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EXISTENCE OF DISCRETE SHOCK PROFILES
OF A CLASS OF MONOTONICITY PRESERVING SCHEMES
FOR CONSERVATION LAWS

HAITAO FAN

ABSTRACT. When shock speed s times At/Az is rational, the existence of solu-
tions of shock profile equations on bounded intervals for monotonicity preserv-
ing schemes with continuous numerical flux is proved. A sufficient condition
under which the above solutions can be extended to —oo < j < oo, implying
the existence of discrete shock profiles of numerical schemes, is provided. A
class of monotonicity preserving schemes, including all monotonicity preserv-
ing schemes with C1 numerical flux functions, the second order upwinding flux
based MUSCL scheme, the second order flux based MUSCL scheme with Lax-
Friedrichs’ splitting, and the Godunov scheme for scalar conservation laws are
found to satisfy this condition. Thus, the existence of discrete shock profiles
for these schemes is established when sAt/Az is rational.

1. INTRODUCTION

The field equations expressing the balance laws for one-dimensional homogeneous
continuous media typically have the form of systems of conservation laws

(1.1) us+ f(u), =0, z€R, t>0, uwelR"

In this paper, we shall investigate the existence of discrete shock profiles of some
monotonicity preserving schemes, including second order flux based MUSCL
schemes, for scalar conservation laws. We denote these schemes by

(1.23) wi =i = Mfye = filage),

where A := At/Az and |A\f'| < 1. The numerical flux function f satisfies the
consistency condition that f is continuous and

(1.2b) flu,u,...,u) = f(u).
We denote speeds of shock profiles of (1.2) by s.

It is well known that in general the solution of the initial value problem of
(1.1) develops discontinuities in a finite time which present difficulties for numerical
computation of solutions of (1.1). Shock profiles of numerical schemes for (1.1)
epitomize the propagation and structure properties of shocks in numerical solutions.
It is also closely related to error estimates of the numerical solutions near shocks
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(see [EY], [F], [Je], [LX], [TT], [TZ]). Thus, a brief review of the known results on
the existence discrete shock profiles of numerical schemes for conservation laws is
in order. Jennings [Je| proved the existence and stability of discrete traveling waves
for strictly monotone schemes with differentiable fluxes for scalar conservation laws.
The existence of discrete shock waves of first order accurate finite difference schemes
for systems of conservation laws when As is rational was established by Majda and
Ralston [MR] by using the center manifold theorem (see also [Mi]). Yu [Yu] proved
the existence of discrete shocks for the Lax-Wendroff scheme when As is rational
or s is small. Fan [F] established the existence and uniqueness of the Lipschitz
continuous shock profile for Godunov scheme.

Almost all of above results are either for monotone schemes or for the Lax-
Wendroff scheme. On the other hand, almost all useful high resolution schemes
are adaptive and few analytical results involving shocks are available for these
schemes, even though some of them are widely used. Some of the major difficulties
in analyzing these schemes are their adaptiveness and that their flux functions
fj+1 /2 are at most Lipschitz continuous rather than continuously differentiable.

In this paper, we consider the existence of discrete shock profiles for some adap-
tive monotonicity preserving schemes for scalar conservation laws. A scheme (1.2)
is called monotonicity preserving if the monotonicity of 4™ implies the same type of
monotonicity of u™*!. Monotonicity preserving schemes include monotone schemes,
I*-contracting schemes and TVD schemes. Many well known numerical schemes
are monotonicity preserving schemes. For example, the Lax-Friedrichs’ scheme is
monotone, the Godunov’s scheme is strictly I!-contracting and many second order
MUSCL schemes are TVD, and hence they are monotonicity preserving schemes.
We assume the schemes satisfy the following condition which is equivalent to that
the monotonicity preserving property of schemes is kept when At becomes smaller:

Assumption I. The scheme (1.2) is monotonicity preserving for all 0 < A < Ag
for some Ay > 0.

Most monotonicity preserving schemes satisfy Assumption I. In this paper, we
pay particular attention to the second order flux based MUSCL schemes. We recall
some schemes for scalar conservation laws as follows:

(i) Second order upwinding flux based MUSCL scheme which works when f/ > 0:

n+1/2 n in tn
U = uy = M fy12 — fi12)s

(1.33.) 1 " n m
u?+1 = 5[’&? + uj+1/2 - /\(‘](']'.5-_%11//22 - fj_~1—11//22)],
and \
~ 1 k
(L3b) e = £ + gmf i) - £, ") — ),
with

a, if ab> 0 and |a| < |b],
(1.3¢) m(a,b) =< b, if ab> 0 and |a|] > |b|,
0, ifab<0.
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(ii) The second order flux based MUSCL scheme with Lax-Friedrichs’ splitting:

w M S
Ada 1 N . . . B
= S+ A F @) = fio @),
where
(14b) fj+1/2 = f;,.l/g + f;’:—l/Z’
R 1
(1.4c) e = £ () ST () = F7 (), £ (ug) = £ (u-0),
with
a, if ab> 0 and |a| < |b],
(1.4d) m(a,b) = ¢ b, ifab>0and |a| > |b],
0, ifab<0,
and

(Lde)  fiiypp =1 (w41) - %m(f_(uj+1) =7 (wy), £ (up2) = £ (u40)),
where

(1.46) F ) = () —au),  FH ) = 5(F(w) + aw)

with a > max|f'(u)]. MUSCL scheme (1.4) is TVD and hence monotonicity pre-
serving.
(iil) Godunov scheme: The flux function of the Godunov scheme is

(1.5) oo {mimgsus,, S, u) <,
i+1/ MaXy? >u>u%, flu), if uj > Uy

The Godunov scheme is I*-contracting and hence monotonicity preserving.

All schemes listed in (i)-(iii) have Lipschitz continuous flux functions f and
satisfy Assumption I.

We intend to establish the existence of discrete shock profiles of monotonicity

preserving schemes (1.2) with end states

(1.6) Uj = ux asj— £00, uU_ > uUt.
The speed of the shock profile is
W T - )

. PT—

We know that for a traveling wave of the scalar equation (1.1) to exist, it is necessary
that the chord condition

(1.8) flu) = flus) _ flus) = fluo)

U— U_ Up — U

forall uy <u < wu_

holds. We collect our assumptions, besides Assumption I, in the following:

Assumption II. We assume u_ > uy, As ={/m > 0, where | and m are integers,
and that the chord condition (1.8) holds.
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Our results remain valid for the case u— < wuy with the inequality in (1.8)

reversed. For simplicity, we only present the proofs in the case given by Assumption
II.

The equations of the shock profiles are
(1.9a) uf“ = u? — A(fj+1/2(u") — fj_1/2(uk)), k=0,1,2,...,m—1,

(1.9b) u) =uy, Ul =y,

1.9¢ u; — UL as j — Foo.
J

To prove the existence of solutions of (1.9), we take summation on (1.9a) to obtain
m—1 _
u;n =uj— A Z(fj+1/2(uk) - fj—1/2(uk))'
k=0
We see that system (1.9) is equivalent to

m—1
wir=u; =AY (Fip12(0F) = Fi_1/2(ub)),
(19/) k+1 k kz_o k F k
’U,j =Uj —)\(fj+1/2(u )—fj_l/g(u )), k=0,1,2,... ,m—l,

0_ .
U; =Uj, Uj D ur asj — Foo.

To prove that solutions of (1.9) exist, we first modify and restrict (1.9") as follows:

m—1

Uj_p = Uj +€Aj_u— A Z (fj+1/2(uk) - JFj—l/z(uk)),
(1.10a) =

L+1<j—-1<M-1,
(1.10b) u;=u_ forj <L, wu;j=us forj>M,

where Agu = ug11 — 2ug + uk_1 and

k+1 k 7 k 7 k
; = U, —A(f'+1/2(u )—f'_l/g(’u, )), k=0,1,2,... ,m—l,
(1.10c) ; ! ! !

’U,j = Uj.
Our program for establishing the existence of shock profiles of (1.2) has three steps.
First, we shall prove the existence of solutions of (1.10). Then we shall let —L, M —
oo in (1.10) in a suitable manner so that (1.9¢) holds, and then ¢ — 0+ in (1.10)
to establish the existence of solutions of (1.9).

We divide this paper into three sections after this one: In Section 2, we prove
the following theorem:

Theorem 1.1. There exists a decreasing solution of (1.10) for all monotonicity
preserving schemes with continuous flux function f.

Here, we introduce some notation. For a decreasing function u; with u; — uy
as j — oo, we use the integer J(u) to denote the location j where u; crosses
(u— +uq)/2, that is uj; > (uy +u_)/2 for j < J(u) and u; < (u— + uy)/2 for
J > J(u). We define the function V; as

u- i j < J(u),
1.11 V, =
(1-11) ! {u+, if j > J(u).



DISCRETE SHOCK PROFILES FOR CONSERVATION LAWS 1047

We shall also use the notations fi := f(u) in this paper. In Sections 3 and 4,
we prove that if a monotonicity preserving scheme satisfies the following condition
(1.12), then it has shock profiles. We state these results precisely as follows:

Theorem 1.2. Traveling wave equation (1.9) for a monotonicity preserving

scheme with continuous fluz f has a solution if any solution of (1.10) with
—L = M = N satisfies

m—1 N
(112) S % w-nisc
k=0 j=—N+1

where C > 0 is a constant independent of N and € > 0.

To verify the condition (1.12), we usually start with the following lemma proved in
Section 4:

Lemma 1.3. Let u; be a decreasing solution of (1.10) with —L = M = N > 0.
Then u; satisfies

N—-1 m—1 _
(1.13) - [ uf) — Mf- - ff+1/z)] <C,

j=—N k=0
where C is bounded uniformly in N and e € [0,1].

In Section 5, we establish the existence of discrete traveling waves for all mono-
tonicity preserving schemes (1.2) with C* flux function f. We also prove that
the existence of discrete shock profiles for the second order flux based upwinding
MUSCL scheme (1.3), the second order flux based MUSCL scheme (1.4) with Lax-
Friedrichs’ splitting, and the Godunov scheme, in Sections 6, 7 and 8, respectively.

2. EXISTENCE OF SOLUTIONS OF (1.10)

In this section, we shall prove that for any monotonicity preserving scheme with
continuous flux function for scalar conservation laws, the modified shock profile
equation, (1.10), has a solution. To this end, we further modify (1.10) as

m—1
Uj—g = Uj + €Aj_ju — pA Z f]+1/2 fy 1/2( ))v
(2.1a) k=0

L+1<j—1<M-1,

(2.1b) uj=u_ for j <L, and w; =uy for j > M,

where p € [0,1] is a constant and

(2 1C) ’LL?-H' _uk_ (fj+1/2( )_ij—l/Q(uk))a k=07172,-°' 7m_]~7

U; = Uj.

We note that the iteration (2.1c) is still a monotonicity preserving scheme since
we can regard p) as just another smaller A (see Assumption I). Therefore, if u; is
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monotone, then u' determined by (2.1c) is also monotone of the same type. We
introduce a new vector variable

)

'U‘7 u]
e w,
J 71
- . — : (k+1)
v; = = , Le., v; = Uj_g,
,U(l+1) Uj—g

J

with which we can rewrite (2.1a) into a system of first order difference equations

1 1 I—- ! ! )
U;' ) = ’Uj(‘_)l - e(vj('—ll) - 27};'_)1 + ’U;_+11)) - iu’g(]aua m)a
2 1
o = o,
(3) _ (2
(2.2) Vi T Ve

I+1 !
IR
L4lt1<j<M+i—1.
The matrix form for (2.2) is
(2.32) v; = Avj_1 + pF(j,u, p, L, M),

where the constant (I + 1) x (I + 1) matrix A is defined as such that v; = Av;_; is
(2.2) when p =0, i.e.,

0 . . . —e 142 —¢

1 . . . 0 0 0
A:

0 1 0 0

0 0 1 0

The boundary condition (2.1b) becomes

ifj—k>M
(2.3b) Pt _ J Uy T =k 2 M,
J u_, ifj—k<L.
We see that systems (2.1) and (2.3) are equivalent. The system
(2.4) v; = A’Uj_l

has general solutions of the form Y;C where Y; = A7~(E++1) is the Wronskian
matrix of (2.4) and C is a constant vector in RF1.

Lemma 2.1. The boundary value problem
v; = A’Uj_l,

(2.5) S _ Jue ik M,
’ u-, #fj-k<IL
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has a unique solution. Moreover, this solution, denoted by w, is strictly decreasing
in the sense thatvj(.k) > ’uj(k“) forj=L4+14+1,... M+1-2, k=1,2,...,l and
L+1<j—-k<M.
Proof. Problem (2.5) is equivalent to the following boundary value problem:
O=u; —uj_1+eAu;_y, L+I+1<j<M+1-1,
UM = UM+l = = UM4l—1 = Ut, UL =U_.
To prove the existence of solutions of (2.5), we consider the initial value problem
O=wuj; —uj1+eAujy, L+I+1<j<M+1-1,
(2.6) UM = UMAL = = UMI-1 = Uy,  Up-1 = b

The solution of the initial value problem (2.6) is unique and depends on initial data
and hence uy and b continuously. We claim that the solution of (2.6) is monotone.
To this end, we assume that b > u;. The case where b < u can be handled
similarly. Then from (2.6) we have

UM—1 2 UM 2 UM+1 2 2 UM4I-1-
Assume, for induction, that
(2.7) Ujl 2 Uji41 2 * 0 2 Uy,
which holds at least for j = M +1 — 1. Then (2.6); leads to
€(tj—i—1 — 1) = €(ujr — uj_r41) + (u5-1 —ug) 20,

and hence (2.7) holds for j = 7 — 1. By induction, the claim is proved. If b = u,
then the solution of (2.6) is the constant u4. If b = u_ > u,, by the monotonicity
of the solution u; of (2.6), we have ur, > u_. Since ur, depends on b continuously,
there is a point b € (u,,u_) such that uyp = u_. Thus there is a solution of (2.5).

To prove the uniqueness of the solution of (2.5), it suffices to prove that uy, is

a strictly monotone function of . To this end, we let u; and %; denote solutions

of (2.5) with up;—1 = b and Up—1 = b, respectively. Without loss of generality, we
assume b > b. Then the estimate

(2.8) Ujop — Ujp 2 Ujmipl — Uj—i41 2 0 2 Uj — Uj
holds for j = M +1 — 1. Assume that (2.8) holds for j < M + 1 — 1, then equation
(2.6) implies
e[(@j—1-1 = uj—1-1) — (B — wy—)] = (@t — uj—1) = (Wj—i41 — Uj—141)]
+ [(@—1 —wj—0) — (85 —uy)] 2 0.

Thus, inequalities (2.8) hold for j = 7 — 1. By induction, inequality (2.8) holds for
any L+1 < j < M+1—1. Then estimates (2.8) yield the desired strict monotonicity

of ur, Uy, — ur > Up—1 — Up—1 = b— b > 0, which implies the uniqueness of the
solution of (2.5). d

Lemma 2.2. Let Yy;4;_1 denote the first | rows of the Wronskian Yar4+1—1 of (2.4)
at j=M+1-1, and §i41,141 is the I + 1-th row of Yr4;. Then the matrix

(2.9) (?M +’"1>
Yi+1,L+1

1s invertible.
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Proof. Since the Wronskian matrix Y; is invertible, the rank of Yarpi—1isl. Assume,
for contradiction, that the matrix (2.9) is not invertible. Then the last row must
be a linear combination of the other I rows of Yj;4;_1, that is, there are constants
ai,ag, ... ,a; such that

(2.10) Ui+1,L41 = @191, M+1-1 + G2T2, M4i—1 + -+ + G, M+1-1,

where §i a4+1—1 is the k-th row of Yjs4;—1. Since the general solution of (2.4) is
Y;C, the solution of boundary value problem of (2.5) satisfies

Ut

(2.11) <§/M+H> C=
Yi+1,L+1

Ut
U—

for some vector C € R*!. After some row manipulations in (2.11) by using (2.10),
we have

Ut

(2.12) (YMgl*) C=
Ut
u_ —us(ar +ag+ -+ ap)
We note that in (2.12), a1, as, ... ,a; depends only on Yasi;—1 and 9411+, which
are independent of uy and w_. Thus, (2.12) cannot hold for arbitrary u_ and
u4 which means that (2.5) does not have solution for some ux. This contradicts
Lemma 2.2. This contradiction proves our assertion. O

Now, we use the technique of variation of constants to rewrite the problem (2.3)

as follows. Assume the solution of (2.3) has the form v; = Y;C;. Plugging this
form into (2.3), we get

(213) Cj = Cj1 = p¥; 'F(j,0),
which leads to

M+I-1
(2.14) Cj=Cumyi1— », w7 'F(i,0)
i=j+1
and hence
M+1-1
(2.15) v; =Y;C— Y pY;YF ().
i=j+1

The boundary condition (2.3b) determines the constant vector C in (2.15):

U+

Fars) !
2.16 C=C(v,p) = _M+‘1>
(2.16) (v, 1) (ym,w

u- + B(v, p)
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where
M+1—1
(2.17) B(v,p, L, M) = > pl0 -+ 0 1YY F(i,v).
i=j+1
We define the operator T': RIM—L+1)x(+1) 5 [0 1] — RM-L+Dx1+1) py
M+l-1
(2.18) (T(v,p)); :=Y;C(0,p) = Y p¥;¥; 'F(i,0),
i=j+1
where the notation v is defined as
Uy, ifj—k>M,
(2.19) Y =Sul, ik <L,
vj(.k“), else,

to enforce the boundary conditions. The choice of C(, ) made in (2.16) guar-
antees that (T(v,u)); satisfies the boundary condition (2.3c). A straightforward
calculation verifies that the boundary value problem (2.3) is equivalent to the fixed
point problem v = T(v, u). To prove the existence of solutions of (1.10), it suffices
to prove that there is a fixed point of T(.,1).

Theorem 2.3. If the numerical fluz function f;.1 /2(.) of a monotone preserving
scheme is continuous in its variables, then the problem (1.10) has a strictly decreas-
ing solution.

Proof. Since the function fj41/2(v) and hence F(j,v) is continuous in v for all j,
the operator T : RM-L+Ux(+1) 5 [0,1] — RM=L+Dx(+1) j5 also continuous.
Furthermore, because the range of T is of finite dimension, the operator T is
compact. Now, we recall a fixed point theorem of Leray-Shauder type as follows: [

Lemma 2.4 ([Ma]). Let X be a real normed vector space and Q a bounded open
subset of X. Let T : Q x [0,1] — X be a compact operator. If

(i) T(z,u) #x forx € 0Q, pe0,1], and
(ii) the Leray-Shauder degree Di(T(.,0) —I,Q) # 0,
then T'(z,1) = x has at least one solution in §.
We choose X in the lemma above as
X = {v e RM-LFUXUHY .y satisfy (2.30)}
and the open subset ) of X as
2200 Qi={veX : o>V fr L<j-k<M, k=12, 1}

Since T (v, u) satisfies (2.3b) for any v € RM-L+1)x(+1) T i5 a compact operator
from Q to X. We observe that

T(v,0) =w € Q,

where w is the solution of (2.1) when p = 0, provided by Lemma 2.1, which is
independent of v. This implies that

Dy(T(.,0)—I,Q) =1.

Thus, condition (ii) of Lemma 2.4 is satisfied. To verify condition (i) of Lemma 2.4,
we assume its contrary, i.e., there is a solution v of T(v,u) = v for some v € 9Q
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and p € (0,1]. Since v € 01, it satisfies v§k) > v§k+1) forall L < j—k < M and
k=1,2,...,1+1 with “ =" holds for some (j,k) = (jo, ko), L < jo — ko < M,
ko = 1,2,...,1+ 1. Then there is a solution u of (2.1), with v](.k"'l) = u;_y, for
some 4 € (0,1) which satisfies u; > uj41 and uj, = uj,4+1 for some L < jo < M.
We claim this will lead to a contradiction. To this end, we further select jo and
j1 > Jjo such that

(2.21) Ui 2 Ujy = Ujo1 =+ = Uj, > Uy
for i < jo and j > ji, where strict inequality

(2.22) U; > Uj,

holds when L < jp, and

(2.23) Uj, > Uj

holds when j; < M. We see that at least one of (2.22) and (2.23) is true by the
boundary condition (2.3b). By Assumption I, the iteration defined by (2.1c) is also
monotonicity preserving since we can treat u\ as a new and smaller A in (1.2).

Since u; is decreasing, the m-th iteration, defined in (2.1c) of u is also decreasing
and hence

(2.24) it > ullyg.
Then equations (2.1) and (2.21)—(2.23) yield
(2.25) 0> —eAjou+eAju=uj , —ujy, >0,

which is a contradiction. Thus both conditions of Lemma 2.4 are met and hence
there is a solution of v = T'(v,1) which is a solution of (1.10).

3. THE EXISTENCE OF SHOCK PROFILES

In this section, we shall prove the existence of shock profiles for a class of
monotonicity preserving schemes by passing the limit L — —oo, M — oo in

a suitable manner and then ¢ — 0+ in (1.10). For convenience, we first take
—-L=M=N >0.

Lemma 3.1. Let uj, |j| < N be a solution of (1.10) with —L = M = N > 0.
Then u; satisfies

_N4l-1
e(uy —u_) =clug —un1)+ >, (G+N=D(uy —uy)
j=—N+1
(3.1) N !
+ Z [E(U+ —uj) — )\(f,’\“,+l_1/2 - ff+l—1/2)} )
k=0 j=—N-+1
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N+l 1 .
Proof. Taking ZJ——N+l+1 2= on (1.10), we obtain

N+l N+I-1

Z Z eAj_u

J=itl+l j=J
=e€(uy —u—) —2Ne(us —un—_1)
N+l N4l-1 -1

Z Z Uj — Uj— l_)\z 12 — Ji- 1/2)

J=—N+l+1 j=J

(3.2)

N J+I-1 m—1 B B
= Z Z (ut —uy) — A Z(f]l‘\;f+l—1/2 - f§+l—1/2)
J=—N+1 | j=J k=0

By rearranging terms we can see that

N J4l-1 —N4I-1 ]
Z D (wemw) = > Z Ut — )
J=—N+1 j=J j=—N+1J=—N+1
N+1-2
SD VD RRIR D
(3.3) —N+l J=j—l+1 j=N J=j—1+1
—-N+l—1 N
= Y G+Mur—u)+ D Uus —uy)
j=—N+1 j=—N+l
~N+I-1 N
= > G+N-D0ur—u)+ Y Uup—uy).
j=—N+1 j=—N+1
Plugging (3.3) into (3.2), we obtain (3.1). O

Lemma 3.2. Solutions of (1.10) with —L = M = N satisfies

m—1
e(uny—1—us) + A Z (FNsi-1/2 = f+]
(3.4) R et
=e(u— —U_N+1) + Z (u—_U?)+AZ[fﬁN+1/2_f—]'
j=—N+1 k=0

Proof. By taking Z]_ N+l+1 on (1.10), we obtain

m—1
e(un—1—ug) + A Z [fz’ir+l—1/2 — f+]
k=0

(3.5) N

m—1
=e€(u- —u-n41) + Z (ug —uj) + A Z [fEN+l+1/2 - f+]-
j=—N+1 k=0
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‘We also have

—N+l m—1 B
Z (u— —u) + A Z [fEN+l+1/2 - /-]
j=—N+1 k=0
—N+I1-1 m—1 _
Z (u- —uj) + A Z [ffN+z—1+1/2 - f-]
j=—N+1 k=0
m—1 _ _
(3.6) + (s —uen) F A P nise = Fvgioisya)
k=0
—N+l-1
Z (u- —uj) + A Z [FE e 11172 = f-1H (ue —uly )
j=—N+1
—N+l1 m—1 B
Z (u_ — u;”) + A z[fEN_H/z - f-1
j=—N+1 k=0

Plugging (3.6) into (3.5) and using Rankine-Hugoniot condition for shocks, we
conclude (3.4). O

Lemma 3.3. Let u; be a decreasing function satisfying (1.10). Then

(i) if uj = u_ for some jo > —N +1, then u; =u_ for —-N+1<j<N-1;

(ii) if uj = uq for some jo < N —1, then u; =uq for —-N+1<j< N -1
Proof. We see that u; = u_ holds for j < jo. Assume, for induction, that u; = u_
holds for j < k. We consider (1.10a) with j — I =k

uk — Uy = €(Ukt1 — 2up + Uk—1),

which implies
(3.7) u_ —upy; = €(Up+1 —u-) <0.

Since uj, with (1.10b), is decreasing and the scheme is monotonicity preserving, we
have uf’ ; < u_. This together with (3.7) yields that ug+; = u_, i.e., u; = u_ holds
for j < k+ 1. The induction is complete. The proof of assertion (ii) is similar. I

Theorem 3.4. The traveling wave equation (1.9) for a monotonicity preserving

scheme with continuous fluz f has a solution if any decreasing solution of (1.10)
with —L = M = N satisfies

m—1 N
(3.82) Z luf -V < C,
k=0 j=—N+1

where V; is defined in (1.11) and C > 0 is a constant bounded uniformly in N and
e>0 and

m—1

(3.8b) AD U Rpicp — f4120
k=0

and
—N+1 m—1

(3.8¢) Z (u— —uf") + A Z [f_EN+1/2 -f-120
k=0

j=—N+1
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Proof. Let u; be a solution of (1.10) with —L = M = N and define L(N) :=
—N — J(u) and M(N) := N — J(u). Then 4;(N) := uj4 () is a solution of
(1.10) with L = L(N) and M = M(N). It is clear that J(4) = 0 and hence
4j(N) > (u— +uy)/2 for j < 0 and @;(N) < (u— +uy)/2 for j > 0. From
condition (3.8a), we have

M(N)
(3.9) > () -V <cC

F=L(N)+1

We claim that L(N) — —oco and M(N) — oo as N — oo. Indeed, if otherwise,
either |L(N,,)| < A or |[M(N,)| < A holds for a subsequence {N,} of {N} and a
constant A > 0 independent of N,,. We consider the case where |L(N,)| < A. The
other case can be handled similarly. Since M (N, )+ L(N,,) = 2N, the boundedness
of L(N,) implies that M(N,) — oo as n — oo. Since @;(N,) and L(N,) are
bounded independent of N,,, there is a subsequence of {N,}, denoted by {N,}
again, such that L(N,) = a constant L for large n and

(3.10) a;(Nyp) — 4y, for L <j<oo

as n — oo. Using (3.9), (3.10) and that (3.9) is a nonnegative term sum, we obtain
oo
(3.11) >l -Vl <C,
j=L

and hence 4; — u4 as j — oo. Applying Lemma 3.2 to u;(Ny,), we have

m—1
e(Unt(Ny)—1 = ug) + A D FRrennyrioay2 — 4]
k=0
(3.12) L(Nn)+L m—1
=e(u- —up,)+1) + Z (u— —uj") + Z [fIIC,(Nn)+1/2 - f-,
G=L(Mn)+1 k=0

where we omitted N from u;(N). Due to the fact that #; — uy as j — oo and
that @; is monotone, the left hand side of (3.12) tends to zero as n — oco. Applying
(3.8b) and (3.8¢) to (3.12) and letting n — oo, we have

(3.13) 0> e lim (u- —upn,)+1(N)) = e(u — Gr41),

n—oo

and hence @i,+1 = u_. Note that 4; satisfies (1.10a) for L+1 < j—I < oo with uy <
@; < u—. Then Lemma 3.6 states that 4; = u_ for all j > L which is contradictory
to (3.11). This contradiction proves that L(N) — —oco and M (N) — oo as N — oo.
Thus, @; is defined for —oco < j < oo and satisfies (1.10) with —L = M = oo.
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It is obvious that %; depends on € > 0 and we denote this dependence by @;(e).
Since u4 < 4;(e) < u_, there is a sequence {e,} such that €, — 0+ and

Uj(en) — Gy, for all j

as n — oo. It is clear from the continuity of (1.10) that the limit @, satisfies (1.9a)
and (1.9b). From (3.11), we see that @; also satisfies (1.9¢). O

Theorem 3.5. The traveling wave equation (1.9) for a monotonicity preserving

scheme with continuous fluxz f has a solution if any solution of (1.10) with
—L = M = N satisfies

m—1 N
(3.14) S wb-vii<c,
k=0 j=—N+1

where C > 0 is a constant bounded uniformly in N and € > 0.

Proof. By Theorem 3.4, it suffices to prove that any decreasing solution u; of (1.9)
satisfies (3.8b) and (3.8c). To this end, we consider the identity

—

m

A fNiicaye — T4
k=0

3

= (ungr—ug) = A D [FNiirai1ye — Ivvi-1y2)

k=0
m—1
+A [fll:f+l+1—1 2 — f+l
(3.15) e /
m—1 _
= (Ul —ug) + A [f]lir+l+1—1/2 - f+l
k=0
N+mp m—1 B
= Z (u]" —ug) + A Z [fll:f+mp+1/2 — f+)-
j=N+1 k=0
Since the scheme is a p + ¢ + 1-point scheme and u; = uy for j > N, we have
f1’3,+mp+1/2 = fy for k=0,1,2,... ,m — 1 and hence
m—1 N+mp
(3.16) MY Uhiep = fl= D0 (W —uy) 20,
k=0 =N+l

where we used the monotonicity preserving property of the scheme.
The proof of (3.8¢c) is similar. O

4. THE VERIFICATION OF CONDITION (3.14)

To verify conditions (3.14) for various schemes, we need the following prepara-
tions.
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Lemma 4.1. Let u; be a solution of (1.10) with —L = M = N > 0. Then u;
satisfies

~N4i-1
s —u)— 3 GHN-1-Du- —u)
j=—N-+1
l(l + 1) )\m—l -1 o -
- (ue —ug)+ Z Z(f_N+j+1/z — fNtje1/2)
k=0 j=0
A m—1k—1 _ _
(4.1) + P (Fs1y2 = fingie)

!
=2Ne(ut —un—1) + 2N Z (uTnyy —u-)

j=—mq
N-1m-1r, )
+ [ L =) =M= = Fhp)|.
j=—N k=0
Proof. We take Ty Z]Jfl_NHH on (1.10) to obtain

€(uy —u_) =2Ne(uy —un—1)

l m—1
+ Z {Z U_N4j = Ug4j) = A Z f—N+z+1/2 - f§+z+1/2)}
— j=1 k=0

(4.2)

N-1 l m—1
= 2Ne(u+ — UN— 1 + Z \:Z - uJ-i—] —-A Z f§+z+1/2)}
J=— j=1 k=0

—N | j=1

m—1
+ Z [ZU N+j — %— AZ f—N+l+1/2_f—)}-
k=0

The last line of (4.2) can be rewritten as

El

-1 m—1
2N l: (U_N+j - u—) - A Z(fﬁN—i—l—H—l/? - f—)}
Jj=1 =0

m—1
+2N [(U—NH —u-)—A Z (fEN+l+1/2 - fEN—H—H—l/Q)jl
k=0

(4.3) Lt e
=2N (U—nyj —u—) = A Z f—N+l—1+1/2 - f-)
k=0
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where we used (1.10c). By rearranging the terms in the following summation, we
can see that

(4.4)
N—1 J+l “N+l-1 j-1
Y Sy ey
Ny J+1 ]=—-N+1J——-N
7 N
+ Z Z(“-_“J EDY Z )
j=— N+l J=j—1 G=N+1J=j—1
—N+1-1 N
(l+1
= 3 UAN-Dae )+ Y e —uy)+
—N+1 j=—N+I
—N+1-1
I(l+1
= Z (J+N—-1-0)(u- —uy) Zz (j: )(u_—u+).
—N+1 j=—N

Combining (4.3) and (4.4) with (4.2), we obtain

€(uy —u—) =2Ne(uy —uy_,) + 2N Z (Ui —us)

j=—mq
~N4I-1
(I+1
+ Z (J+N-1-D(u- —uj) + ( _2._ )(u_ —uy)
—N+1
N-1 m—1
+ Z Hu- —u5) = A Z ~ FFr1y2)
j=-N k=0
1
(4.5) =2Ne(uy —un-1) +2N Z (TN —us)
Jj=—mgq
—N+4i-1
(l+1
+ Z (J+N-1-D(u- —uj) + ( _2._ )(u_ —uy)
—N+1
m—11-1 )\lmlk—l N B
- Z f—N+J+1/2 fN+]+1/2) T (P12 — Fingi)
k=0 j=0 k=0 i=0
-1 m—1
+ [ —ug) = A(f- f]+1/2)]
j=—N k=0
where we used
N
Z (uf —u;) = _AZ Z Fivrye— Fie 1/2]
j=—N+1 1=0 j=—N+1
k=1 B
= —Az[flz\fﬂ/z - J“—N+1/2]’
i=0

Rearranging terms in (4.5), we arrive at (4.1). d
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Corollary 4.2. Let uj be a decreasing solution of (1.10) with —L =M = N > 0.
Then u; satisfies

(46) Z 2[ (o =)=\ = )] <€,

where C' is bounded uniformly in N and € € [0, 1].

Proof. We note that the left hand side of (4.1), denoted as C1, is bounded uniformly
in N and € € [0, 1]. Rearranging terms in (4.1), we obtain

- szl r{j[ (u- —uf) = A(f- - ak+1/2)}

—N k=0

l
— —C1 +2Ne(uy —uy-1) +2N D (uly,j —u-).

j=—-mgq
Since u; is decreasing and the scheme is monotonicity preserving, the terms u4 —
un-1 <0, Ul —u- < 0. The inequality (4.6) immediately follows. O

Lemma 4.3. Let u; be a decreasing solution of (1.9). Then u; satisfies

>3 O P Fraa)

4.7 j=—00 k=0
= L) —uy).

Proof. Apply the same technique used in the proof of Lemma 4.3 to (1.9), we can

prove (4.7). Since we will not use this lemma in this paper, we omit the details of
the proof. O

5. MONOTONICITY PRESERVING SCHEMES WITH C' FLUX FUNCTIONS
HAVE TRAVELING WAVE SOLUTIONS

In this section, we shall prove the existence of discrete shock profiles of mono-

tonicity preserving schemes with C*! flux functions f by verifying conditions (3.14)
for these schemes.

Theorem 5.1. Monotonicity preserving schemes with C* fluz functions fj+1 /2
have decreasing traveling wave solutions when As is rational.

Proof. To verify (3.14), we let u;, |j| < N be a decreasing solution of (1.10) with
—L =M = N > 0. We consider the identity

(5.1)
f-—fiq2= flumyuy oo yus) = f(Uj—pr1, Uj—pi2, - - s Ujtq)
q 1
= > (w— uj+z')/0 Filtjopr1 = Bue = wj—ps1), -+ Ujtg
i=—p+1
+ Bu— — uj4q))dB

where

(5.2) s tpany . 111g) = Of(U_pt1,U-pi2;--- Ug)

c")ui
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For simplicity, we use the following short notation in (5.1)
(5.3)
1 —
F(i,jyu,u_) = / filuj—pr1 = Bue =t pi1)y -y Ujg + Bus = j44))df
0
to yield

J J

(f— - .fj+1/2) = Z Z F(i’j’%u—)(u— - uj+i)
N

j=— j=—Ni=—p+1

J+i

(5.4) = > > F(i,j—duus)(us —uy)

t=—p+1j=—N+i

= Z(u_—uj) Z F@,j—tu,u)+C

j=— i=—p+1

for any —N < J < N, where C > 0 is a constant bounded uniformly in N and
€ > 0. We note that from the consistency condition (1.3), we have

q
(5.5) > filww,.. . w) = f(w)
i=—p+1
for any constant w. Let @; denote the arithmetic average of u;_;14, 4,10 = —p +
1,...,q. By the uniform continuity of f when its variables are in any bounded set,

for any constant v > 0, there is § > 0 such that if
(5.6) |uj—igio — Uj| <6

for i,io =—p+1,...,q, then

q
D Filtimioper + B = wiipi)s e Ui + BUus — Uj_irg))

(5.7) i=—p+l
= (a5 + Blu- — ay)) 1< %
and hence
q 1
‘ Z F(Zaj - iau)u—) —/0 fl(ﬂ’j + /B(u— - ﬂ]))dﬁ
(5.8) I

= i F(i,j—i,u,u_)—————f__f(ﬂj) <.

U — Us
t=—p+1 J
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Similarly, we can prove that if (5.6) is satisfied, then

q9
Z filtj—i—py1 + Blus — Uj—i—pt1)s- -+ Uj—itq T But — Uj—itq))

i=—p+1

— Py + Blus — 1)) }< )

and hence

(5.9) zq: F(i,j —i,u,uy) — Fr = F@)| 5.

Uy — Uj
i=—p+1 + J

‘We define the set of indices

(5.10a) A={j€Z : —N <j <N and (5.6) is satisfied};
and
(5.10b) B:={ieZ : |i—j|<p+q+1foranyjc[-N,NJ\ A}

In other words, B is the p + ¢ + 1 neighborhood of A® in Z N [-N, N]. Since u;
is decreasing from u_ to w4, the number of elements in A° and hence that in B
depend only on ¢ > 0.

Now, we consider

(5.11)
> (L) =20 = Fos)]
—\U- —Uj) — - — Ji+1/2
j=—n L v
J(u)—q—p I B
- X s [ Lt =) =A== Faa|
N —
b G EB) [l u) - A= )
j-J(u)+P+q
+ Z Borj=Ju)—p—q+1,Ju)—p—q+2,...,J(uv) +p+qg—1)
x [-j—y ~ug) =M= = Ty
= I+ II+1III,
where

1, if Ais true
A — b b
x(4) {O, if A is false.
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The term I11 of (5.11) is bounded uniformly in N and € € (0, 1) since the number
of terms in IIT only depends on 4, p and q. The term I can be estimated as follows:

T= Y M8 [ —w) A - )
j=—N
J(u)—q—p I
> XU #B)—(u- )
j=—N
J(u)—q—p ~
= Y XU EBAML — Fraap)
j=—N
J(u)—g—p
= > XG¢B)—(u- )
j=—N
J(uw)—q—p q
- X € B)(u-—u;) Y F(i,j—iuu)+0C,
j=—N i=—p+1

where in the last step we used (5.4) and the number C includes the C from (5.4)
and finitely many other terms of the form (u_ — ug)F(i, j,u,u_). This number C

is bounded uniformly in N and e > 0. Applying (5.8) in the last sum of the above,
we get

J(u)—q—p _
15 Yo en (- S uso
j=—N -

Note that the range of %; in above sum is in [(u} + u_)/2,u_]. By the chord
condition (1.8), the constant

o ;= min min
‘:ﬁe[(u++u_)/2,u_] < U_

min (s — ﬂ—_f—@ﬂ > 0.
a€fuy,(uytu_)/2) Uy — T

Recalling v > 0 is arbitrarily chosen, we can let 0 < v < «/2. This choice of ~
leads to

sy i= —f(@) )
(5.12)

(5.13) <=5 > XU ¢Buy—u|+C.
Similarly, we have

pYe" .
(5.14) <=2 % x(G¢B)uy—usl +C.
j=J(u)+g+p
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Combining (5.11)—(5.14), we prove that

N I B
Z [E(Uf —uj) = AM(f- — fj+1/2)]
j=—N
N
(5.15) < —— Z Iuj—Vj|+C,

j=—N

where C' > 0 is a constant bounded uniformly in N and € > 0. The arguments above

and hence (5.15) remain valid if we replace all u and v by u* and v*. Plugging
(5.15) into (4.6) yields

N
(5.16) >l =V 6,
j=—N

which is desired. O

6. EXISTENCE OF DISCRETE SHOCK PROFILES FOR THE SCHEME (1.3)

In this section, we shall prove the existence of traveling waves for second order

upwinding, with f/ > 0, flux based MUSCL scheme (1.3) by verifying that it satisfies
the condition (3.14).

Lemma 6.1. The function fj+1/2 defined in (1.3b) satisfies

(6.1) min(f(uy), f(uje1)) < fipie(w) < max(f(ug), f(uje1))-

Proof. For simplicity, we use the notation 8;f := f(uj4+1) — f(u;) and §ifF =

f (u’JC )~ f (u’;) throughout this paper. According to the definition (1.3b) for 1,
there are three cases:

Case 1. §;f6;_1f > 0 and |6; f| < 16;-1f|. In this case,
Fvrpe = (F(ujen) + £(u))/2,

and hence (3.4) holds.

Case 2. 8;f8;_1f > 0 and |6;f| > |6;—1f|. In this case, we have fj_|_1/2 =
fuj)+65-1f/2. I 651 f <O, then

Flug) > flug) +6;-1F/2 > fug) + 6;F/2 > min(f(uy), f(ujx1)-
If 5j_1f > 0, then
min(f(u;), flujz1)) < fug) < flug) +6;-1f/2
< fluy) + 65 1/2 < max(f(uy), f(uj+1))-

In either cases lead to (3.4).
Case 3. §;f8;—1f < 0. Then, f;11/2 = f(u;) which obviously satisfies (6.1). O
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Corollary 6.2. Let u; be a decreasing function and f' > 0. Then flujp1) <
Firra(w) < flu;1).

Theorem 6.3. The second order upwinding fluz based MUSCL scheme (1.3) has
a traveling wave when \s is rational.

Proof. By Theorem 3.5 it suffices to prove (3. 14) for decreasing solutions u; of
(1.10). We start with (4.6):

m—1
(6.2 }:[;w—w)Mh—ﬁwmﬂZQ

k=0 j=—N+1

which holds for decreasing solutions of (1.10). From (1.10c), we have

N

Z (uj = uy) _/\Z Z [Fv1s2 = B o1y
(6 3&) j=—N+1 1=0 j=—N+1
' k=1 3
= _/\Z[ﬁwl/z - fZ—N+1/2] < =Ak(fy = fo)
i=0
and
N
Z (u?-l-l/Z _ UJ)
j=—N+1
(6.3b) N R
_/\Z Z J+1/2 J 1/2] Z [fgl'c+1/2 - fgk—1/2]

1=0 j=—N+1 j=—N+1

S Ak D4 = f-)

Applying (6.3) to (6.2), we obtain

m—1 N
C< Z [ (uy —ug) = A(fy — y+1/2):|
k=0 j=—N+
m-1 N ; LESYE N R .
< > {E <“+ B “_;L_) — 5@ - Fiie = fﬁll//;)]
k=0 j=—N-+1
+ TG - 1)
(6.4) .
A m
< ) Z {3(U+ = Uj 0= (f+ — J+1/2)]
k=0 j=—N+1
Py k+1/2 k41/2 Im
+-2— Z [3(U+‘U ) — <f+'—fj+1/2)]+7)\(f__—f+)
k=0 j=—N+1
=I+1II+ %’n)\(f_ — f-|.)
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k+1/2

Using Lemma 6.1 and that u; and hence u] and u;

we can estimate the term [ in (6.4) as

2I /X = Z Z [s(u.,_ -u - (f+— J+1/2)]

are decreasing and f' > 0,

k=0 j=—N+1

m—1 N m—1

= > [S(U+ —uk) = (F = s ] + [fz’fz+3/2 - fEN+1/2]
k=0 j=—N+1 k=0
m—1 N R

<Y [stwr ) - (e - f)] + O
k=0 j=—N+1

(6.5a) . )

=D IR D D CORER BN I)

k=0 ~ j=-N+1

j=J(uk
m—1 N
< —a S W=Vt
k=0 j=—N+1

where in the last step we used (5.12). The number C; is bounded uniformly in N
and € € [0,1]. Similarly, we can prove that

2][//\ = Z Z [S(U+ - ’UJ?—‘_I/Z) - (f—l— - ff_:ll//;):l

(6.5b) e
<-a Z |u?+1/2 _ V}k+1/2‘ o
k=0 j=—N+1
The desired inequality (3.14) follows immediately from (6.4) and (6.5). O

7. EXISTENCE OF TRAVELING WAVES FOR MUSCL SCHEME (1.4)

In this section, we shall prove the existence discrete traveling waves of MUSCL
scheme (1.4). It follows from Theorem 2.3 that there is a decreasing solution of
(1.9) for MUSCL scheme (1.4).

From (1.4a) we see that

A s 1/2 7 £1/2
ujl = u; — §(fj+1/2 + fj—{—l/2 ~ fij—12 — fj£1/2)7

where f%/ +1 o= = fj+1/2(u/?). This infers the expression for f:

_ 1 . .
(7.1) fi+1/2 = §(fj+1/2 + f;ﬁ/g)-

Theorem 7.1. The MUSCL scheme (1.4) has a decreasing traveling wave solution
when As is rational.

Proof. Tt suffices to prove that any decreasing solution of (1.10) for the MUSCL
scheme (1.4) satisfies (3.14).
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In the sequel, we use the notation fi = f~(us) and ff = f+(us). We start
with (4.6) without writing down 7' and index k:

(7.2)
N ; i
€< 2 [E(u‘ —ug) = A= - fj+1/z)}
j=—N
N 1/2
‘ j 7 DY R
= jzz_:N l:% (u_ _ Uj —|—2’LL] ) — )\(f— - fj+1/2) + ;’L_(fN+1/2 — f—N—1/2)

N o[s—a u3+u1/2 _ f;l/z(u)‘*'f;yz(ulﬂ)
:)\'Z 5 (u_ -—_2—>_<f__3 2]

s—;a (u_ u; +2u1/2> ) <fj J_|_1/2( )+2f T (ut ))] +oM)

where O(1) is bounded independent of N and € € [0, 1]. We recall that Lemma 6.1
holds for any f. Since u; is decreasing and (f~)" < 0, Lemma 6.1 implies that

F i) 2 f g = F (w5-1).

The first term I in (7.2) can be estimated as follows:

N 1/2
— U; +
Ix= 3 [3 2“ <u_ J_zu_>

j=—N
_ (f‘ _ Franp(w) + fa:rlﬂ(um)) }

2
(7.3) o
sgj;_N[S;“(u — )= (4 = g
5> {““(u i) <f-—f-<u”2>>]
2j=—N 9 - J - J+1

By the chord condition (1.8), the constant

o := min min
[ we[(uttu-)/2,u_]

min ]<(sia)—w>}>0.

GE[ug,(up+u_)/2

(7.4)



DISCRETE SHOCK PROFILES FOR CONSERVATION LAWS 1067
Applying (7.4) to (7.3) we get
N

(7.5) INS =2 37 (ug = Vil + a2 = Vi) 417 = £,

j=—N

where le/ ? is defined in (1.11) with u replaced by u!/2. Similarly, we can prove
that

N

a
(7.6) I3 < =5 37 (g = Vil |y = Vi) 15 - 1
j=—=N
Then, inequality (3.14) follows from (7.2), (7.5) and (7.6). O

8. EXISTENCE OF TRAVELING WAVES FOR THE (GODUNOV SCHEME
The existence of traveling waves of the Godunov scheme can also be proved using
Theorems 3.5 and Corollary 4.2.

Theorem 8.1. The Godunov scheme has a decreasing traveling wave solution when
As is rational.

Proof. Let u; be a decreasing solution of (1.10). For decreasing u;, the numerical
flux function for the Godunov scheme is

(8.1) Fiv1y2 = max(f(uy), f(ujz1))-

By the transformation z +— x — ct if necessary, we can assume, without loss of

generality, that f'((us + u-)/2) = 0. Under this assumption, the expression (8.1)
for decreasing u; is

fj+1/2 = maX(f(Uj)» f(uj+1))

(8.1) fluj), if u; > (ug +u—)/2 and ujp1 > (ug +u-)/2,
=9 fluj1), if uy < (uy +u-)/2 and ujp < (uy +u-)/2,
max(f(u;), f(uj+1)), else.

Again, we start verifying (3.14) with Corollary 4.2 by considering

;..

m—

N
(8.2) c<y % [ ) A - Jm)}

k=0 j=—
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For simplicity and without loss of generality, we omit the index k in the following.
From (8.1), we see that (8.2) can be further written as

N
C< ._Z:N [%(U— —uj) — A(f- = JFJ‘+1/2)]

_ 5 e —w - )

FIEN and Fp1/0=F(u;)

Fon
+ 2

I51<N and f41/0=F(uj41)

[%(u_ C )~ A(f — f(um))]

(8.3) l
_ ) [ =) = A - )
li1<N and Fit1/2=F(uy)
+ > [0 =350 = A = Fase)]
ls1<N and Fiv12=F(uj41)
=+ Z %(uﬁl - ’ll,j).

l31<N and fip1 2= (usq1)

The last sum in (8.3) is bounded uniformly in N and € € [0, 1] since u; is monotone.
Using the same method for obtaining (6.5), we can further manipulate the first two
sums in the right hand side of (8.3) to yield

C<—ar > |uj = Vjl
1SN and fjy12=F(u;)

+ > ujr1 = Vit
1SN and 41 2=F(ujt1)

Combining the two summations in (8.4), we can rewrite it as
N
(8:5) > bilw -V <,
j==N

where

0, if Jij+1/2 = Ji(uj+1) and f;_1/5 = fluj_1),
(8.6) bj =142, if fir12 = fi—172 = f(u)),
1, else.
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In view of (8.1"), there is at most one point j where b; = 0. Thus, the inequality
(8.5) implies

N
C> > bilu;— V|
] N

J==

J(u) N
(8.7) = > biluy—uof Y bl —uy
j=—N j=J(u)+1
N
> 3 fuy = Vil = fus —ul.
j=—N
Therefore (3.14) holds for the Godunov scheme. O

Since the Godunov scheme is ['-contracting, which implies monotonicity preserv-
ing, the results on the existence of discrete shock profiles for the Godunov scheme
can be much stronger (see [F]).
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