §2 we recall and state some basic facts concerning biquadratic residue char-
acters, which are necessary in §83 and 4, where we describe methods for finding
K2- and K4-spsp’s. Note that the three bounds Nyg, N11; and Nyo are all K2-spsp’s
which are found in §3. In §5 we recall and state some basic facts concerning cubic
residue characters and describe a method for finding K3-spsp’s. All K2-, K3- and
K4-spsp’s < 10?? to the first 10 or 9 prime bases are tabulated.

2. BIQUADRATIC RESIDUE CHARACTERS

Throughout this section and the following two sections D denotes the ring Z[i] of
Gaussian integers. It is well-known that D is a Euclidean domain. Let o, 5,7 € D.
The norm of o, N(a) = a@ = 1 iff o is a unit. The units of D are £1,+4. The
irreducibles of D are +1 + 1 with norm 2, primes = 3 mod 4 and their associates,
and non-real elements with prime norms =1 mod 4. A prime =1 mod 4 must be
the norm of an irreducible of D. A nonunit « is called primary if « = 1 or 3 + 2
mod 4. Among four associates of a nonunit « satisfying (1 + i) 4 « there is (only)
one which is primary.

If 7 is an irreducible with N(7) # 2, then there exists a unique integer m,0 <
m < 3, such that aN()=1/4 = im mod 7. The biquadratic residue character of

a, for 7 1 v, is defined and denoted by (%)4 =i™, which is 1, —1,5 or —4. If 7 | «,

(o3

then (;)4 =0. If b is an odd prime = 3 mod 4, then

(2.1) (E)4 = o D/4 mod b.

™
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Let m = a + bt and 8 = ¢ + di be relatively prime primary irreducibles. Then
(the general law of biquadratic reciprocity {10, Theorem 9.2])

(2= (5.0 = (5) 2,

Lemma 2.1. Let w be primary irreducible with prime ¢ = N(w) =1 mod 4. Let
b € Z with g1 b. Then we have

(I) [10, Lemma 9.10.1]. (&), =1 iff 2* =b mod q has a solution with z € Z (b
s a fourth power modulo q);

(I1) [10, Lemma 9.10.2]. (%)4 = —1 4iff b is a square but not a fourth power
modulo q.

Lemma 2.2. Let m = r + si be primary irreducible. Then we have
(1) (52), = (~=1)"7F [10, Proposition 9.8.3(d)];
(1) (2), =i~ [9, Theorem 4.23]; (10, Exercise 5.27].
We also need the following three lemmas, the proofs of which are easy.

Lemma 2.3. Let b be prime = 3 mod 4 and m = r + st be primary irreducible.

Then we have
(%)4 - (—1)%1 (%>4'

Lemma 2.4. Let 8 and 7 be primary irreducible with different prime norms = 1
mod 4. If b= N(B), then we have

O ().

where =1 denotes the inverse of m modulo b.

Lemma 2.5. Let 3 = u + vi be primary irreducible with prime b = N(8) = 1
mod 4 and a = ¢+ di. Then we have

(%)4 = (¢ — duv~H)*"Y/* mod b.

3. K2-STRONG PSEUDOPRIMES

Throughout this section let = be a primary irreducible of D such that ¢ =
N(r) =1 mod 4 and p = (¢+1)/2 are two primes determined by 7. We are going
to describe a method to compute all composite numbers n = pgq, below a given
limit (say 10%%), which are strong pseudoprimes to the first several (say 10) prime
bases. For this purpose we are looking for necessary conditions on 7w for n = pq to
be a strong pseudoprime, first to a prime base b, then to several prime bases.

Proposition 3.1. If n = pq is a strong pseudoprime to a (not necessarily prime)

base b, then
(%)4 - (1%)

Proof. If n =pq is an spsp(b) then, by Lemma 1.1,
v (ord, (b)) = va(ordy(b)).
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If (%) = 1, then vy(ordy(b)) = va(ordy(b)) < wa(p—1) — 1 = va(q— 1) — 2; thus b
is a fourth power modulo g, and so, by Lemma 2.1(I),

©),-1- ()

If (%) = —1, then wvy(ord, (b)) = va(ordy(b)) = va(p — 1) = v2(qg — 1) — 1; thus b is
a square but not a fourth power modulo ¢, and so

-3

by Lemma 2.1(II). O0

For the rest of this section, let p, = (N (a)+1)/2 be a positive integer determined
by a primary (but not necessarily irreducible) element o of D. If a prime b = 1
mod 4, then b = 3 for some primary irreducible 8. If ged(b, N(a)) = 1, then o™ *
denotes the inverse of o modulo b.

Let

2
Pt

Ry = {primary a=z+yi:0<z,y<8,i? =(-1)"% } ={1,5+44i}.
By Lemma 2.2(II) and Proposition 3.1 we have

Lemma 3.1. If n = pq is an spsp(2), then there exists & € Ry such that m = o
mod 8.

For a prime b =3 mod 4, let
a

sz{a=x+yi:0§m,y<4b,azl mod4,(b>4= (&>}>

and for a prime b =1 mod 4, let

~—
Ry=ca=z+yi:0<z,y<4ba=1 mod 4, aa :(l—)ﬁ> .
s/, b

Using (2.3) for b =3 mod 4 and Lemma 2.5 for b =1 mod 4, it is easy to compute
the sets:

Ry ={1,5}; Rs = {1,9};

Ry = {1,13,21 + 8i,21 + 20i,1 + 8i, 1 + 20i, 13 + 8,13 + 20i,
17 + 44,17 + 244, 25 + 44, 25 + 244};

Rii = {1,5+8i,5+ 36i,9 + 12i,9 + 32i, 13 + 124, 13 + 324,17 + 8,
17 + 364, 21, 25, 29, 20 + 204, 20 + 244, 37, 37 + 204,
37 4 240, 41,5 + 124, 5 + 32i, 17 + 124, 17 + 324, 29 + 8i,

29 + 364,33 + 164, 33 + 201, 33 + 241, 33 + 281,37 + 84,37 + 36i};
and

Ris = {1,1+ 44,1 + 48i, 25,25 + 44, 25 + 481, 29 4 121, 29 + 404,
33,33 + 241,33 + 28i,37,41,45,45 + 244,45 + 281,
49 + 121,49 + 407, 5 + 244, 5 + 284, 13 + 44, 13 + 164, 13 + 364, 13 + 484,
21 + 244,21 + 281, 33 + 81, 33 + 441,45 + 8i, 45 + 44i}.
By Lemmas 2.3 and 2.4 and Proposition 3.1 we have
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Lemma 3.2. Let b be an odd prime. If n = pq is an spsp(b) and 7 =1 mod 4,
then there exists o € Ry such that 1 = a mod 4b.

Let m =4-2-3-5-7-11-13 = 120120. Applying the Chinese Remainder Theorem,
it is easy to compute the set

R={z+vyi:0<z,y<m,x+yi(mod 4b) € R, for b=2,3,5,7,11 and 13},

which has cardinality #R =2-2-2-12-30- 30 = 86400. By Lemmas 3.1 and 3.2
and the Chinese Remainder Theorem we have

Proposition 3.2. Ifn =pq is an spsp to the bases 2,3,5,7,11 and 13, then there
erists o € R such that m = a mod m.

Now we are ready to describe a procedure to compute all K2-spsp’s < L, to the
first h(> 6) prime bases.

PROCEDURE Finding-K2-spsp;

BEGIN
For every z+yi € R,u > 0,v>0,u+v < f/—%—}—l Do
begin
g (z+um)’ + (y+vm)*p (¢ +1)/2in—p- g
If n is an spsp to the first h prime bases then output n,p and ¢;
g — (x—um)® + (y+vm)*p — (g+1)/2%n —p- g
If n is an spsp to the first h prime bases then output n,p and g;
end
END.

The Pascal program (with multi-precision package partially written in Assembly
language) ran about 33 hours on my PC486/66 to get all K2-spsp’s < 10?4 to the
bases 2,3,5,7,11,13,17,19,23, and 29, listed in Table 1. There are in total 41

numbers, among which six numbers are spsp(31), and three numbers are spsp’s to
both bases 31 and 37.

Example 3.1.

n = Nyig = 1955097 53037 45565 03981 = 31265776261 - 62531552521
is the smallest K2-spsp to the first 10 prime bases.

q = 2257397 + 1075802, 7 = —225739 + 107580 = 14501 + 107580i mod m,

(b) _(9)_ —1, forb=2,7,13,19 and 29;
T4 1, forb=3,5,11,17 and 23.

p
Remark 3.1. The 22—digit number Ny in Example 3.1 yields the lowered upper
bound for 11y. The old bound Mg in §1 has 28 decimal digits, which is a K3-spsp

found by Jaeschke [11], where about 22254930353733 . 400 ~ 1.02 - 107 cadidates were

tested. If the method of Jaeschke [11] for finding large K2-spsp’s had been used for

finding the number Nig, about % 15~ 1.015 - 108 candidates would have

subjected to the Miller tests. With our method less than 86400 - 6 ~ 5.184 - 10°

candidates were tested, and the whole calculation took about 40 minutes on my
PC486/66. O

Remark 3.2. The only example spsp to the first 10 prime bases given in Arnault
[4] has 46 decimal digits. O
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TABLE 1. List of all K2-spsp’s < 10?4 to the first 10 prime bases
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number

factorization

spsp-base

31

37

41

1955097 53037 45565 03981

2690332 96825 63267 25221

3008407 16946 58668 53821

739501024079 41207 09381

832267692468 41880 70621

93 63077 44449 44722 57261
146 77609 16035 03876 89301
204 03862 73329 86474 00661
438 3230247171 62347 54141
53174906 71172 3993213881
5557179287119 7983341781
63251216 29424 37982 86901
669 90115 04586 47816 88781
749 00686 09749 21149 32621
81867072311110130740741
85985927 73792 34137 98461
944 65534 5119061375 25501
1341 55760 34892 76307 51301
1642 80218 64367 26339 86221
168232033 78913 82839 62861
1689 95964 08374 44559 45381
247955734 30737 87677 07901
313565701 41534 83953 56661
3186 65857 83403 11511 67461
3606 81321 80229 69255 66181
371974764 57852 27481 33501
3797 20840 84267 16856 53341
3982 06433 02455 41305 92661
449597567 32464 93102 70021
5008 16683 57545 63605 90341
5527 2788069776 36945 56181
592245699 79967 95047 37021
6676 36712 01552 03296 18581
767218076 27153 77191 64381
787275625 77378 67538 42101
8043 12708 55570 41821 58061
885194158 9451772231 65341
919429103 51631 37183 44061
9598 00605 00761 9741491261
9598 72525 43998 27643 42041
9958 79862 37395 06748 87861

31265776261 -
36676511341 -
38784063541 -

60807114061 -

64508437141 -

68421770821 -

85666823101 -
101004610621 -
148041045781 -
163056595561 -
166691020861 -
177835902301 -
183016549861 -
193520911141 -
202320379981 -
207347447221 -
217331008501 -
258993977101 -
286600958341 -
290027614021 -
290685366061 -
352104909301 -
395958142621 -
399165290221 -
424665351661 -
431262544501 -
435729756181 -
446209834621 -
474129500941 -
500408175181 -
525703281661 -

544171709941 -

d7TT70158461 -
619361799061 -
627405620701 -
634157988421 -
665279700181 -
678022530421 -
692748368821 -
692774323081 -
705648589021 -

62531552521
73353022681
77568127081
121614228121
129016874281
136843541641
171333646201
202009221241
296082091561
326113191121
333382041721
355671804601
366033099721
387041822281
404640759961
414694894441
434662017001
517987954201
573201916681
580055228041
581370732121
704209818601
791916285241
798330580441
849330703321
862525089001
871459512361
892419669241
948259001881
1000816350361
1051406563321
1088343419881
1155540316921
1238723598121
1254811241401
1268315976841
1330559400361
1356045060841
1385496737641
1385548646161
1411297178041

0

0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
1
0
1
1
0
1
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
1
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TABLE 2. List of all K4-spsp’s < 10?4 to the first 9 prime bases

spsp-base
number factorization 29 | 31| 37

16 8321892698 78247273501 | 20513525581 - 82054102321 | 0 | 0 | O
2281601193209 5901892127 | 75524850103 - 302099400409 | 0 | 0 | O
5305015467573 1441089751 | 115163095951 - 460652383801 | O | O | O
622 26037 29269 08274 34451 | 124725736411 - 498902945641 | 0 | 0 | 1
746 1560999219 44445 40751 | 136579290151 - 546317160601 [ 0 | O | O
756 27207 58699 78114 82107 | 137502006883 - 550008027529 | 0 | 0 | O
88390841 56081 39638 77707 | 148652986483 - 594611945929 | 0 | 0 | O
1806 39110 73564 04697 92951 | 212508300271 - 850033201081 | 0 | 1 | O
1907 24964 86590 35097 71451 | 218360347171 - 873441388681 | 0 | 1 | O
2007 26785 89554 71326 16207 | 224012714983 - 896050859929 | 0 | 0 | O
287772220 09066 70936 16451 | 268222025611 - 1072888102441 | 0 | 0 | O
372098606 18211 02485 54387 | 304999428763 - 1219997715049 { 0 | 0 | O
7913 75505 32200 98040 77727 | 444796443703 - 1779185774809 | 0 | 0 | O
9391 09651 14428 48478 66451 | 484538350171 - 1938153400681 | 1 | 0 | 1

4. K4-STRONG PSEUDOPRIMES

To compute all composite numbers n = p g below a given limit, of the form (1.3),
with ¥ = 4 and ¢ = N(x) for some primary irreducible 7 of D, which are strong
pseudoprimes to the first several prime bases, the procedure is a little different from
the case k = 2. We give equivalent conditions on 7 for n to be a psp (instead of
an spsp) to one or several prime bases. We subject those candidates n, with =
satifying the conditions, to Miller tests to decide whether they are spsp’s or not.

Let b be a positive integer (not necessarily prime). It is easy to prove that
(4.1)

n=pqis a psp(b) iff (9) =1.

m/4
A procedure based on (4.1), lemmas in §2 and the Chinese Remainder Theorem
ran about 61 hours on my PC486/66 to get all K4-spsp’s < 1024 to the first 9 prime
bases up to 23, listed in Table 2. There are in total 14 numbers, among which only
one is spsp(29).

5. CUBIC RESIDUE CHARACTERS AND K3-STRONG PSEUDOPRIMES

In this section D denotes the ring
Zw])=A{z +yw:z,y €Z},

where w = :ﬁi\—/—?‘g It is well-known that D is a Euclidean domain. Let o, 8,7 € D.
The norm of o = z + yw is N(a) = aa = 2° — zy + y>. The units in D are
the only six elements with norm 1 : #+1,4w,+w?. The irreducibles of D are
+(1 —w),=(1 + 2w), (2 + w) with norm 3; primes = 2 (mod 3) and their as-
sociates; and non-real elements with prime norm = 1 (mod 3). A prime = 1 (mod 3)
must be the norm of an irreducible of D; and the prime 3 = —w?(1 — w)?.
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TABLE 3. List of all K3-spsp’s < 10%* to the first 9 prime bases

871

spsp-base
number factorization 29 | 31 | 37

1912984 16254 13806 73761 | 25251958093 - 75755874277 | 0 | 0 | 1
34096886 96900 5185504481 | 106609704013 - 319829112037 | 0 | 0 | O
55980401 34753 42797 35681 | 136602100213 - 409806300637 | 0 | O | O
1976 9493097737 8358089281 | 256706662021 - 770119986061 | 0 | 0 | O
236194333 86845 27687 65441 | 280591241173 - 841773723517 0 | 0 | O
3590 07177 34550 26409 08801 | 345932159701 - 1037796479101 | 0 | 0 | 1
475946318 31244 21564 84321 | 398307384781 - 1194922154341 | 0 | 0 | O
5848 91146 05935 09248 24801 | 441546957133 - 1324640871397 | 0 | O | O
5979 5857596757 02751 62721 | 446452153453 - 1339356460357 | 1 | 0 | O
6091 09964 84997 37599 17761 | 450595888741 - 1351787666221 | 1 | 0 | 1
6929 26578 71186 76488 99521 | 480599132581 - 1441797397741 | 0 | 0 | O

A nonunit « is called primary if o« = 2 (mod 3). Among six associates of a nonunit
« satisfying (1 — w) t a, there is (only) one which is primary. If 7 is an irreducible
with N(7m) # 3 and 7 t «, there is a unique integer m = 0,1, or 2 such that
aWN@=-1/3 = ym  mod 7. The cubic residue character of a modulo 7, with
N(m) # 3 and 7 { a, is defined and denoted by (%)3 = W™, which is 1,w or
w?=-1-w. If7|a, then (2), = 0. We have (2), = 1iff 7 = 1 mod 2 [10,
Proposition 9.1].

Let 7 be primary irreducible with prime ¢ = N(r) =1 mod 3. Let b € Z with
¢ 1 b.Then we have (%)4 =11iff z° = b mod ¢ has a solution with z € Z, i.e., iff b
is a cubic residue modulo ¢ [10, Proposition 9.3.3(a)].

Let 7 and 3 be primary irreducibles with N (m) # 3, N(8) # 3, and N(w) # N(0).
Then (%)3 = (%)3 (The law of cubic reciprocity [10, Theorem 9.1]).

Suppose that N(7) # 3. If 7 = ¢ is rational, write ¢ = 3m — 1; if 7 = u + vw
is a primary complex irreducible, write «w = 3m — 1. Then we have (1_7“)3 = W™
(Supplemment to the Cubic Reciprocity Law [10, Theorem 9.1']).

Let m be a primary irreducible of D, and ¢ = N(m) 1 mod 3 and p
(g + 2)/3 two primes determined by 7. It is easy to prove that if n = pgq is a
strong pseudoprime to the (not necessarily prime) base b, then

b b b
A procedure based on (5.1), the Cubic Reciprocity Law and its Supplemment,
and the Chinese Remainder Theorem ran about 8 hours on my PC486/66 to get

all K3-spsp’s < 10%* to the first 9 prime bases up to 23, listed in Table 3. There
are in total 11 numbers, among which only two are spsp(29)’s.

(5.1)
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