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AN ITERATIVE SUBSTRUCTURING METHOD
FOR MAXWELL’S EQUATIONS IN TWO DIMENSIONS

ANDREA TOSELLI, OLOF B. WIDLUND, AND BARBARA 1. WOHLMUTH

ABSTRACT. Iterative substructuring methods, also known as Schur comple-
ment methods, form an important family of domain decomposition algorithms.
They are preconditioned conjugate gradient methods where solvers on local
subregions and a solver on a coarse mesh are used to construct the precondi-
tioner. For conforming finite element approximations of H', it is known that
the number of conjugate gradient steps required to reduce the residual norm
by a fixed factor is independent of the number of substructures, and that it
grows only as the logarithm of the dimension of the local problem associated
with an individual substructure. In this paper, the same result is established
for similar iterative methods for low-order Nédélec finite elements, which ap-
proximate H(curl; ) in two dimensions. Results of numerical experiments are
also provided.

1. INTRODUCTION

In this paper, we consider the following boundary value problem

(1) Lu:=curl(acurlu)+Bu = f in Q,
nxu 0 on Of.

Here © is a bounded polygonal domain in R? of unit diameter, and n its outward
normal. We assume that £ € (L?(2))?, that the coefficient matrix B is a symmetric
uniformly positive matrix-valued function with b;; € L*(Q), 1 < 4,5 < 2, and
that a € L*(Q) is a positive function bounded away from zero. The unit tan-
gential vector t on 0N is defined such that, following its direction, 92 is traversed

counterclockwise. The tangential component of u on 92, u - t, is then equal to
n x u.
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The choice of Dirichlet boundary conditions is made for simplicity only; other
boundary conditions may also be considered without any new technical complica-
tions. We could, in particular, consider reflection conditions of Neumann or Robin
type, which are related to Silver-Miiller radiation conditions; see [16].

Equation (1) is encountered when solving Maxwell’s equations and Stokes’ prob-
lem in the stream function-vorticity formulation; see [8, 10]. The case of time-
dependent Maxwell’s equations, discretized with an implicit time-scheme, is partic-
ularly important; in this case, u is the electric field and equation (1) is solved in
each time step. The coefficient a vanishes with the time step, and f depends on the
solution at the previous steps, as well as the electric current density; see [8, 15].

The spaces H(curl; Q) and H(div;Q), and special finite element approximations
have been introduced to analyze equations such as (1); see [10]. In recent years,
a considerable effort has been made to develop optimal or quasi-optimal, scalable
preconditioners for these finite element approximations of problems in H(curl;{2)
and H(div; 2). Two-level overlapping Schwarz preconditioners for these spaces have
been developed for two (see [3]) and three (see [20, 13]) dimensions, respectively.
Multigrid and multilevel methods are considered in [3, 5, 12, 11, 13, 4]. Since this
paper was submitted for publication, several further results have been obtained
(see [25, 19, 22, 21]). We know of no previous work on iterative substructuring
methods for H(div; ), and only a few papers on the H(curl; Q) case (see [2]) where
optimality is proven for a two-subdomain iterative substructuring preconditioner,
combined with Richardson’s method, for a low-frequency approximation of time-
harmonic Maxwell’s equations in three dimensions.

Iterative substructuring algorithms are iterative methods, where the precondi-
tioner is built from solvers defined on the substructures which form a nonoverlap-
ping partition of the original domain. When a coarse solver is added, the rate of
convergence can be made independent of the number of subregions. The method
considered here has its roots in the early work by Bramble, Pasciak, and Schatz
[6]; see also [23]. That work is all for the H! case. There has been extensive work
on the three dimensional case as well; see, e.g., Dryja, Smith, and Widlund [9] and
the many references therein. We note that for all these iterative substructuring
methods, the condition number of the relevant iteration operator grows polyloga-
rithmically in H/h. Here H represents the diameter of a substructure, and h the
diameter of the elements into which the substructure has been divided. The bounds
are independent of the number of subregions and also of possible jumps in the co-
efficients across the interface between the substructures.

In this paper, we restrict ourselves to two dimensions and develop an iterative
substructuring method for equation (1). The condition number bound and the
performance are very similar to those previously known for the H' case. The bounds
are independent of the number of substructures; they are developed locally for one
substructure at a time and they are therefore insensitive to even large changes in
the coefficients from one substructure to its neighbors. We will also discuss the
impact on the performance when the coefficients a and B change relative to each
other; see Sections 4 and 5.

This paper is organized as follows. In Section 2, we recall some properties of the
space H(curl;Q) and introduce a variational formulation of (1). In Section 3, we
describe the finite element spaces employed for the approximation of (1) and prove
a stability lemma for an interpolation operator. We describe our substructuring



ITERATIVE SUBSTRUCTURING METHOD FOR MAXWELL’S EQUATIONS 937

preconditioner and prove an upper bound for its condition number in Section 4.
The last section is devoted to the discussion of some numerical results.

2. PROBLEM SETTING AND FUNCTIONAL SPACES

Given a bounded open Lipschitz domain D c R?, let (-, )s;p denote the scalar
product in the Sobolev space HS(D). We use || - ||ls;p and | - |s;p to denote the
corresponding norm and semi-norm, respectively, dropping the subscript D if D =
). For a general reference on Sobolev spaces, see [1].

The weak formulation of problem (1) is defined in

H(cwl; Q) := {v € (L*(Q))?| curlve L*(Q)}.
This is a Hilbert space with the inner product and the associated graph norm
defined by
(W, V)eurt := (0, v)g + (curlu,curl v)o,  ||ull2y := (u,u)o + (curlu, curlu)g ;

see [10] for a discussion of basic properties of H(curl; Q). In particular, we recall a
trace theorem:

Given a vector u € H(curl; Q), then its tangential component on the boundary,
nxu=u-t, belongs to the space H™2(9RQ). The subspace of vectors in H(curl; Q)
with vanishing tangential component on ) is denoted by Hy(curl; Q).

Equation (1) can be given the following variational form.

Find u € Hy(curl; ) such that

(2) a(u,v) = (f,v)g, v € Hg(curl;Q),

where the bilinear form a(-,-) is given by

a(u,v) = /(a curlucurlv + Bu-v)dz, u, v € H(curl; Q).
Q

Associated with the bilinear form a(-, -) is the energy norm ||-||, defined by ||v||2 :=

a(v,v). Our assumptions on the coefficients guarantee that the energy norm is
equivalent to the graph norm.

A central result, valid for any Lipschitz domain, is a Helmholtz type decomposi-

tion of Ho(curl; Q) which is orthogonal with respect to the graph norm (see (8, vol.
3, Proposition 1, p. 215]):

(3) Hoy(curl; Q) = grad H (Q) @ Hg" (curl; Q).
Here
(4)  Hy(curl; Q) := H(div; Q) N Hy(curl; Q) = curl H*(Q) N Hy(curl; ©2),
and
H(div; Q) := {u € H(div; Q)| divu = 0},

where H(div; Q) := {u € (L3())?| divu € L*()}.
If 09 is connected, the kernel of the curl operator in Ho(curl; Q) is grad Hj(Q)
(see [8, vol. 3, Proposition 2, p. 219]), and the inequality

(5) [ullo < C diam(R) ||curlullg, u € Hy"(curl; Q)

holds, with a constant C' independent of u.
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3. NEDELEC FINITE ELEMENT DISCRETIZATIONS

We first introduce a simplicial triangulation 7g and then a family of quasi-
uniform and shape-regular triangulations 73, h < H, obtained by refining 7y in
some standard way. Let Ty = {Ty, k = 1,...,K} and Hy = diam(T}), with
H = max{Hy}. The coarse elements T} are also called substructures. We denote
the set of edges associated with the triangulations 7y and 7, by £y and &,
respectively. We consider, in full detail, only triangulations based on triangles but

note that the results of this paper are equally valid for finite element spaces built
on quadrilaterals.

We assume that the coefficients ¢ and B in equation (1) are constant in each

substructure Ty € Ty and denote them by ay and By, respectively. We also assume
that

(6) 0< ﬁk|x|2 S xTka S 7k|x|27 X € Rza
fork=1,... ,K.
We consider finite element discretizations based on the lowest order Nédélec

elements, also known as Whitney finite elements; see [7, 10, 14]. With P,(D),
D CQ, £ >0, the set of polynomials of degree < ¢ on D , and with

R(T) :=Po(T)* + Po(T)(za, —21)",
for T a triangle, we define the following spaces:
Xp(Q) :={ue H(cwlQ)| u, eR(T),TE Ty}
and
Xn(Q) :={ue HcuQ)| u, eR(T), TeTh}.

The degrees of freedom are given by averages over the edges e of the triangulations

(7 Ae(u) = —hl—/nxuda,

where h, is the length of the edge e.
Subspaces of vectors with a vanishing tangential component are defined by

Xo:n(Q) == Xn(Q) N Ho(curl; Q), Xo.u () := X () N Hy(curl; Q).

As in the case of Lagrangian finite elements the L?-norm of the Nédélec elements
can be bounded from above and below by means of the values of their degrees of
freedom. The proof in [17, Proposition 6.3.1] for Lagrangian elements can easily be
adapted to establish the following lemma.

Lemma 3.1. There exist constants 0 < ¢y < Cy, which depend only on the minimal
angle of the elements in Ty, (Ty), such that for allu € R(T), T € Ty, (Tn),

(8) C1 Z (he )‘e(u))2 < “u“g;T <Gy Z (he /\e(u))2‘
eCOT eCOT

An essential tool in our proof for the Schwarz methods is an interpolation oper-
ator py onto Xy (Q2), defined in terms of the degrees of freedom of Xy (), i.e.,

1
Xe(ppu) = -};—/nxuda, e€y.

e
e
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We note that \.(pgu) depends solely on the value of u on the coarse edge e; this
will allow us to develop our bounds locally, one subregion at a time.
It is easy to show that curl (pgu) = Mgcurl (u), where Iy is the L2-projection

onto the space of piecewise constant functions associated with the triangulation 7y,
since for each T' € Ty

(curl (pgu)) |r = —%—qurl ppu)dr = —%— [ (pru) x ndo
9 oT
(9) - %84 xnda—l,j;,—l curl (u) dz = (gcurl (u)) |7

The following lemma establishes the stability of the interpolant pgr.

Lemma 3.2. There exists a constant C > 0, which depends only on the minimal
angle of the triangulations T, and Ty, such that for all u € Xp(§2)

10)  feurl (o2 < fleurlul2,
(11) oty < (14108 () ) bl + H2feutul? ).

Proof. Inequality (10) is obtained by using (9) and summing over the contributions
from the different substructures.

The proof of (11) uses arguments similar to those of [24] in which a multilevel
splitting of the div-operator was considered. We consider one subdomain at a time.
Given T € Ty, let e be one of its edges of length H,.; we use this notation here to
distinguish its length from those of the edges of the fine triangulation. Let v; and
vy be the endpoints of e. The restriction of the fine triangulation 75 to e splits e
into a union of nonoverlapping edges of the fine triangulation. Let e; and e be the
edges, which end at v; and vy, respectively, and let ¢; and ¢y be the elements in 7j
to which e; and es belong. We now define a continuous, piecewise linear function 9,
on 0T, which is equal to one on e, except on e; and es, where it decreases linearly
to zero; it is extended by zero on 8T \ e. As shown in [18, Section 5.3.2], 9. can be
extended to T, as a continuous piecewise linear function, still denoted by 9., with
an absolute value less than or equal to 1, and with a gradient which is bounded by
C/h on t; and tp and by C/r elsewhere. Here 7 is the distance to the closest of v,
or vs.

Because of Lemma 3.1, it is enough to bound H.(n x pgu),, for each edge
e C OT. Since the function n x (pgu)|, is constant, we can use Stokes’ theorem,
(7) and (8), and find that

IN

H.(n x pgu)|, = /(n x u) do

= /19 (nx:)dcr+h2 (nxu|el)+%(nxu|q)

0Ty

e hey
= /(19ecurlu+gradﬁe x u)dzx + %—1 (n X ulq) + —2— (n X u|62> .
T

Thus, the absolute value of He(n x pgu)|, can be bounded from above by

(12) C (H||curluljo,r + [Fefr,rllullo;r + [ullos, + lullog,) -
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We next consider the second term on the right-hand side of (12) in more detail.
To obtain an upper bound for |J¢|1,7, we split 1" into ¢; Uty and 1"\ (t1 U t2),

192 = / lgrad 0,2 dz + / \arad g2 dz

t1Uto T\(tlutz)
1 1 T
(13) <C / — dx + / —de | <C 1+//—d¢dr
h? 72 r
t1Uts T\(t1Ut2) h O

co(rem(2)

Taking (8), (12), and (13) into account, we find, by summing over all e C 9T, that

H
lomallr < Heust s+ (14105 (7)) Il

The final result is obtained by summing over all T' € 7. O

Remark 3.3. We can obtain a similar estimate for the energy norm. However in
that case, the constant also depends on the ratio of the coefficients. We find,

Yk H
/B (pgu) - (pgu)dz < Clg}%xx B (1 +log ( - >> /B u-ude
Q Q

H2
+ C max k7
1<k<K ay

/ a curlu curludz.
Q

We will need an orthogonal splitting for the discrete spaces, similar to that
of (3). We refer to [10, 7, 3] for details and note that the results given in [7,
Section IIL3], [7, Section IV.1], and [3] for the H(div;) case are also valid for
H(curl; Q), since the vectors in H(curl; Q) can be obtained from those in H(div; Q)
by a 90-degree rotation. Let T" € Ty be an element of the coarse triangulation
and let Xo.,(T") be the finite element space Hy(curl;T) N X}, defined on T' and
with vanishing tangential component. Furthermore, let Sp.,(T") denote the space
of functions which are constant on each element of 7;, and with mean value zero on

T, and let Wy.,(T") be the space of continuous functions which are linear on each
element in 7, and vanish on 0T

It is well known (see [7, 10]) that, since 07" is connected,

{u e Xon(T) | curlu =0} = {gradp | p € Wo,n(T)},
and that

(14) curl Xo. (1) = So;n(T).

We define the following orthogonal decomposition

(15) Xon(T) = grad W (T) & Xo5 (T),
where X3, (T) is defined by

Xoin(T) i={v € Xon(T) | (v, W)cur1 = 0, w € grad Wo,n(T)}.
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The pair of subspaces Xo.;(T') and So.»(T') also satisfies a Babuska-Brezzi con-
dition (see [7])

1

- _(pyewrlu)o
P€Soin (1) uexoy(r) ||U]|curT [1P]l0;T
p#0 uz£0

(16)

The constant c is independent of A but depends on the shape of T. An immediate
consequence of (16) is that for each u € X, (T), there is a unique v € Xd;h(T)
with curl v = curlu such that

(a7) [vlor < CH [lcurl vijo,r

with a constant independent of v; see [10, Proposition 5.1].

4. SCHWARZ METHODS AND STABLE SPLITTINGS

Schwarz theory provides powerful tools for the study of many classes of precondi-
tioners for partial differential equations; see, e.g., [18]. Applications are particularly
well developed for conforming finite element approximations of elliptic problems.
We recall that a Schwarz algorithm is an iteration scheme defined in terms of a
family of subspaces {V;,7 = 0,...,J}, projection-like operators onto these sub-
spaces, and a scalar product on a relevant finite dimensional space V. Here, we
restrict ourselves to using exact orthogonal projections P; onto the subspaces V;
with respect to the bilinear form a(-,-). An additive Schwarz method provides a
new operator equation, with the same solution as the given finite element problem,

Pasu:ZlDiu:g>

with an operator which can be much better conditioned than that of the original
discrete elliptic problem; it can often be solved effectively by the conjugate gradient
method, without further preconditioning, employing a(-,-) as the inner product.
The right-hand side g can be chosen so that the new problem has the same solution
as the original one; it is possible to compute P;u from the data given by the original
problem.

An estimate for the lowest eigenvalue of P, is given by the following lemma;
see [18, Secton 5.2].

Lemma 4.1. If a representation, u =Y u;, u; € V;, can be found such that
Za(ui,ui) < C2a(u,u) YueV,

then the lowest eigenvalue of the additive Schwarz operator P,s is bounded from
below by C§ 2,

In the case at hand, we proceed by first introducing an auxiliary decomposi-
tion of the Nédélec space Xo.,(€2), related to the Laplace operator, and prove, in
Lemma 4.2, that a stable splitting can be found. We then use this result to prove
a lower bound for the smallest eigenvalue of an additive iterative substructuring
method. We conclude this section by showing that there is also a bound that
is independent of the the ratio of the coefficients B and a in (1). We also note
that, as is often the case, a good bound for the largest eigenvalue is routine and
can be obtained by a standard coloring argument; see, e.g., [18, Page 165]. In
particular, the coefficients a and B do not enter into the upper bound. We only
consider in our analysis decompositions of the whole space Xo.,, but note that
the method presented here can also be employed to define a preconditioner for the
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Schur complement system, obtained by eliminating the variables in the interior of
the substructures with a direct method. We refer to [18] and to the references
therein, for a discussion of some practical issues of Schur complement methods.
We begin by introducing a Schwarz method based on a direct sum decomposition
of the finite element space. An edge in Ty is denoted by I';; if it is shared by the
substructures T; and T;. We also define a region Tj; by —Tij =T; UT;.
We first consider the following splitting of X := X.5({2) into subspaces:

(18) X = X0+2Xk+ Z Xij.

1,5=1
1<

Here Xo := Xo,g() is the finite element space on the coarse triangulation 7.
X}, is the subspace of vectors with support in Tx: X := {v € X | vigyr, = 0}
Finally, the space X;; consists of the gradient of functions in W, (75;), which are
discrete harmonic with respect to the Laplace operator on T; and T}, i.e., they are
the extensions with the smallest H' semi-norm of all finite element functions with
the given boundary values.

It is then easy to see that

XoﬂXkZXoﬂXij=XijﬂXk={0}, 1<k<K, 1<i<j<K.

Furthermore, the space X} and X; as well as X;; and X, have an empty intersec-
tion for different sets of indices. Counting the degrees of freedom then guarantees
that (18) is a direct sum.

We note that the elements of X;; are not defined by solving a homogeneous
Maxwell equation with boundary data given by piecewise constant functions, with
zero averages over the edges; see below for a discussion of that case.

Lemma 4.2. For each u € X, there exists a unique decomposition

(19) u—uo-l-Zuk-l-Zu”,

1,j=1
i<j

up € Xo, ug € Xi, ug; € Xy, such that

K K 2
H
a(ug, up) + Za(uk,uk) + Z a(uj,u;) < C (1 + log (7;)) a(u,u),
k=1 i,j=1

i<j
with a constant C > 0, independent of h, H, and u.

Proof. We find that ug = pgu since the decomposition is unique and pg(u—ug) =
0. Using Lemma 3.2, we immediately obtain an upper bound for the first term:

H
a(ug,ug) < Cn (1 + log 7[) a(u,u),
where 7 depends on the coefficients. An upper bound for 7 is given by
Ve H}? k ’Yk)

Br’ ay

The upper bound for the remaining terms is established on the subdomain level,
and the global result is obtained by summing over all subdomains. For an upper

maXx max
1<k<K
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bound of ||u;j||o, we proceed by further decomposing the subspaces Xy, X;;, and X,
restricted to a substructure into gradient spaces and their orthogonal complements.

We recall that X, restricted to Ty, is equal to R(T;) and thus each uy € X, can
be written on T; € Ty as

w1, = grad ¢y + < i/.—_y; ) = grad ¢y + upy,
K3
where ¢ is a linear function and (z;,y;) is the center of gravity of the subdomain
T;. Then, it can be easily seen that this is a L2-orthogonal decomposition and that
(20) lus oy, < CHllcurlug oz, -

For the local subspace X;, we use the orthogonal splitting already introduced in
(15). Each u; € X; can be written as
=grad¢; +u,.

We denote by M(i) the set of all indices 1 < j < K, j # i, such that T; and Tj
have a common edge and define u;; := uy; in case that j < i. By the definition of

Xi;, each uy; is the gradient of a continuous piecewise linear function ¢;;.
By defining

Y=g+ é; + Z ¢ij, Wi=ug +uy,
JEM(3)
we obtain the following decomposition for u on T;
(21) u=grady +w.

We remark that this is not an orthogonal decomposition.

It follows, by definition, that ¢y + JEM) ¢4; is a discrete harmonic function.
Applying [23, Lemma 3.3], we obtain

@Y Wulsany SO (1418 D) Jon s X af

JEM(1) JEM(3)

Using (22), the equivalence between the H'/? semi-norm on 87T} and the |- |; semi-
norm on T; for discrete harmonic functions, we obtain

(23) > lwslEn <C >0 18415 6m)-
JEM(1) FEM(2)

Since grad ¢; and grad (¢r +3_ ;¢ aq(;) #i5) are orthogonal in L2(Ty), (22) and (23)
yield

H 2
S uglEa, <c(1+1og ) lgrad vilz..
JEM(3)

In a last step, we have to bound ngadwﬂg; by [jull?,,,. .,- Using inequality (17),
applied to u_, and (20), we obtain

Iwli§r, < CLE?(lleurluy [§z, + [ewlup||§z,)-
Since curlug is constant and curlu,; has mean value zero on T;, we finally find

(24) Iwlgr, < CLE?|lcurlwGr,
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Using (21), we obtain

||u“gurl;Ti = lwl%,Tl + ”W”zurl;Ti + Q(W,grad’l/))o;'ri.
Applying Young’s inequality and (24), we get
IalZ.r, = (L= OWn + 1+ (1 — e HCLH?) |[curl wf§ 7,
for 0 < e < 1. The choice ¢ = C) H?/(C H? + 1) gives

Wir < Cllulur,
and thus

7\ 2
Z [l < C <1 + log 7{) Il -
JEM(I)

Summing over all subdomains, we finally get

2 X 2 = 2 H : 2
”uoncurl + E , ”uk”curl + E : Huincurl <C|1+ log % ”uchrl‘
k=1

i,j=1
i<j

Lemma 4.2 is now a consequence of the norm equivalence of the graph norm || ||cun
and the energy norm || - ||4.

A detailed analysis of the constant C shows that it depends on the coeflicients
but not on jumps of the coefficients. It can be bounded by

where C does not depend any more on the coefficients. In case of time-dependent
Maxwell’s equations, x tends to infinity if the time step tends to zero, and then the
constant C in Lemma 4.2 deteriorates. This is due to the interpolation operator pg
which is not logarithmically stable with respect of the L2-norm. In fact the best
bound for the L2-norm alone is

H
llprrullor < Cllprullozr.

To obtain good results in this important case, we have to modify the decomposition
appropriately and find a stable splitting of u with respect to the L2-norm.

We next consider the case where the space X;; in (18) is replaced by the space
Xij of discrete Maxwell extensions with respect to the bilinear form a(-, )

Xij={veX| alv,w) =0, we X;,X;, suppv € T; UT,}.

We note that an element v € X’ij is uniquely defined by its values n x v on I';;.
The decomposition

K K
(25) X=Xo+> Xp+ Y Xy,
k=1 ig=1

<]
is now stable with respect to the L%-norm as we will show after the proof of the
following main theorem. We remark that

K K
Xy C Z Xi]‘ +ZXk,
k=1

i,j=1
i<
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and thus (25), in contrast to (18), is not a direct sum. It follows from Lemma 4.1
that it is sufficient to find one adequate splitting for u.

Theorem 4.3. For each u € X, there exists a decomposition

u—u0+2uk+ Z iy,

1,j=1
i<y

corresponding to (25) such that

K

K 2
. H
a(ug, ug) + k§:1a Uy, Ug) E a(lj, 05) < C <1 + log (F)) a(u, ),

i,5=1
i<

with a constant C' > 0, independent of h and u.

Proof. The proof is based on the stability of the splitting (18). Each function in X,
can be written as the gradient of a piecewise discrete harmonic function ¢;; with
respect to the Laplace operator, but such a representation is not always possible
for @;; € X;;. However, it can be characterized as the solution of a minimization
problem. Choosing ug = pgu, which ensures that u;; x n|r,, = @;; x n|r,;, we
obtain
a(ly;, Uy;) = vijer)gi;?(nj) a(Vij, Vi) < a(ugg, ugj).
Vi xnlp, =0 xnir,

We remark that the coarse space contribution ugy that we have chosen is exactly
the same as in the direct space decomposition of Lemma 4.2. O

Finally, we consider the splitting (25) for the limit case a = 0. In this case, the
bilinear form a(-,-) is just a weighted L?-scalar product

a(v,w):/Bw-vdm.
Q

Let us, for the moment, decompose u as

u—Zuk—i— Z U—m

i,j=1
i<j

where @;; € X with Ae({1;;) = Ae(ws;), e C I';j and Xe(Q;;) = 0 elsewhere, and
u; € Xi. Then Lemma 3.1 guarantees that

K
> laislig < Cllullz:

i<j

We remark that @;; is an extension by zero to the interior of the substructures and
in general not contained in X;;. Taking now the unique decomposition of u into

u—Zuk+ Z u“,

i,j=1
i<j
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where U € X and u;; € Xij, we get, because of the minimization property of G;;,

K

> gl < Clull3:

i,j=1

1<j
This proves the stability of the decomposition of u with respect to the L?-norm.
Thus as x becomes large, we expect an upper bound for the condition number which
is independent of the ratio H/h. We remark that this result cannot be obtained
with the splitting (18).

Our bound remains valid when the coefficient B tends to zero. In the limit
case, B = 0, the bilinear form a(-,-) is no longer positive definite. However, we
can still work with the preconditioned conjugate gradient method in a subspace,
if the right-hand side f is consistent. Then using the stability of pg with respect

to the L2%-norm of the curl, (10), we obtain a condition number bound which is
independent of H/h.

Remark 4.4. We recall that H(div;{2) is the space of square-summable vectors u
over (), with divu square-summable. In two dimensions, any vector in H(div; )
can be obtained from an element in H(curl;2) by a 90-degree rotation; see [10].
Our results and analysis for the space H (curl; 2) and Nédélec elements are therefore
also valid for H(div; ) and the lowest-order Raviart-Thomas elements.

Remark 4.5. In the multilevel context, we can immediately get an additive Schwarz
method by using a decomposition of X in terms of the hierarchical surplus spaces
associated with the different levels and a vertical splitting into curl -free and comple-
mentary spaces. Using Lemma 3.2 and a strengthened Cauchy-Schwarz inequality
(see [24]) we obtain a method with a condition number that grows quadratically
with the number of levels of refinement.

5. NUMERICAL RESULTS

In this section, we present some numerical results on the performance of the
iterative substructuring method based on the decomposition (25), when varying
the diameters of the coarse and fine meshes, and the coefficients @ and B. We refer
to [18], for a general discussion of practical issues concerning Schwarz methods.

We have considered the domain 2 = (0,1)? and a uniform rectangular triangu-
lations 75, and Tz. The fine triangulation 7}, consists of n? square elements, with
h =1/n. The matrix B is given by

B = diag{b, b}.

In Table 1, we show the estimated condition number and the number of iterations
in order to obtain a reduction of the residual norm by a factor 1076, as a function
of the dimensions of the fine and coarse meshes. For a fixed ratio of H/h, the
condition number is quite insensitive to the fine mesh size. The number of iterations
varies slowly with H/h and our results compare well with those for finite element
approximations in H' of Laplace’s equation; see, e.g., [18]. We remark that the
largest eigenvalue is bounded by 5 in all the cases in Table 1, except for (n = 32,
H/h =16) and (n = 64, H/h = 32); the latter cases correspond to a partition of 2
by 2 subregions and, consequently, the bound for the largest eigenvalue is 3.
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TABLE 1. Estimated condition number and number of CG itera-
tions (in parentheses) for a residual norm reduction of 1076, versus
H/h and n. Caseof a=1,b=1.

|H/h ] 32 | 16 ] 8 | 4 | 2 |
n =32 - 20.23 (11) [ 26.50 (20) | 19.10 (20) [ 12.86 (17)
n =64 |26.27 (11) | 35.94 (20) | 27.16 (21) | 19.00 (17) | 12.90 (16)
n = 128 | 46.83 (20) | 36.68 (18) | 27.06 (17) | 18.92 (16) *
n =192 - 36.71 (17) | 27.00 (17) | 18.90 (16) *
n = 256 | 47.80 (18) | 36.66 (17) | 26.97 (16) | 18.89 (16) *

condition number
[\*)
oL

20}
154 1
10}
5 * calculated condition number

- least square fitting J
0 L ) ) i )

0 5 10 15 20 25 30 35 40
H/h
F1GURE 1. Estimated condition number from Table 1 (asterisk)
and least-square second order logarithmic polynomial (solid line),
versus H/h; relative fitting error about 1.8 percent.

In Figure 1, we plot the results of Table 1, together with the best least-square fit
second order logarithmic polynomial. The relative fitting error is about 1.8 percent.
Our numerical results are therefore in good agreement with the theoretical bound
obtained in the previous section and suggest that our bound is sharp.

In Table 2, we show some results when the ratio of the coefficients b and a is
changed. The estimated condition number and the number of iterations are shown
as functions of H/h and b, for a fixed value of n = 128 and a = 1. The numerical
results also confirm our analysis in the limit cases b = 0 and b = co. More precisely,
we remark that the condition number tends to be independent of the ratio H/h when
the ratio b/a is very small or very large. We recall that when Maxwell’s equations
are discretized with an implicit time-scheme, the time step is related to the ratio
b/a. The iterative substructuring method presented in this paper therefore appears
very attractive for the solution of linear systems arising from the finite element
approximation of time-dependent Maxwell’s equations.
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TABLE 2. Estimated condition number and number of CG itera-
tions(in parentheses) for a residual norm reduction of 1076, versus
H/h and b. Case of n =128 and a = 1.

[H/h ] 32 1 16 [ 8 | 4 |
b=1e—05][3.87 (10) [ 4.68 (13) [ 4.86 (13) [ 4.92 (13)
b=0.0001 |3.87 (10) | 36.3 (16) | 26.2 (16) | 13 (15)
b=10.001 |[16.9 (11)[36.5 (16) | 27 (16) | 18.7 (16)
b=0.01 [46.9 (14) | 36.7 (17) [ 27.1 (16) [ 18.9 (16)
b=0.1 46.9 (14) | 36.7 (17) | 27.1 (17) | 18.9 (16)
b=1 46.8 (20) | 36.7 (18) [ 27.1 (17) | 18.9 (16)
b=10 45.3 (22) | 36.4 (22) [ 27 (18) |18.9 (17)
b=1e+02[40.8 (25) | 34.8 (23) [ 26.7 (20) [ 18.9 (19)
b=1le+03]29.8 (24) | 28.4 (23) | 24.5 (21) | 18.4 (19)
b=1e+04[17.4 (18) | 17.3 (17) | 16.8 (18) [ 15.3 (17)
b=1e+05|9.41 (14) [ 9.37 (14) | 9.3 (14) | 9.15 (14)
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