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A THREE-PARAMETER FAMILY
OF NONLINEAR CONJUGATE GRADIENT METHODS

Y. H. DAI AND Y. YUAN

ABSTRACT. In this paper, we propose a three-parameter family of conjugate
gradient methods for unconstrained optimization. The three-parameter fam-
ily of methods not only includes the already existing six practical nonlinear
conjugate gradient methods, but subsumes some other families of nonlinear
conjugate gradient methods as its subfamilies. With Powell’s restart criterion,
the three-parameter family of methods with the strong Wolfe line search is
shown to ensure the descent property of each search direction. Some general
convergence results are also established for the three-parameter family of meth-
ods. This paper can also be regarded as a brief review on nonlinear conjugate
gradient methods.

1. INTRODUCTION
Consider the unconstrained optimization problem

(1.1) Inin f(z),

where f is a smooth function and its gradient is available. Conjugate gradient
methods are a class of important methods for solving (1.1), especially for large
scale problems, which have the following form:

(1.2) Thy1 = Tk + ardy,

— for k =1,
(1.3) dy = { o

=gk + Brdk—1,  for k >2,
where g = V f(z), ax is a stepsize obtained by a one-dimensional line search and
Bk is a scalar. The strong Wolfe conditions, namely,
(1.4) flee +orde) — fre < 5akggdk,
(1.5) lg(zk + onedi) " dic|
where 0 < § < o < 1, are often imposed on the line search (in this case, we call the
line search the strong Wolfe line search). The scalar 8 is chosen so that the method

(1.2)—(1.3) reduces to the linear conjugate gradient method in the case when f is
convex quadratic and exact line search (g(xx + ardy)Tdx = 0) is used.
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For general functions, however, different formulae for scalar i result in dis-
tinct nonlinear conjugate gradient methods. Several famous formulae for (; are
the Fletcher-Reeves (FR), Polak-Ribiere-Polyak (PRP), and Hestenes-Stiefel (HS)
formulae (see [15; 26, 27; 18]), which are given by

2
1.6 FR _ Hgk” ,
o) 7 Tl
T
1.7 PRP _ Y9k Yk-1 ’
o E T g
T
1.8 HS _ 9k Yk—1 ,
( ) k dg_lyk—l
respectively, where || - || means the Euclidean norm and yx_1 = g — gx—1. The

convergence properties of the FR, PRP, and HS methods have been studied in
many references, for example [1, 5, 7, 16, 17, 21, 25, 28, 31]. However, if the
condition imposed on o in (1.5) is only that ¢ < 1, neither of the above three
famous nonlinear conjugate gradient methods with the strong Wolfe line search can
ensure a descent search direction even if f is quadratic (see [3, 7]).

The conjugate descent (CD) method of Fletcher [14], where

2
1.9 CD _ llgw!] ’
( ) k _d%—‘_lgk—l

ensures a descent direction for general functions if the line search satisfies the strong
Wolfe conditions (1.4)—(1.5) with ¢ < 1. But the global convergence of the CD
method is proved (see [8]) only for the case when the line search satisfies (1.4) and

(1.10) O'ggdk < g(xk + Oékdk)Tdk <0.

For any positive constant &, an example is constructed in [8] showing that the
conjugate descent method with oy satisfying (1.4) and
(1.11) ogrdy < g(zk + arde)Tdy < —Ggidy,

need not converge.
Recently, Dai and Yuan [6] proposed a new conjugate gradient method, in which

2
( ) k dg_lyk..-]_
A remarkable property of the DY method is that it provides a descent search di-

rection at every iteration and converges globally provided that the stepsize satisfies
the Wolfe conditions, namely, (1.4) and

(1.13) g(zk + awdi) " di, > ogf, di.

Some other properties of the DY method were set forth in [4, 9, 11, 12].

In [11], Dai and Yuan proposed a family of globally convergent conjugate meth-
ods, in which

llgwl|®
1.14 _ :
(114) P Mge—1]I2 + (1 = Nd}_ vk
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where A € [0,1] is a parameter. [12] further studied the case when A € (—o0, +00),
and proved that the family of methods using line searches that satisfy (1.4) and
(1.11) converges globally if the parameters o, &, and A are such that

(1.15) c—1<(c+a)r<L

Another marginal but interesting note on the DY method is that the formula (1.12)
for By has the same numerator as (1.6) and the same denominator as (1.8) (see [6]).
In [23], Nazareth regarded the FR, PRP, HS, and DY formulae as the four leading

contenders for the scalar Bk, and proposed a two-parameter family of conjugate
gradient methods:

A 241 - T
(1.16) By = kllgkli2+( A ATS
prllgr—1]2 + (1 = pr)dy, 1 ye—1

where Ak, px € [0,1] are parameters.

In this paper, we will propose a three-parameter family of conjugate gradient
methods, which includes the five nonlinear conjugate gradient methods mentioned
above and the one in [22]. The three-parameter family of methods also has several
other families of conjugate gradient methods and some hybrid methods as its special
cases (see the next section). In Section 3, we study the descent property of the
three-parameter family of methods. We prove that, if Powell’s restart criterion [24]
is used, the three-parameter family of methods with the strong Wolfe line search
produces a descent search direction at every iteration unless the current point is
a stationary point. In Section 4, some general convergence results are established

for the three-parameter family of methods. Brief discussions are given in the last
section.

2. A THREE-PARAMETER FAMILY OF CONJUGATE GRADIENT METHODS

In [22], Liu and Storey presented the following formula for the scalar fy:

T
2.1 LS = iUkl
( ) k —d{_lgk—l

A useful property of formulae (1.8) and (2.1) in computations is observed in [22].
Namely, the next direction dp41 in (1.2) is independent of the length of dj when
Ok takes the form of (1.8) or (2.1).

Many authors have presented other choices for the scalar G, for example Buckley
and Lenir [2], Daniel [13], Gilbert and Nocedal [16], Qi et al. [28], Shanno [29], and
Touati-Ahmed and Storey [30]. Observing that the formulae (1.6)—(1.9), (1.12) and
(2.1) share two numerators and three denominators, we can use combinations of
these numerators and denominators to obtain the following three-parameter family:

(2.2) G = (1 = M)llgelI® + Aegi ye—1
(1 — e — wie)llgr—1][*> + pedf_1yk—1 — wedf_ 1 gp—1’

where A, € [0,1], px € [0,1] and wy, € [0,1 — p] are parameters. Because
(2.3) grye—1 = llgrl?® = 9 gr—1

and

(2.4) gt 1di—1 = —|lgr—1]1* + Br—19%_1dk—2,
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we can rewrite (2.2) as

_ lgwll* = Megd gr—1
(2.5) Bk = 5 T T .
Hgr—1l1% + prgi di—1 — Wk Br-1954_1dk—2
If the objective function is convex quadratic and the stepsize is the exact one-

dimensional minimizer, the above formula for 8, clearly reduces to the FR formula
(1.6), since in this case we have that

(2:6) grde-1=0
and
(2.7) 9r gk—1 = 0.

However, for general functions, relations (2.6) and (2.7) need not hold. Therefore
the methods (1.2), (1.3) and (2.5) with different values of Mg, ug and wy form a
three-parameter family of nonlinear conjugate gradient methods.

It is easy to see from (2.2) that the three-parameter family of methods includes
the six already known simple and practical nonlinear conjugate gradient methods as
an extreme case. If wy = 0, then the family reduces to the two-parameter family of
conjugate gradient methods in [23]. Further, if Ay = 0, pur = 1 and wy, = 0, then the
family reduces to the one-parameter family in [11]. Therefore the three-parameter
family has the one-parameter family in [11] and the two-parameter family in [23]
as its subfamilies.

In addition, the hybrid methods in [6, 16, 19] can also be regarded as special cases
of the three-parameter family. For example, to combine the nice global convergence
properties of the FR method and the good numerical performances of the PRP
method, Hu and Storey [19] proposed a hybrid method, where

(2.8) Br = max{0, min{BFEP gFR}Y.

One can easily see that formula (2.8) corresponds to (2.5) with

loel? o
T y W gpGk—1 2 “gk” )
A = i Gk—1 . )
. 1, if gf gr—1 € (0, [lgrell®);
( ' ) 07 if gggk—l < 07
pe =0,
W = 0.

3. POWELL’S RESTART CRITERION AND DESCENT PROPERTY

As mentioned in the first section, if we only require that o < 1, any of the FR,
PRP, and HS methods with the strong Wolfe line search may produce ascent search
directions even if the objective function is quadratic. Thus, special attention must
be given to the problem of how to keep the descent property of conjugate gradient
methods. In this section, we will prove that, if Powell’s restart criterion [24] is
applied, the three-parameter family of methods with the strong Wolfe line search
can guarantee the descent property of each search direction.

When dealing with Beale’s three-term conjugate gradient method, Powell [24]
suggested a restart with dp = —gj if the following condition is satisfied:

(3.1) gk ge-1] < Ellgrll®,
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where £ > 0 is some positive constant. As Powell [24] observed, such a restart
criterion can ensure that Beale’s recurrence does not converge to a non-stationary
point (a strict convergence result was given in [10] for Beale’s method with Powell’s
restart criterion), and improve the numerical behavior of Beale’s method. In fact,
for standard conjugate gradient methods, if the function is convex quadratic and the
line search is exact, then relation (2.7) implies that no restarts would take place and
finite termination could occur. Thus, the quantity |gf gx—1|/|lgx||* would indicate
strong local nonquadratic behavior and hence would be indicative of a need for
restarting. In the implementations of conjugate gradient methods, Powell’s restart
criterion has been used by many authors, for example Buckley and Lenir [2] and
Khoda et al. [20].

In the following, to show the importance of Powell’s restart criterion in keeping
the descent property of conjugate gradient methods, we first take the HS method
as an illustrative example. For this purpose, we define

T
9i Ak
(3.2) T = — .
g2
It is obvious that dy is a descent direction if and only if r, > 0. For the HS method
(1.2), (1.3) and (1.8), direct calculations yield

(3.3 o —gg—1dk—1 1 gfgk_l gde_l
3 "= " el oFd
r—1Yk—1 Jell® Gi_10k-1

Suppose that di_1 is a descent direction and the (k — 1)-th line search satisfies
the strong Wolfe conditions (1.4)-(1.5). Then we have that g ,dy—1 < 0 and
df_1yk—1 > 0. Furthermore, it follows from (1.5) that

g{dk_l

3.4
( ) gg_ldk—l

<o

Therefore by (3.3), if Powell’s restart criterion (3.2) is used, the HS method can

ensure the descent property of the next direction dy provided that the parameters
¢ and o are such that

(3.5) Eo< 1.

For the three-parameter family of conjugate gradient methods, we can prove the
following general theorem.

Theorem 3.1. Consider any method in the form (1.2), (1.3) and (2.2) with Ay €
[0,1], px € [0,1] and wi € [0,1 — ug], with the search condition (1.5), and with
Pouwell’s restart criterion (3.1). If the parameters & and o satisfy

1
then, for all k > 1,
1
(37) 0< T < HT&_)E

Proof. Without loss of generality, assume that (3.1) holds for all k. We prove (3.7)
by induction. Noting that d; = —g; and hence r1 = 1, we see that (3.7) is true for
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k = 1. We now suppose that (3.7) holds for k — 1, namely,

1
(38) 0< Te—1 < 1—:(_1:——6;
By (1.3) and (2.5), direct calculations show that

T
9i 9k—1
3.9 re=1- 1=\ b,
& N e ik
where
Td

(3.10) by, = i T

(1= pe—wr) |l gr—1112+prgit di—1 — (e +wi)gi_ydi—1
Using (1.5), (3.8) and the fact that pg,wr > 0 in (3.9), we get that

—'Ugg_ldk—l
b = 2 T T
(1= e = wi)llgr—11> = opegi_ydi—1 — (pr + wi)gi_ 1 d—1
o OTk—1
(1= pe — wi) +[(1 + o)k + wilrr—1
_ o[l = (1+4&)o]™t
(1= e = wi) + [(1+ o) + wie][1 = (14 €)o]~*
o
<
T RD-0+80]+ 2+ 8ok + (14 E&)owy
o
3.11 <
(3.11) - 1-(1+4&0
Similarly, we can prove that
o
3.12 by > — .
(8.12) P11+ 90
Thus from (3.9), (3.11), (3.12), (3.1), (3.6) and the fact that Ay € [0, 1], we obtain
(1+&0 (1+¢&)o 1
3.13 0<l————<nrp<1 = .
(3.13) e T G e T i P Ry G ey
Therefore (3.7) is also true for k. By induction, (3.7) holds for all k£ > 1. O

In real computations, Powell [24] suggested the value of ¢ in (3.1) could be
€ = 0.2. Here we should point out that condition (3.6) allows relatively large values

of £ and hence is flexible, because the parameter ¢ in (1.5) is generally set to a
small value, normally ¢ = 0.1.

4. CONVERGENCE PROPERTIES

In this section, we study the global convergence properties of the three-parameter
family of nonlinear conjugate gradient methods. For convenience, we assume that
gx # 0 for all k, for otherwise a stationary point has been found. We also assume
that By # 0 {or all k. This is because the direction in (1.3) reduces to —gy, if B = 0.
Then either as the new starting point, we can take xj, where k is the largest index
for which Bz = 0, or the convergence relation liminf ||gx|| = 0 holds.

The following assumption is imposed on the objective function throughout this
section.
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Assumption 4.1. (i) The level set £ = {§ € R\ : {(§) < {(§x0)} is bounded.
(ii) In some neighborhood A of £, f is differentiable and its gradient g is Lipschitz
continuous, namely, there exists a positive constant L such that

(4.1) llg(z) = g@)Il < Llle —yll, forallz, y eN.
The above assumption implies that there exists a positive constant 4 such that
(4.2) llg(z)|| <7, forallze L.

To give the first convergence result for the three-parameter family of methods,
we need the following lemma, which can be proved similarly to Theorem 3.3 in [11].

Lemma 4.2. Suppose that x1 is a starting point for which Assumption 4.1 holds.
Consider the method (1.2)—(1.3), where dj, is a descent direction and oy satisfies

the Wolfe conditions (1.4) and (1.13). If there exists a positive sequence {¢r} such
that

b
(43) 18] < S
and
(4 4) Z ”9kH2 = +00
. —— = ,
k>1 Tk

then the method converges in the sense that

(4.5) likm inf || gr| = 0.

By Lemma 4.2, we can prove the following general result for the three-parameter
family of nonlinear conjugate gradient methods.

Theorem 4.3. Suppose that x1 is a starting point for which Assumption 4.1 holds.
Consider any method in the form (1.2), (1.3) and (2.2) with \x € [0,1], ur € [0,1]
and wy, € [0, 1— ug], with the strong Wolfe line search (1.4)—(1.5), and with Powell’s

restart criterion (3.1). Denote I, = |Bx/B% F|. If (3.6) holds, and if the parameters
Ak, Bk and wy are such that the inequality

k
(4.6) s <vE
=2
holds for some constant 7 > 0 and all k > 2, then the method converges in the
sense that (4.5) holds.

Proof. Since the parameters ¢ and o satisfy (3.6), we have by Theorem 3.1 that
(3.7) holds for all k, which implies that each dj, is a descent direction. Define

k
(4.7) ou = (T 1) gell®.
j=2

Then by (1.6) and the definition of I, , we can write

Pk
4.8 = .
(4.8) |8k o
It follows from (4.2), (4.6) and (4.7) that

lge|I? 1
4.9 >
( ) QS% o 7_2’72]{:’
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which implies the truth of (4.4). Therefore, by Lemma 4.2, (4.5) holds. d

Now we discuss some special choices that satisfy condition (4.6). As mentioned
in the last paragraph of Section 2, the hybrid methods in [16] and [19] can be
regarded as special cases of the three-parameter family of conjugate gradient meth-
ods. Using the above theorem, we can again deduce the global convergence of the
hybrid methods. For example, for the hybrid method (2.8) we have 0 < [ < 1,
which indicates that (4.6) holds with 7 = 1. Hence (4.5) holds.

Assume that H;:; l; < 7vk —1 for some k > 3. Then at the k-th iteration,
(4.6) must hold if

(4.10) e <414+ ——.

Note that if Ay = uxr = wr = 0, then Jx reduces to ,B,fR, and hence [, = 1. Thus
even for large k, we can see from (4.10) that there exists some interval in [0, 1] for
each of the parameters A\g, ur and wy such that (4.6) holds. Though there always
exists choices of Ag, pr and wy that satisfy (4.6) (as stated above), this restriction
may reduce the admissible intervals for A\x € [0, 1], ux € [0,1], and wy € [0,1 — ).
Generally, for some k the value of I may be less than 1, and as a result, this
will allow relatively large values of the consequent [x. For example, if the step
|k — zk—1]| is very small and Ay is close to 1 at some iteration far away from the
solution, then Gy and hence [ may be much smaller than 1. Another point that
should be mentioned here is that we can also enlarge the admissible intervals for
Ak, g and wy by setting 7 in (4.6) equal to a large value. Inequality (4.6) suggests
that one possibility is to choose Ag, ux and wg such that the absolute value of the
right hand side of (2.2) is as small as possible.
By Lemma 4.2, we can also prove the following convergence result.

Theorem 4.4. Suppose that x1 is a starting point for which Assumption 4.1 holds.
Consider any method in the form (1.2), (1.3) and (2.2) with \x € [0,1], ux € [0,1]
and wy € [0,1—pug], with the strong Wolfe line search (1.4)—(1.5), and with Powell’s

restart criterion (3.1). If (3.6) holds, and if the parameters Mg, pi and wy are such
that

(4.11) 0 < Mg ge-1 < llgxll?
and
(4.12) Likh dk—1 — WiBr—104_1dk—2 = —Ak—104_10k-2

for all k > 2, then the method converges in the sense that (4.5) holds.

Proof. Since the parameters £ and o satisfy (3.6), we have by Theorem 3.1 that
(3.7) holds for all k, which implies that each d is a descent direction. From (4.11),

(4.12) with k replaced by k+ 1, and the equivalent formula (2.5) of By, we see that
(4.3) holds with

(4.13) bk = (1= pipr1 — wi1) ||981% + prr1dh ye — wis1dy G-
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Using (1.5) and (3.7) in (4.13), we can prove that
P < [(1 = i — wier) + (L4 ) prrarie + weraril x|

(4.14) SA+@E+0)1 -1 +8&o) llgel?
__3-¢&o 2
= Ts a0 9l

for any pr+1 € [0,1] and w41 € [0,1 — pgy1]. The above relation and (4.2) imply
that

k>1
Thus, by Lemma 4.2, (4.5) holds. O

If £ <1, the second inequality in (4.11) clearly holds, since by (3.1) and the fact
that A\x € [0,1] we have

(4.16) AkgE gk—1 < |9F gr—1] < €llgrll® < llgwl®.

It is easy to see that the FR method (A\x = ux = wg = 0) satisfies the two condi-
tions (4.11) and (4.12). However, for other methods it is not clear whether these
conditions hold, as these conditions depend on the sequences of points generated
by the methods. For example, in the extreme case g7 gx—1 < 0, gL dx—1 < 0 and
ﬂk_lgg_ldk_g > 0, we need to choose Ay = g1 = wrt1 = 0. If g;{gk—l > 0, there
always exist admissible intervals for Ak, pg+1 and wg41.

The following lemma, is drawn from Gilbert and Nocedal [16].

Lemma 4.5. Suppose that x1 is a starting point for which Assumption 4.1 holds.
Consider any method in the form (1.2)—(1.3) with the following three properties:
(i) Bk >0.
(ii) The Wolfe conditions (1.4) and (1.13) and the sufficient descent condition
gt dy, < —c||gxl|? hold for all k and some positive constant c.
(iii) Property (x) holds; namely, there exist constants b > 1 and X\ > 0 such that
1Bkl < b for all k, and if ||z — zk—1|| < N, then |Bx| < (20)7*
Then the method converges in the sense that (4.5) holds.

By Lemma 4.5, we can prove the following general result for our three-parameter
family of nonlinear conjugate gradient methods.

Theorem 4.6. Suppose that x1 is a starting point for which Assumption 4.1 holds.
Constider any method in the form (1.2), (1.3) and (2.2), where A\, € [0,1], ux € [0,1]
and wy, € [0,1 — ug), where the stepsize satisfies the strong Wolfe conditions (1.4)—
(1.5), and where the restart criterion

(4.17) —Ellgnl® < g gr-1 < llgell®
is used. If the parameters are such that

(4.18) (1480 <
and
(4.19) Ae > 1—cil|lze — zp-al,

where ¢; > 0 is constant, then the method converges in the sense that (4.5) holds.
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Proof. We proceed by contradiction. Assume that
(4.20) lim inf ||g;|| # 0.
Then there exists a positive constant v such that
(4.21) llgrll =, forall k> 1.

Using (4.17) and (4.18), we can see from (3.13) in the proof of Theorem 3.1 that,
for all k£ > 1,
1-2(14+¢&)o a
22 >SN o
(42) Tk 2 1—(1+§)O’ C2,

where 7y, is given in (3.2). Thus the sufficient descent condition holds. From (1.5),
(3.7), (4.1), (4.2), (4.21) and the fact that Ay < 1, we can show that

1Bl < (cillgell® + LllgelDllze — 21l
“ lgr—1 IP[(1 — pr — wi) + pr (1 — 0)c2 + wieol
(4.23) < (ellgell® + Zllge)llzx — x4
- c2llgr—1?

< callzg — -1l

where

(4.24) es= AL
c2Y

Since Assumption 4.1 implies that there exists a positive constant p such that
(4.25) lz|| < p, forallzelL,

for b = 2c3p amd A = (4c3p)~1, we have from (4.23) and (4.25) that

(4.26) Bkl < b

and7 it lek - xk—l” < )\)

(4.27) |6kl < (26)7".
Thus Property (x) holds. In addition, (3.7) and (4.17) imply that 8 > 0. Therefore
the conditions of Lemma 4.5 are all satisfied, and hence (4.5) holds. O

Theorems 4.3, 4.4 and 4.6 provide some general convergence results for the three-
parameter family of nonlinear conjugate gradient methods. If the parameters in
(2.2) are specifically chosen, then better global convergence results can be expected.
We will end this section with such an illustrative example.

Such an example stems from the following fact. For any method of the form
(1.2)—(1.3) with dj, satisfying gf d, < 0 and with the strong Wolfe line search (1.4)—
(1.5), Corollary 2.4 in [5] tells us that the method converges globally provided that
the norm of dj, does not increase faster than linearly. Specifically, the method gives
(4.5) if the following condition holds:

1
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Therefore, in the three-parameter family of nonlinear conjugate gradient methods,
to shorten the length of di, it is reasonable to choose the parameters so that |G|
reaches its smallest value. Namely, let

(4'29) (Xk, s a)k) - argmin)\k,MkE[O,l],wkE[O,l—uk] !ﬂk|7

where i, is defined in (2.2). In this case, we can obtain the following global con-
vergence result, in which the line search only needs to satisfy the Wolfe conditions.

Theorem 4.7. Suppose that x1 is a starting point for which Assumption 4.1 holds.
Consider the method of the form (1.2), (1.3) and

(430) B = (1= X)llgnl[® + Mg ys—1
(1= — ‘Dk)ngk—1H2 + ﬂkd’;{_lyk_l — (I)kdf_lgk_l’

where Mg, Bk, @ are given in (4.29). If the stepsize satisfies the Wolfe condi-
tions (1.4) and (1.13), then each dy generated by the method is a descent direction.
Further, the method converges in the sense that (4.5) holds.

Proof. From the choices of Ay, fix and @y, it is easy to see that
(4.31) 0< B < BPY,

where BPY is given in (1.12). Thus the statements follow by Theorem 3.1 in [6]. O

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed a three-parameter family of nonlinear conjugate
gradient methods, and studied the global convergence of these methods. The three-
parameter family not only includes the six already known simple and practical
conjugate gradient methods, but has some other families of conjugate gradient
methods as subfamilies. The three-parameter family also includes some hybrid
methods as special cases.

With Powell’s restart criterion, we proved that the three-parameter family can
ensure a descent search direction at every iteration. Then, under suitable condi-
tions, we established some general convergence results, namely, Theorems 4.3, 4.4
and 4.6, for the three-parameter family of nonlinear conjugate gradient methods.
If the parameters are specifically chosen, better global convergence results could be
achieved.

It has been pointed out that condition (3.6) is not strict, because the param-
eter o in (1.5) is generally chosen to be relatively small, which implies that & in
(3.1) could be relatively large. However, it still remains to explore how to find
new and efficient conjugate gradient methods among the three-parameter family.

Specifically, it would be interesting to find the practical performance of the method
(4.29).
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