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ON A CONJECTURE OF ERDOS AND STEWART

FLORIAN LUCA

ABSTRACT. For any k > 1, let p; be the kth prime number. In this paper, we
confirm a conjecture of Erdés and Stewart concerning all the solutions of the
diophantine equation n! +1 = p%pi_‘_l, when pr_1 <n < pg.

1. INTRODUCTION

For any k > 1 let p; be the kth prime number. From [3], we found out that
Erdds and Stewart conjectured that the only solutions of the equation

(1) n!—}—l:prZH for some a > 0,b > 0 and pr_1 < n < pi

are obtained for n < 5.
In this paper, we prove the following

Theorem. FEquation (1) has no solutions for n > 6.

One can check that equation (1) has no solutions for 5 < n < 11. From now on,
we work with a potential solution of (1) with n > 12.
2. AN ELEMENTARY LEMMA

The following elementary result turns out to be helpful when searching for the
values of n.

Lemma. In equation (1), one has ab # 0.

Proof of the Lemma. Assume that this is not so and write

(2) nl+1=p* for some p € {pg,Pr+1}-

Let a = 2'a; where a; > 1 is odd. Then,

(3) ordy(n!) = orda(p® — 1) < max(orda(p £ 1)) + i < logy (pus1 + 1) +logy(a).
From equation (2), we know that

(4) n® <p*=nl+1<n”

therefore a < m. Since the interval [n + 1,2n] contains at least two primes for
n > 12, we get pry1 + 1 < 2n. Hence, inequality (3) implies

(5) ords(n!) < log,(2n) + log,(n) = 2logy(n) + 1.
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From Lemma 1 in [1], we know that

(6) ordy(nl) > n —logy(n + 1).
From inequalities (5) and (6), we get

(7 n —logy(n + 1) < 2logy(n) + 1,

which implies n < 11. This contradicts the assumption on n > 12.

3. A LINEAR FORM IN LOGARITHMS AND A BOUND ON 7
Write

b
. 1
(8) nl=piph —1=ph (pk - (—) ) :
Pk+1

We find an upper bound for ords(n!). We apply Théoréme 4 in [1] with the choices
p=2, D=1 g¢g=1,
1

Pr+1
A1 = pg, Az =pri1

Q) = Pg, g = , b1 =a, by =b,

and
w=15 v=10, c(u,v)=18.
From the result in [1], it follows that
36
(9)  orda(n!) < W(max{log b +loglog2 + 0.4, 15log 2})? log py, log pi 1,
where

a b
10 b = + )
(o) logpr+1  logpy
We now find a bound on ¥ in terms on n. Since

pr,bH_l =nl+1<n"
it follows that

(11) alogpg + blogpy 1 = logpiph .| < logn™ = nlogn.

Hence,

12) o = a b :alogpk—\—blogpkﬂ nlogn - n_
logpri1 logpk log pi log pr11 logpy logpey1  logn

Since the interval [n + 1,2n] contains at least two primes, it follows that pp <
Prr1 < 2n. Inequality (9) now implies

(13)
36 n 2
N < oy log | —— log2 +0.4,15log2 ¢+ | log®(2n).
ords(n!) < (log2)? <max{ og <1ogn> +loglog2 +0.4,151og }) og~(2n)
When

log <L> + loglog2 + 0.4 < 15log 2,
logn
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we get n < 409 506. When

n
1 — loglog 2 + 0.
og <logn> +loglog2 +0.4 > 15log 2,

we get, by inequalities (6) and (13), that

(log 2)* logn
which implies n < 7 242 116. The conclusion is that n < py < pr41 < 7.5- 106.

2
(14) n—logy(n+1) < 36 <1og (__n__) +loglog2 + 0.4) log?(2n),

4. THE REMAINING COMPUTATIONS

For the remaining computations, we used the following result due to Erdés and
Oblath (see [2]).

Theorem EO. The equation

(15) 2P £yP =n!

has no solutions such that p > 2 is prime and ged(z,y) = 1.
Case 1. n > 193.

The idea here was to check, computationally, that if n leads to a solution of (1),
then a = b = 0(mod 3). Once we prove this, the impossibility of (1) follows from
Theorem EO for p = 3.

Assume, for example, that (1) has a solution such that either 3 a or 3 1 b. Write
(16)
n!+1=Az® where 4 = pilpiil for some 1, d2 € {0, 1,2} with (61,02) # (0,0).

Let ¢ < 193 be a prime congruent to 1 modulo 3. Equation (1) implies that
Az? = 1(mod q) for every such g. It now follows that A is a cubic residue modulo
q for every ¢ < 193 which is congruent to 1 modulo 3. Since a number ¥ is a cubic
residue modulo ¢ if and only if 4 is a cubic residue modulo g, it follows that we
need to identify only those numbers A of the form

(17) A=pp or A=ppri1 or A=pipen

in the range 193 < pp < pry1 < 7.5 - 10% which are cubic residues with respect
to every prime g < 193 which is congruent to 1 modulo 3. Achim Flammenkamp
wrote a computer program which checked in a few minutes that there are no such
A’s. Hence, n < 193.

Case 2. n < 193.

By the Lemma, we know that if n leads to a solution of (1), then ab > 0.
Achim Flammenkamp wrote another computer program which checked in less than
a second that in this range n! + 1 2 0(mod prpr11)-

The Theorem is therefore proved.
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