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AND ITS FIRST DERIVATIVE
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ABSTRACT. In 1975 one of the coauthors, Ikebe, showed that the problem of
computing the zeros of the regular Coulomb wave functions and their deriva-
tives may be reformulated as the eigenvalue problem for infinite matrices. Ap-
proximation by truncation is justified but no error estimates are given there.

The class of eigenvalue problems studied there turns out to be subsumed
in a more general problem studied by Ikebe et al. in 1993, where an extremely
accurate asymptotic error estimate is shown.

In this paper, we apply this error formula to the former case to obtain error
formulas in a closed, explicit form.

1. INTRODUCTION
The second-order linear differential equation

(1.1) dQ—qf+[ —2—77——L<L;H)
dp p p

where p > 0, —00 < 1 < 00, and L is a nonnegative integer, has two independent
solutions defined as Coulomb wave functions, one called the regular Coulomb wave
function w = Fr(7,p), and the other the irregular Coulomb wave function w =
Gr(n,p) (for more details on Fr(n, p) and Gr(n, p), refer to [2]). Equation (1.1)
appears in atomic and nuclear physics, and is obtained when we deal with the
scattering problems with charged particles! or the separation of Schrodinger’s wave
equation for a Coulomb force field. One will find that there is abundant literature
for the computation of the function value F(n, p). Nevertheless, when it comes to
the computation of the zeros p of Fr(n,p), no previous research but [1]? and [5]
was found, according to the authors’ investigation.

In 1975 [5], one of the coauthors, Ikebe, showed that the problem of comput-
ing the zeros of Fr(n,p) and their derivatives may be reformulated as a matrix

w =0,
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n this problem, L represents the orbital angular momentum quantum number, n = ZZ’ e /hv,
and p = pvr/h, where Ze, Z'e are the charges of the two particles, v is their relative velocity, r is
the distance between them, and p is the reduced mass.

2[1] proposes a method for computing the zeros p of Fo(n, p), and the first three positive zeros

are computed for given n = 0.0,0.5,...,3.0. However, no error estimate is presented for the
approximate zeros.
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eigenvalue problem by rewriting the three-term recurrence relations satisfied by
Fr(n, p), which represents a minimal solution of the recurrence relations (a second-

order linear homogeneous difference equation) in the sense of [4]. Here are the main
theorems of [5]:

[5, Theorem 2.1] Let L and n be given. Then p # 0 is a zero of Fr(n,p) if and
only if 1/p is an eigenvalue of T, defined as follows:

—ndr+1  er+1 0
er+1  —Ndri2  ery2
_ 022
(1.2) Ty, = ervs  —ndoys (45— 0, with
0
(1.3)
1 1 (k+1)2+n2

dp = ——— (k=1,2,... = k=0,1,2,...).
k k:(k:+1)( ERR k+1\/(2k+1)(2k+3)( 01,2,

Moreover, one finds that an eigenvector of Tr,, corresponding to 1/p is a nonzero
scalar multiple of

0£u= [V u?, . .7 =[V2L +3FLi1(n,p), V2L + 5Fp12(n, p),... |7 € £%
Approximate zeros may be computed by truncation to any degrees of accuracy.

[5, Theorem 3.1] Let L and n be given. Then p # 0 is a zero of F[(n,p) if and
only if 1/p is an eigenvalue of T, defined as follows:

i - 2L+1 7
Try®  \ Iiier 0
2041
tiler  —mdryr erya
= 2
(1.4) Try,= er+1 —nd 42 €r+2 2 ,
er+2  —Ndr4s
L 0 A

where the definitions of dy,er are retained as (1.3). Furthermore, an eigenvector
of Tr, corresponding to 1/p is a nonzero scalar multiple of

0+#u=[VL+1FL(n,p),V2L +3Fr11(n,p), V2L +5FL42(n, p), ... 1" € 2.

Approzimate zeros may again be computed by truncation to any degrees of accuracy.

What is missing from these two theorems is the precise error estimation. In
fact, the derivation of the explicit error estimates for the numerical procedure in [5,
Theorem 2.1] and [5, Theorem 3.1] is the concern of this paper. Our main results
in this regard are stated in the next section (See Theorem 2.1 and Theorem 2.2 in
Section 2).

The derivation of [5, Theorem 2.1] and [5, Theorem 3.1] is nothing but a formal
matrix reformulation of the recurrence relations satisfied by ur = Fr(7, p), found
in [2, Chapter 14], which are (1.7) and (1.8) below. For our purpose, we need two
more recurrence relations (1.5) and (1.6), also found in [2, Chapter 14] (where “’”
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represents the p-derivative):

2

L
(L5) Loy = JIR+r uL-1—<7+n)”L’

(1.6) (L+1)-uy = [(—I—/i;)ﬁ +77} ur — V(L + 1)+ 12 upga,
and by (1.5),(1.6),
(1.7)

L(L+1
L(L+1)2+n? upq1 = (204 1) [—% +77] up — (L+ 1)\/L?+ 1% up_1,

(1.8) (L+n+1)v/(L+n)?+n2urin_1
L+n)(L+n+1
Genensd ),
p
+(L+n)\/(L+n+1)2+n2uL+n+l:Oa n:071a27"'1
which is obtained from (1.7) by replacing L by L + n.

In [5], the asymptotic behavior of ur4, is also derived from (1.8), using [4,
Theorem 2.3]:

—(2L+2n+1)[

(1.9) BLintl _ L1y 4 6(1)] = 0 (n — o0).
UL+n 2n

The relation (1.8) is also satisfied by G1(n, p) (i-e., (1.1) still holds true when we
substitute Gr,(n, p) for ur). The point is that ur, = Fr(n, p) represents a minimal
solution of (1.8). See Gautschi [4].

In 1993, Ikebe et al. [6] studied a more general problem subsuming the former
cases, not only justifying the approximation by truncation but also deriving an
asymptotic error formula, and it is this theorem, especially (1.10), that we use in
this paper to derive the error estimates in Section 2.

[6, Theorems 1.1 and 1.4] Given an infinite complex symmetric tridiagonal matriz

di  f2 0
fo do f3
A= R
fa ds -
0

where d, — 0, fr — 0 (k — o0), and fr # 0 (k = 2,3,...), representing a
compact operator in £?. Let A have a simple eigenvalue A # 0, and 0 # x =
[xM,x@,...]T € £2 denote an eigenvector of A corresponding to . Under the
stated assumptions, we have
(i) (converging theorem) Letting A, (n = 1,2,...) be the n-th order principal
submatriz of A, and A\, be an eigenvalue of A,,. Then, taking {\,} properly,
we have A, — A.
(ii) (error formula) Assuming that {\,} is taken in the sense of (i), xTx # O,
and X(”"‘l)/x(") is bounded for all sufficiently large n, we find the following
estimate valid:

(n) 4 (n+1)
(1.10) A=A = i’ﬁl’;—T;——[1+o(1)] (n — o).
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In this theorem, the symbol #2 denotes the complex Hilbert space

)
{[01,62,...]T 1 C1,Co ... € C,Z|Cn|2 < OO} s

n=1

and o(1) a quantity converging to 0 as n — 0o, and an eigenvalue A is called simple
if only one linearly independent eigenvector and no generalized eigenvectors of rank
2 or more correspond to it. The same notation is used in this paper. Up to the
present, this theorem has been well applied to the following computations:

1. Zeros of J,(z), the Bessel function of the first kind of order v [6],

2. Zeros of z - (dJ,(2)/dz) + HJ,(z) (with H constant) [3],

3. Eigenvalues of Mathieu’s equation [7],

4. Eigenvalues of a differential equation for the spheroidal wave functions [8].

As seen later, the eigenvalues of T, (and Tf,, too) are all real and simple,
the matrices under consideration being compact, real, symmetric, and tridiagonal,
where all super- and subdiagonal elements are nonzero (such a matrix operator is
diagonalizable, see [9]) and for any given eigenvalue the corresponding eigenvector
is uniquely determined (since super- and subdiagonal elements are nonzero, the
recurrence relations yield a unique solution up to constant multiplication).

2. ERROR FORMULAS AND THEIR PROOFS

We now state two main theorems of this paper: the error formulas in subsection
2.1 ((2.1)-(2.4) below), followed by the proofs in subsection 2.2.

2.1. Error formulas. First, the error formulas shall be shown. Theorem 2.1 deals
with the approximate zero of F(), p), while Theorem 2.2 with FJ (n, p).

Theorem 2.1. For each k, let T(Lk)n be the k-th principal submatriz of T, defined

in (1.2). Then, one can choose each A, an eigenvalue of TS:IT), such that 1/ Mg =

pr — p. And the following error estimates (2.1) and the rate of convergence (2.2)
are valid:

(2.1)

p—pr=— \/(L +k+ 1)2 + 772 . (L + 1)2 . FL+/€(77’ P)FL+k+1(77aP) [1 + 0(1)]
L+k+1 (L+1)2+4n2 F2 . (n,p) ’
P—Per1 _ [ P?

(2.2) e ( 2k> [1+ o(1)] (they hold as k — o).

Theorem 2.2. For each k, let ‘i‘gczl be the k-th principal submatriz of 'i‘Lm defined

in (1.4). Then, one can choose each S\k, an eigenvalue of T(Lk;, such that 1/;\;c =
pr — p. And the following error estimates (2.3) and (2.4) are valid:

(23) p—pr=—p" (L+E?2+n*  Froea(n,p)Frar(n p)
L+k {0 —2np — L(L + 1)} F2(n, p)

_ VAR 40 Frip-1(n,0)Frar(n, p)

1+ 0(1)]

L+k Fi(n,p)Fr(n, p) (1oLl
p—20 P2
(2.4) p_—f)zl - (ﬁ) [1+ o(1)] (they hold as k — oo).
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2.2. The proofs of Theorems 2.1 and 2.2. After the introduction of a few more
well-known relations by the Coulomb wave functions, we will show newly found
relations which are to help the simplification of error formulas, and the proofs of

the theorems. First, Wronskian relations and the concrete form of Fr(n,p) are
known [2, Chapter 14]:

(2.5) Fi(n,p)Gr(n, p) — Fr(n,p)Gr(n,p) = 1,
(26)  Fr_1(n,p)Gr(n,p) — Fr(n,p)Gr-1(n,p) = L(L*+n*) "2,
(2.7) Fr(n,p) = Cr(mp™™ Y Af(m)pF~t7", with
k=L+1
LB INL+1+1i
Culn) = itk KA
T(2L + 2)
n
A£+1 = 1, A£+2 = ——L +1
(k+L)(k—L—-1)AEF = oAl | — AL, (k>L+2).

Next, newly obtained relations shall be shown.

Lemma 2.3. In general, the following relation holds:

’ !
U 2(L+1
(2.8) <u2L ( z:1> ) = (u/L+1UL - UILUL+1)I = —(?_)ULUL+1-

Proof. The first equality is obvious. Replacing L by L+ 1 in (1.1), one is given

2 (L+1)(L+2)

] ur+1 = 0.
(1.1) Xup+1— (2.9) xuy yields

uiups1 — uyur + g(—Ll—);i_—l——uLHuL =0.
Hence, the second equality also holds, since

Up U — upuL+1 = (UL ur — upuLe)'

O

o0

Lemma 2.4. Lety(p) = (2L+3)u? ,,+(2L+5)ui o+ - = Z(2L+2i+1)u2L+i.

=1
Then

V(L +1)2+n?
(2.10) y(p) = Pz-<—ﬁl———(ui+1% —upuLi1).

Proof. {(1.5)+(1.6)} xur gives

2L+1
(2L + Vufup = VL2 +n2up_qur + ; ut — /(L+1)2 +n2ugurps1.

Replacing L by L+ 1,L +2,... and adding both sides of each equation yield
(2L + 3)up qurs1 + (2L + 5)up  guryo + -

1
=/ (L+1)2+nfurury + P {@L+3)ui .y + (2L +5)uf p+ -},
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or

2
(2.11) y'(p) - —py(p) =2/(L+1)? + n*upur1.

The left-hand side of (2.11) is equal to p® (y(p)/p?)’, while the right-hand side turns

PV L+ 12+ (upyur — upursr) /(L +1)
by (2.8). Equating them gives

712

(2.12) yl()g) - (LZ-T—)I gl (upy1up —upury1) = c (constant).

What is left now is to show ¢ = 0. Consider the asymptotic behavior of the left-
hand side of (2.12) as p — 0. Equation (2.7) informs that uy, is a power series with
its initial term Cp(n)p™*!. That means the order of u}  uz, — ujup41 is at least
O(p?E*2). On the other hand, y(p)/p? = O(p?**?), directly from the definition
of y(p). Consequently, the conceivable least order of the left-hand side of (2.12)
is O(p?t*2). Since L > 0, the left-hand side of (2.12) — 0 (p — 0). Therefore,
0=c. O

Finally, we are ready to proceed to the proofs of Theorems 2.1 and 2.2.

Proof for Theorem 2.1. Let us first show that the eigenvalue problem in question
satisfies the conditions imposed on [6, Theorems 1.1 and 1.4, part (¢)]. The form of
Ty, obviously meets the requirements since dy — 0,ex, — 0 (k — 00) and eg # 0
(k=0,1,2,...). We only have to show that all the eigenvalues of T, are sim-
ple. In order to prove this, the following two facts are enough, since they are the
definition of an eigenvalue being simple in themselves.

e There are no generalized eigenvectors of rank 2 or more corresponding to
eigenvalues for an infinite real symmetric matrix in the Hilbert space (see
standard books on functional analysis, e.g., [9]).

e Once the first component of an eigenvector of Ty ,, is given, all the others

are uniquely determined, since ex # 0. That is, there is only one linearly
independent eigenvector.

The derivation of an error estimate from [6, Theorems 1.1 and 1.4, part (i4)]

follows. First, let us evaluate u”u. Using y(p) defined in Lemma 2.4, we have
uTu = y(p), and

V(L +1)2 +n?
wu = 2T ) by g =0)
(L1 +0?

P W“L+1
(L+1)2+n?
L+1

Next, let us check the conditions. By (2.6), ury1 # 0 when uy = 0, leading
uTu # 0. And it is obvious by (1.9) that «(®+1) /u(® is bounded for all sufficiently
large n. Now that all are cleared, one can put the components of Ty, ,, u and (2.13)
into (1.10) and obtain (2.1). Equation (2.2) is easily derived by (2.1) and (1.9). O

(2.13) =

(up, = — ur41 is given by (1.6) and uy = 0).
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Proof for Theorem 2.2. Let us skip the proof for |6, Theorems 1.1 and 1.4, part
(1)], since they are shown in nearly the same way as Theorem 2.1. Let an error
estimate be derived instead. Substituting (1.10) with the components of Ty, ,, and

1, one obtains
2 \/ (L + k)2 + 172 ) UL+ k—1UL+k

T AR 1+ o(1)] (h — o0).

In order to achieve an error estimate in a closed form (2.3), what is still to be
proved is

p—pk=—p

(2.14) a'a={p* —2np— L(L+1)}u} (= —p°ufur).
By the definition of 01 and Lemma 2.4,
(2.15)

T L+1)2 +n?

a7t = (L+ Dul +y(p) = (L+ Duf + pz—(——ﬂ

51 upqur (by up = 0).

Replacing L by L + 1 in (1.5), which gives

L+1)?
(L+1)up =V (L+1)?+n%ug — <<~—p——)— +n> UL41,
and putting v} = 0 into (1.6), which also gives

L+1)?
<(———;—)— —l—’l’]) ur = (L+1)2+7’]2UL+1,

yields, with L +1 > 1,

r_
Up41 =

(L + uy, {1_&L_@+1P}
(L+1)2+n? p )
Substituting this into (2.15), one finally obtains (2.14) (the second equality is simply
by (1.1)).
The proof of ula = (L + 1)u? + y(p) # 0 has no difficulty since y(p) > 0 and

(L +1)u? > 0 (ug # 0 by (2.5)). Equation (2.4) is derived directly by the error
estimate (2.3) and (1.9). O

3. NUMERICAL EXPERIMENTS

We executed the numerical experiments for the presented methods in Theorems
2.1 and 2.2. The computations were done on a Hitachi parallel computer SR2001,
using double-precision floating-point arithmetic by FORTRAN77.2 We used the
FORTRAN subroutine COMQR? in EISPACK [10] for the computation of eigen-
values.

We first computed p,, (pn) by sufficiently large m-th order principal submatrix
of (1.2) ((1.4)), and regarded as the true value p. Then, for each k, we computed

the reciprocals of all the eigenvalues of 7% (7)) and chose the closest to p to be
Lyn Ly

ok (pr). The values of uryn (n=0,1,2,...) were obtained by back-substitution.®

3The experiments in this paper, however, do not include parallel computations.

4A subroutine IMTQL1 in the same package is replaceable, as was used in [5].

5By (1.8) and the behavior up4, — 0 (n — 00), we let ur+n =0 and upyn—1 =€ (# 0,¢
shall be taken appropriately so that an overflow does not occur) for sufficiently large N, and
computed up4n (n =N —1,N —2,...,0) successively in decreasing order.



1202 Y. MIYAZAKI, Y. KIKUCHI, D. CAI, AND Y. IKEBE

TABLE 1. Actual errors and estimates of (2.1)

Given L = 1,7 = 1.0, compute p = 6.566570903 . ..

\ k ] (AE.) L (T.E.) J
8 | =5.01E -05 | =5.71E - 05
9 | —493E —-06 | —5.47E — (06
10 | =3.99E - 07 | —4.35E - 07
11| -2.72E - 08 | —2.92F - 08
12 | —1.58E —09 | —1.68E — 09
13| =794E - 11 | —8.36F —11
14 | —=3.49E — 12 | —3.65E — 12

TABLE 2. Actual errors and estimates of (2.3)

k] (AE) | (TE) |
2 | -1.03E - 01 | —=8.75E — 02
3 | =6.58E —03 | —6.93F — 03
4 | -278E—-04 | —2.90F — 04
5 | =7.36E — 06 | —7.56E — 06
6 | —1.32E - 07 | —1.34E - 07
7 | =1.72E—-09 | —-1.74E - 09
8 | -1.70E—-11| -1.71E - 11
P
7
10 -
1
g4 p=nt \/UT—l—_l
0
n
F()((nt’lf)\)(i?\ lines).
-FU(?t:ﬁgj\?ur lines).
10 |~
I / 1//,

FIGURE 1. (n, p)-pairs satisfying Fo(n, p) = 0, Fi(n,p) =0

Given L =0, = 0.0,

compute p = 7/2

10

and p=n++/n?+1



ERROR ANALYSIS FOR THE COMPUTATION OF ZEROS 1203

Table 1 is the result of the numerical computations for a zero of Fp(7, p), and
Table 2 of F}(n,p). In the tables, actual errors (A.E.) represent the left-hand side
of (2.1) ((2.3)) divided by p while theoretical errors (T.E.) represent the right-hand
side of (2.1) ((2.3)) without [1 + o(1)], again divided by p, and 3 significant figures
are displayed after rounding. One can observe that A.E. and T.E. get closer and
each error gets smaller acceleratively as k becomes larger. Those figures are in
agreement for the first digit in Table 1, and for the first two digits in Table 2.

Let us show another result in Figure 1, or the (1, p)-plots satisfying Fy(1, p) =
0 and Fj(n,p) = 0. For each 7, the computation of p was performed by the
stated procedure. To visualize (4.1) (appearing in the next section), p = 1 +

n? + (L + 1)? (with L = 0) is also plotted.

4. MISCELLANEOUS: REMARKS ON THE ZEROS OF F (1, p) AND FJ (n,p)
This final section focuses on some remarks on the zeros p of F(n, p) and F} (7, p).

Remark 4.1. For given L and 7, the region of zeros of Fj(n,p) is determined by
the inequality

(4.1) p>n+/n?+(L+1)2

Proof. By (2.14), u? {p* —2np — (L +1)*} = 2L +3)uf, + (2L +5)uj o+
The right-hand side is obviously positive, then so is the left-hand side. That means
p? —2np — (L + 1) > 0. Considering p > 0, one has p >+ /n*> +(L+1)2. O

Remark 4.2. For given L and 7, the region of zeros of Fr(n, p) is also confined to
(4.1).

Proof. Denoting the smallest zero of ur, (u}) by p5*t (p1st), we will show p1%t < p§st.
Noting that u;, — 0 as p — 0 (by the form of uz in (2.7)) and ur(n, pi**) = 0,
one finds, from Rolle’s theorem, that there exists at least one p satisfying v} = 0

in (0, p§**). Therefore, pis* < p§**. This and Remark 4.1 are sufficient to prove the
proposition. O

Remark 4.3. There is one and only one zero of F}(n, p) between two continuous
zeros of Fr(n, p).

Proof. Let us prove that “there is one and only one zero of Fi(n, p) between two
continuous zero of Fj(n,p)”, which is equivalent to the proposition. By (2.14),
0* —2np — L(L + 1) > 0 holds when «} = 0. Recalling (1.1), which is u} +
{p?* =2np — L(L+ 1) }ur/p* = 0, we find that uy and u} have different signs
then. Also note uy # 0 (and so is u}) when u} = 0 by (2.5).

Suppose p1,p2 (p1 < p2) are two continuous zeros of uy. Then, ur, is of definite
sign in (p1, p2). Now, without the loss of generality, we may assume uy > 0. If
there are more than one zero of u}, in (p1, p2), there is at least one pair of maximal
and minimal points of uy, there, which is absurd since v/ > 0 at a minimal point
and vy, and v/ are of the same sign. O
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