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USING THE THEORY OF CYCLOTOMY
TO FACTOR CYCLOTOMIC POLYNOMIALS
OVER FINITE FIELDS

GREG STEIN

ABSTRACT. We examine the problem of factoring the rth cyclotomic polyno-
mial, ®.(z), over Fp, r and p distinct primes. Given the traces of the roots of
®,.(x) we construct the coefficients of ®,(z) in time O(r*). We demonstrate
a deterministic algorithm for factoring ®,(z) in time O((r!/2t<logp)?) when
®,(z) has precisely two irreducible factors. Finally, we present a deterministic

algorithm for computing the sum of the irreducible factors of ®,(z) in time
O(r%).

1. INTRODUCTION

In 1990, V. Shoup [19] related the problem of deterministically constructing
arbitrary extensions of finite fields to that of factoring cyclotomic polynomials. We
concern ourselves here with the problem of factoring the rth cyclotomic polynomial,
r prime, over prime fields. The case where these two primes are the same is covered
very effectively by Artin-Schreier theory (see, for example, [12, p. 325, Theorem 6.4]
or [19, Lemma 2.3]), so we will only be concerned with the case where the primes
are distinct.

In this text the term operation refers to an addition or multiplication of binary
digits. By O(a) operations we mean that the number of operations is bounded by
some fixed multiple of a.

Please note that many polynomial time algorithms exist for factoring polynomials
over finite fields which are probabilistic or depend upon unproven hypotheses (see,
for example, [4], [7], [9], [17], or [5, section 3.4.4]). The techniques presented here
are not intended to compete with these in running time. For this reason, analyses
of running times are not as accurate as possible. For more precise running times
for various operations the reader is referred to [3] and [11].

Sections 1 and 2 are an introduction and a brief review of the theory of cyclo-
tomy. In Sections 3 and 4 we show how to derive the factors of ®.(z) from the
traces of the roots of ®,.(x) over F, in time O(r*). In Section 5 we demonstrate a
deterministic algorithm which does not depend on ERH for finding these factors
in time O ((r}/2*¢logp)®) in the case where ®,(z) has precisely two irreducible
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factors over IF,. Section 6 gives a deterministic algorithm which does not depend
upon ERH, for computing the sum of the irreducible factors of ®, in time O(r®).

2. A REVIEW OF CYCLOTOMY

Throughout this text we shall apply the results of the theory of cyclotomy,
originally developed by Gauss, to explore the relationship between the traces of the
rth roots of unity and the irreducible factors of the rth cyclotomic polynomial. To
this end we begin with a brief review of the theory of cyclotomy. More thorough
treatments can be found in Storer [22], Berndt, Evans and Williams [2], Dickson
[6], Myerson [16], or Baumert and Mills [1].

In the classical treatment of cyclotomy the following definitions and observations
are made over Q. Given a prime number, r, positive integers d and m with dm = r—
1, and a primitive element, ¢, of F,. (that is, an element of F,, which multiplicatively
generates ), we define the cyclotomy classes

Hy = {l,am,azm,...,a(d_l)m},
H = {a,a™ o?mt . gld-mtiy
H, = {ai7 am+i, a2m+i7 o ’a(d—l)m+i}’
Hy oy = {am—l’ am+(m—-1)7 O42m+(m—-1), e a(d—l)m+(m—1)}.

Noting that o™ Hy = o'Hy, we see that we may index the H; with Z/mZ. We
then define the cyclotomic numbers, (i,7), i,J € Z/mZ, by

(Z)]) = #(H:_ mHj)a
where Hf = {z +1|z € H;} CF,.

We should remark at this point that one may find primitive elements of F} in
time 71 (for each b € F* check whether b“T =1, for all primes ! dividing r — 1,
roughly O(rlog?r) operations). Note also that H; can be computed by performing
d multiplications in F,., that H:F can be computed by performing d < r additions in
F,, that H;" N H; can be found in O(dlog d) operations (by sorting and looking for
matches) and then (4, j) can be computed by counting to at most d. Therefore, all of
the cyclotomy classes and cyclotomic numbers can be deterministically computed
in time O(rlog?r).

If we now think of working over some field, F, and let { represent a primitive

rth root of unity in an appropriate extension field, K, then one defines the periods,
ti) by

d—1
=3 = Y e
j=0 acH,
Noting that ¢; = ty,44, we consider the ¢; to be indexed by Z/mZ.

Although the classical theory of cyclotomy is used to study roots of unity over
the rationals, all of the basic definitions and theorems make sense and are true over
any field. In particular, we wish to look at a special application of this theory with
the intention of factoring the rth cyclotomic polynomial, ®, = % =14+z+
2+ 42" over F,, r and p distinct primes. The elementary theory of finite



USING THE THEORY OF CYCLOTOMY 1239

fields (see, for example, [10], [13] or [14]) tells us that ®, will factor into m distinct
irreducible polynomials, each of degree d, where d = ord(p, ), the order of p in F}.
(that is, the least positive integer d so that p¢ = 1 mod ) and m = %. We now
compute the cyclotomy classes using this choice of d and m.

As Hy is the unique subgroup of F¥ with order d and, since ord(p,r) = d, it
follows that

Hy=(p)= {1,p,p2, e ,pd_l} CF;.

Now let ¢ be a primitive rth root of unity in some extension field of I, so that
the irreducible factors of ®,(x) over F,, are

d—1 o
gi(z) = [[@-¢*") = [[ @=¢*), i e z/m2,
7=0 a€H;

and note that t; = trace FP((“i), the sum of the roots of g;(x) or, equivalently, that
—t; is the coefficient of 24~ in g;(z).

Tt will also be of use to include here some of the basic identities concerning the
cyclotomic numbers. A proof of the following may be found in [22, Lemma 3, p.

25] or in [2, Theorem 2.2.1, p. 69].
Lemma 2.1. 1. (4,5) = (m —1i,j — ).
N X)) d even,
2. (i,5) = (J+%i+%) dodd
1 d even, i =0,
3. Y (0,5) = d — 0; where 6; =X 1 d odd, i =12,
0 otherwise.

1. . 1 j=0,
4. 3% (4,5) = d —n;j where n; = { 0 ‘Z)therwz‘se.

A simple observation we will need later on, but not proved in any of the citations
above, is the following lemma.

Lemma 2.2. Ford #1, inF,

=0
YEH;

Proof. Note that, in F..

Z v=a +alp+aip? -+ alp?? 4+ aiptl

YEH;
therefore,

D Z v =aip+aip? +aip® + - +aiptt + aipt

YEH;
and, since p? = 1, we have

PY =2
’YEHz‘ YEH;

But d # 1 implies that p # 1 and, since p and 7 are distinct primes, it follows that
p#0. Hence - .y v=0. a
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3. DETERMINING THE COEFFICIENTS
OF THE g;(z) FROM THE t;

The primary technique used here, delineated in Lemma 3.1, was actually first
alluded to in the characteristic zero case by Gauss in [8, Section VII]. In this section
we explicitly describe this technique, apply it to the characteristic p case, and make
a running time analysis. In particular, we show that we may compute, in time
O(r*), each of the coefficients of the g;(z) in a specific way as Z-linear combinations
of the t;. To accomplish this we first make a combinatorial observation.

Given p and 7, distinct primes, let o be a primitive element of Z/rZ and let d,
m and the H; be as defined as in the previous section. Rather than work over I,

we shall work in R, where R = Z[Y]/(Y" — 1). In R define the counterpart of ¢; to
be

d—1
v=> Y e z/mZ,
k=0

and the counterpart of g;(x) to be
d—1

(3.1) fite) = [[(@-v=?"),  iez/mz,
k=0

in Rlz].

Lemma 3.1. There exist two unique sets of integers, {ag?)}u‘tez/mz‘sez/dz and

{ﬁgu)}uez/mz,sez/dz, which can be computed deterministically in time O(r*), so
that the coefficient of x° in f,(x) is

m—1
-1+ (ﬁgu) +) ag?”z‘) :
i=0

We postpone the proof until we have made some observations.

Since Y” = 1 in R, we may view the exponents of Y as elements of Z/rZ.
Therefore each f, € R has a unique coset representative which is a polynomial in
x of degree d whose coefficients are (r — 1)%* degree polynomials in Y over Z.

Let S be the collection of all cardinality ! subsets of Z/dZ. Expanding (3.1)
formally, we can write the coefficient of z4~! in f,(z) as

32 oY v
{i1,....,0, } €S

and note that there is a one-to-one correspondence with the (¢) terms in (3.2) with
the elements of S. We then define an equivalence relation on S by {i1,...,4} ~
{i1 + k,...,i, + k} for every k € Z/dZ and note that under this relation no parti-
tion contains more than d elements. Now let S; C S be the union of all partitions
containing precisely d elements of S and let S C S be the union of all parti-
tions containing fewer than d elements of S. In addition, let 77 = {{31,...,4;} €
Si|pt+---+pt=0modd} and T =S — 7.

Now observe that if p** + --- + p* = 0 mod 7, then p"* 4 ... 4 phtk =
p*(p™ +--- 4+ p") = 0 mod 7 and conversely, since p¥ # 0 mod r and r is prime.
That is, if {i1,...,4} ~ {j1,..., 5} then {i1,...,4} € Ty (or T) if, and only if,
{j1,---, 1} € Th (or Tz, respectively). Therefore we may write 7; = Py U ---U Py,
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and T3 = Q1 U - U Qp,, disjoint unions, where the P; and the Q; are partitions

under the equivalence relation. Further note that S = 7; U 73 U Sy, where 71, T3
and S, are pairwise disjoint. We may now rewrite (3.2) as

(——1)l i Z Yozu(pi1+-~+piz) n i Z YO‘U(pil_,’_“'_‘_pil)

k=1 {iy,...,iy }EPy, k=1 {i1,...,i1 }EQk
(3.3) + Yy
{J1,--,J1}ES2

Lemma 3.2. If Py, Qr and Sz are as above, then
L Y iter. ye @t pt) = .
2. Z{ihmﬂ.l}er ye 04t =y where pit 4 -+ + pit € Hy_y; and
3. Y (i gyes, YO PITI = 4(Sy).

Proof of Lemma 3.2 1.
{i1,...,u} € P = plr 4 +p" = 0modr = ye et dp't)
Since #(Py) = d, the result follows. g
Proof of Lemma 3.2 2. Say
Qr={{ir, . i}, {1+ (d=1),...,; i+ (d = 1)}},
then {i1,...,i} € Qr = p +---+pt #0€Fp = o¥(p* +--- +p") #0 € F.

Therefore there exists ey, 1 < e < m — 1, so that P4 plt = a*pl € Hy,,
hence pitt™ + - + ptt" = a®pntl € H,, and

d—1 d—1
R S e ntl utep o n
(3.4) SOyt = > oy =3 Ve <y,
{i1,., 0} EQw n=0 n=0

0

Proof of Lemma 3.2 3. If {j1,...,71} € S2, then there exists n € Z/dZ — {0} so
that {j1,...,5} = {j1i+n,...,Ji+n} € Sz, hence p/* 4 - pit = (PPt 4 +pt) pn
€TF,, but p® # 1 or 0 mod 7, s0 p’* + -+ p’* = 0 mod r, hence Qv (pt 4o 4 pit)
= 0 mod r, and therefore Y ®*+4+P"") =1 € R, and the lemma is proved. ~ [J

We are now in a position to prove Lemma 3.1.

Proof of Lemma 3.1. If we now let a&“_)l’t be the number of the Q1,...,Qn, from

Lemma 3.2 so that 32, 1eco, ye (i +4p') = 4, and let ﬂ((;i)l equal #(53) +
dng, then, referring to Lemma 3.2 and (3.3), we have that the coefficient of 2~
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in fy(z) is
(3.5)
ni . ) n2 ) X
1) ot (PP p't) at(p*r4tp't)
(-1) Y + Y
k=1 {i1,...,ii}€Py k=1 {i1,...,01 }EQx

LY e
{71571} ES2

= (-1 Zld+ Y v+ #(Sy)

k=1 {i1,. 0 }EQu
m—1

= (-1)' (ﬂﬁii)z +> aS‘Jz,ﬂw) :
i=0

where the s in the next to last expression is the s such that p't 4 --- +p% € Hy_,,.

To see that these integers are unique, we note that 1,vg,v1,...,Um—1 each have
unique coset representatives in R which are polynomials in Y with coeflicients in Z
having degree no more than r, no two of them sharing terms of like degree. They
are therefore linearly independent in Q[Y]/(Y" — 1), viewed as an r-dimensional
Q vector space, hence unique in R = Z[Y]/(Y" — 1), which can be thought of as
sitting inside of Q[Y]/(Y" — 1).

All that remains is to show that these integers can be computed in time O(r4).
Recall from the paragraph following Lemma 3.1 that the f;(z) can be viewed as
dth degree polynomials in = whose coefficients are (r — 1) degree polynomials in
Y. The results of Lemma 3.2 show that ag?) is the coeflicient for v; in the coeflicient

for Y in the coeflicient of °. We now demonstrate a technique for expanding (3.1)
which differs from the one in Lemma 3.2.
Let

W (z) = ﬁ (z - Y”‘upk) € Rlz],

k=0
and note that f,(z) = W'*) (z) and that

u, i41

(36) W@ =W @) (v -y —ow (@) - v W (@),

For any i € Z/dZ, Wi(u)(x) is a polynomial in x of degree at most d < r with
coefficients which are polynomials in Y of degree at most r. The coefficients of these
polynomials in Y are integers bounded above by the ag;‘), which are in turn bounded
by #(S) = (4) < 2?. Computing Wz(ﬂ(a:) from W) (z) as suggested in (3.6), we
see that computing xWi(“)(x) involves increasing each exponent of x in Wi(u) (z) by
1, O(r) operations. We then compute YaupiHWi(u)(a:) by multiplying each of the
polynomial coefficients of Wi(u) (z) by Y o“P"™" which involves at most d-r additions
modulo 7, or O(r? log r) operations. Finally, computing :cWi(“) (z)—yo"?™ Wi(“) (x)
involves at most d - r additions of integers bounded by 2¢, or O(r3) operations. As
this process is repeated d times, we see that an upper bound for the computation
is O(r*) operations. This completes the proof of Lemma 3.1. O
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Before specializing to finite fields, we make the following observation.

Lemma 3.3. Fori,t € Z/mZ,s € 2/dZ , B = B and agll =%

s,t—1*

Proof. Let fi(z) = Z;é(m - Yo‘ipk) € R[z] as in (3.1). From (3.3) we get that the
coefficient of 9! in f;(x) is

ni1+ng

1) (D[ S S yewteett L yelpieerelt )
k=1 {i1,...,i;}E€Ps {J1,J1} €S2
where Sy is as in Lemma 3.2, and here the Pj run through all of the partitions of
Si. If ey = p* + - - -+ p» mod r for some one of the {i1,...,4} € Pg, then we have
d—1 _ d—1 _ _
(38) PORER GEER D DS IED Db Sl A
{i1,.., 51 }EPy u=0 u=0

If e, = 0 € F,, then (3.8) is precisely d. Otherwise, we have that
{era’,exa’p,. .. era’p?™} = Hoyi,

where e = a°p? € Hy, some i, hence (3.8)'is vsyi- U {J1,... 01} € 82, then, as

in Lemma 32, £, yes, Y27 5507 = £(8,). So cortainly 55 = 50,
Now, agfl 4 i1s the number of partitions which yield v¢4; and these are the same

partitions which yielded v; in the coefficient of ¢~ for f(z). So aszi = agot), or
a® = 4O

s t as,t—i' o

The following version of the preceding lemma will prove useful later on. It should
be noted that this result was noted by Gauss and is usually thought of as a result of
Galois theory. This version has been presented in order to express it in our notation
and to present a combinatorial proof.

Lemma 3.4. Ifi, t, k € Z/mZ,s € Z/dZ , then
ﬁ(i) - I@(k) PO RN +k)

) —al ) _ 4k
S S

andast—ozstjqc

That is, if the coefficient of x*
Aoto + Aty + Xato + -+ Am—atm—2 + Am—1tm-1 + 0
in go, then the coefficient of x° is

Am—1to + Aot1 + Aita + - + Am—stm—2 + Am—2tm—1+ B3, in g1,
Am—2to + Am—1t1 + Aot2 + - - + Am—atm—2 + Am—stm—_1 + 5, i1 g2,
Am—3to + Am—2t1 + Am—1ta + - + Apm_stm—2 + Am_atm—1 + B, in gs,

Aito + Aoty + Aate + - + Am—itm—2 + Aotm—1 + 8 N gm—1.

Proof. That ﬁgi) = ,6§ is immediate from Lemma 3.3. To see that a(z) k= angk)
simply observe that, from Lemma 3.3 and using ¢ —k in place of t, we have ag ,)t_ B =
ag?t)_l . and, by replacmg 1 by i+ k, a(z+k) = agot) k. To see that ay ) ai’j’fg

note that a(zi = agot) ;= a and by replacing 4 by i + k and replacmg t by t+k,
(i+k) (0) 0)
O‘sl,t+k = Qg ik (ik) O‘i,t-r O
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We now restate Lemma 3.1 over I, rather than R.

Theorem 3.5. We can deterministically compute two subsets of Iy,

{Oé‘(;;) }u,tGZ/mZ,seZ/dZ and {Bgu) }uEZ/mZ,seZ/dZ ’
in time O(r%), so that the coefficient of z° in gy(z) is
m—1
(3.9) (—1)% <ﬁ£“> +> aé?n) :
i=0
Furthermore, we have that, for i, t, k € Z/mZ, and s € Z/dZ,
80 = 40,

o) = ol
g = B,
ai‘?‘,—k = O‘gf:k))
o) = afil)

Proof. To prove existence and to compute the aglt‘) and 5§“) we simply reduce,
modulo p, those integers discussed in Lemmas 3.1, 3.2, and 3.4. When replacing Y
by ¢ and computing over IF,, we need only compute some of the additions modulo p,
thereby replacing one factor of r in the time bound by a factor of log p, thus giving
us a time bounded by a polynomial in 7* and log p. Please note that if p >> 7,
in particular, if p > 2¢, then, since these coefficients never exceed 2¢, we may
perform the additions as before without reduction modulo p. Hence, the number of
operations needed to compute the a{* and B{*) is O(r%). O

It should be noted that since 1 = —tg —t; — -+ — t,,_1 we may rewrite (3.9) as

(3.10) (-1 rz 52";%} ,
=0

where 5 = o — (") allowing us to write the coefficients of the g;(z) as homo-
geneous linear polynomials in the t;. We may further observe that, as a result of
Lemmas 3.3 and 3.4, we have, for 1, t, k € Z/mZ and s € Z/dZ,

i 0
5§? = 5£,t)—i’
i i+k
522,2—]6 = 6£lt )’
i itk
5?2 = 55;2

Please note that in the statement of Theorem 3.5 we have lost the uniqueness
portion of Lemma 3.1 and that, as tqg+ -+ t;m_1 = —1, the ag?) and ﬁ§“> will not
be unique.

One remark that should be made at this point is that in the computation of
the ag?) and the Bé"), p itself has only been used to determine the cyclotomy
classes Hy, ..., H,,_1 in Z/r7Z. Therefore, if p; and py are primes with ord(py,r) =
ord(pe,r) (in particular, if p; = p2 mod r) they will generate the same cyclotomy
classes and in the same order (assuming that the same primitive element, a, for F}

was used). Hence, aside from the reduction mod py or py, the o, g{*) and 5
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will be the same for both p; and po, and that, if both of these primes are > 2%, we
need not even concern ourselves about this reduction.

Example 3.6. Let p = 31 and r = 19. We find that d = 6, m = 3, choose o = 2

and let ¢ represent a primitive 19th root of unity over Fs;. From this we compute
the cyclotomy classes

Hy = {1,12,11,18,7,8},
H, = {2,5,3,17,14,16},
H, = 4{4,10,6,15,9,13},
and the cyclotomy periods
o= (+CPHT T+,
o= BT LM
ty = C 4 (L0 4O I8y (04 cl8,

Using formula (3.5) from Lemma 3.1, we arrive at Table 1 which describes the
coefficients of the powers of ¢ for each power of . The number in row x° and
column (* is agg). The number in column 1 and row z° is ﬂé‘”. Hence

go = z®—toxd + (341t +ta)x — (2+ 2o + ty)ad
+(3+to+ tg)x2 —tox + 1,
and by Lemma 3.3 we have
gi(z) = 2 —t1a® + (34t +to)at — (24t + 2t9)2°
+(3 4+t +to)z? —tix + 1,

ga(x) = ab —tox® 4 B4ty +t)xt — (2 -+t + 2to)a?
+(3 4ty +t)a? —tyx + 1.

Alternatively, using the characterization in (3.10), we get

go(z) = a8 —toxd — (2t + 3ty + 2ta)zt + (t1 + 2t5)2®
—(2to + 3ty + 2t9)x? — tox + 1,

gi(z) = a® -2 — (2t + 2t1 + 3t2)a* + (2t + t2)2®
—(2tg + 2t1 + 3to)x? —t1x + 1,

g(z) = 2% —tya® — (3to + 2t + 2t9)x* + (to + 2t1)z?

—(3tg + 2t1 + 2t9)2? — tox + 1.

TABLE 1

Ho Hy H,

1¢ 412 411 4-18 47 CS C2 45 CS <17 <14 <—16 44 <10 4—6 415 49 413
1/1]/0 0 0 0 0 0]0O 0 0O O O O0]JO O O O O O
zlojt 1 1 1 1 1{0 0 0 0 0 0|0 0 0 O 0 O
2311 1 1 1 10 00 0 O Of1 1 1 1 1 1
z212/2 2 2 2 2 21 1 1 1 1 1/0 0 0 0 O O
z4/3/11 1 1 1 1 1,0 0 0 O O Of1 1 1 1 1 1
z/0/1 1 1 1 1 1,0 00 0O O 0|0 O O O 0 O
/10 0 0 0 0 0j]0O O O O O 0|0 O O O 0 O
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Recalling the remarks immediately preceding this example, we see that we may

replace p = 31 with any prime p with ord(p, 19) = 6, and we will get precisely the
same results.

4. FURTHER IDENTITIES AMONG THE o) AnD B{*

We now wish to demonstrate some symmetries which occur among the ag’) and

the %), We begin by comparing the coefficients of z* and z4!. It should be noted
that versions of the following results are alluded to without proof in [8, p. 423] for
the characteristic zero case.

Let S be the collection of all I element subsets of Z/dZ and S’ the collection of
all d — I element subsets of Z/dZ. Let ¢ : S — S’ be the bijection ¢(I) = I¢ (the
complement of I in Z/dZ). Define an equivalence relation, ~, on both & and &’
as in the proof of Lemma 3.1, that is, {¢1,...,%} ~ {i1 +k,...,,4 + k}, for each
k € Z/mZ, and note that for Iy, Iy € S we have

Let Sy be the subset of S consisting of all elements belonging to equivalence classes
with d elements, and let 83 be the set of all elements of S belonging to equivalence
classes with fewer than d elements. Similarly define S and S}, subsets of S'.
Let Py,...,P; and Pj,..., P/, be the equivalence classes contained in Sy and Sj,
respectively. By (4.1) we see that p(S1) = Si, and p(S2) = S5, that w = ¢, and
that, with the appropriate ordering, ¢(Px) = ¢(P},), 1 < k < t. Recalling (3.7) we
note that in f;(z) the coefficient of x4 is

(4.2) (=1 i Z yo (ptetpit) | Z yo (4

k=1 {ir,....u}EPy {J1,--51YES2
and that the coefficient of z! is
: Hpt+l 4. fpld
(4.3) (—1)4-t D=1 Liflivgrnia) P, Ya (p + J.rp )
. o |
+ Z{jH'l’”"jd}ESé YOt (17 141 +“'+de)

Recall that a?? ) is the number of Py in (4.2) that yield vy, that oz((io_) 1,¢ i the number

of P} in (4.3) that yield v, and that BZ(O) = #(S2) + d(the number of equivalence
classes from (4.2) which do not yield any v;) and that ,Béo_)l = #(S5)+d(the number
of equivalence classes from (4.3) which do not yield any ;).
Lemma 4.1. If d is even, then, for s € Z/dZ, i,k € Z/mZ, we have

l( V= ngz»

(1) _ (%)
O‘z;c = O‘dl—l,k‘

Proof. Note that (pd/2)2 =1 € F,. Since ord(p,r) = d, it follows that p%/? # 1,
hence p#2? = —1 € F,. Now, if d is even, then d/2 € {0,1,...,d} C F,. More
generally, for k=0, ..., % — 1, we have

(4.4) alpt = —aip¥?tk c F,.
That is, in H; = {a*,a’p, ..., a'p?} C F: we have

of = __aipd/27aip _ __aipd/2+1, o ,aipd/Z—l — _aiptl,
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Therefore

(4.5) v € H, & —y € H;,

and, recalling Lemma 2.2,

(4.6) > y=0.
YEH;

Let I = {iy,...,i;} € Sand I® = {ij41,...,i4} € S’. From (4.6) we have that,
since Ho = {p% p,p?,...,p% *} and {i1,...,iq} = {0,1,...,d = 1},

PPt = —(p 4 i) €T

Now, if I = {i1,...,4,} € Sa, hence I? = {i141,..-,44}, and p"* + - +pi =0,
then pil+1 4+ +pid — 07 50 Ypu e fpl _ szl+1 +oeofpid =1e R Therefore

(4.7) Z Pt Z ypit4etpld 4£(So).
{i1,..,i1 }€S2 {ti41-.s2a} €S

Similarly, if {i,...,4;} € Py and p** 4+ -+ +p" =0 € F,, then

(4.8) Z Pl Z yPitbetpid #(Py).
{#1,...,01 }EPy {t141,..,ta }EP;,

Lastly, suppose {i1,...,%} € P, and p* +---+p' = e, # 0 € F,., then e,, € Hy,
where e,, = a’p® € F,., some i. Further note that e,, = p** +-- - +p" implies e,,p* =
ph ¥ 4 ... 4 pit¥ and that, by (4.5), we have Hy = {ewp“}‘i;é = {—ewp“}‘i;(l).
Referring now to (3.4) and (4.4),

. \ -1 4t
g A S v YRAIT T yewp®
> > s

{1,001} EPy u=0

d-1 d-1 ‘ ‘
= Sy Yyeben
u=0 u=0
d-1 ' ‘
= Y yrilrer]
u=0
d-1
u=0
_ Z Ypiz+1 +oppld
{4141,..,8a }EPL,
and, noting that ZZ;B Yewr" = g, we see that P, yields vs if, and only if, P,
yields v.
Since agg) is the number of the P, which yield vj and ag?lyk is the number of
P/, which yield vy, it follows that al(g) = afio—)l,k‘ Further, (4.7) and (4.8) show that
l(o) = ﬁ;o_)l. Combining this result with Lemma 3.3, we have
. 0 0 .
51(1) :51( = L(i—)l = L(illz
and

(&) _ (0 _ (0 N )
Qe =0 g = O0g kg = Yl ke

which completes the proof of the lemma. a
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For the case where d is odd we have a similar result with a similar proof.

Lemma 4.2. If d is odd, d # 1, then, for s € Z/dZ, i,k € Z/mZ, there exists
a € Z/mZ so that

(1) _ plita)

1 = Pa—1 s

ag, = agti.

Proof. First note that, unlike the case for d even, if p° = —1mod r, 1 <s <d—1,
then d divides 2s. But d is odd, so d divides s, but 0 < s < d, a contradiction.
Therefore there exists an a € Z/mZ— {0} such that —1 € H,; that is, —1 = a%p"
mod r for some 0 < h < d — 1. So we have

Hy = {1,p,p2,.‘. ,pd_l} CF;
and
H, = {a p°, a%pt, aaps+l7”.7aaph+d—1} C F¥,
and, for 0 <k <d-1,
(4.9 pt = —atphth c Fr.
In particular,
vye€ Hy&s —v€ H,.

Let I = {i1,...,4} €S and I¢ = {ij41,...,i4} € S’. Working in F,., from (4.9)
we have

P4t =~ (ozaph“‘il NS oﬂph"'il) 7
and from Lemma 2.2 we have, since H, = {a®, a%p,...,a%p? '} and
{h+i1,....,h+ig} ={0,1,...,d -1}
that
0t gt = (gph T g 4 gaphtia)
hence
Pl Pt = et o gtphtie

If {iy,..., 0} € Sz, then p¥t +--- +p% =0, s0 o ph+“+1 + -+ a%/th = 0, hence
a’ph (a p“+1 +Fa p”) = 0, and finally since a®p” # 0 Q®pl+i 4. . afpit =
0. So we have VP! +-+Pt — yP!+ 440" — 1 ¢ R and so

(4.10) ooyttt Sy ) — (sy),

{il,...,il}652 {il+1,---»id}€52
Similarly, if {i1,...,4} € Py and p* + -+ p" =0 € F,, then
(4.11) Yooyt o Nyt -y py),

{i1,...,01 }EPy {ti41,-- ia}EP]
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Lastly, suppose {i1,...,9;} € Py and p't +---+p't = ¢, # 0 € F,, then e, € Hy
where e, = a°p' € F,., some ¢, and we have

d—1
u i i
D > C YR G
u=0 {i1,.~,iz}€Pw

_ Z Yt B ok ph i
{it41,.,1a}EP,

_ y (a®p'ttt 4 talp'd)
{t141,.s1a}EP],

So P,, thinking of go(z), yields v; if, and only if, P, , thinking of g,(z), yields
vs. Since a§2> is the number of the P, from g (x) which yield vy, and a((f_)l,k is
the number of P from g, (z) which yield vy, it follows that al(,g) = osz_)h .- Further,
(4.10) and (4.11) show that 61(0) = ,Béa_)l. Combining this with Lemma 3.3, we have

% 0 a i+a
o =5 =B = 5

and
(2) 0 ) _ (i+a)
oy = al(,k)—i = afia—l,k—z' = O‘d—lc,Lk’
which completes the proof of the lemma. O

5. THE CASE m =2

In this section we prove a result first presented in [20]. The original work did

not contain the explicit description of the algorithms used or as sharp a running
time analysis.

Theorem 5.1. Given p and v odd primes, with ord(p,r) = %l, then we may
factor ®,.(x), the rth cyclotomic polynomial, over F,, deterministically in time
0] ((rl/%’6 logp)®) .

Proof. As a result of Theorem 3.5, it suffices to compute the traces to and %;.
Note that if p = 2, then since tg + t; = —1 we must have that, without loss
of generality, to = 0 and t; = 1. So assume p # 2 and consider the polynomial
(z —to)(z —t1) = 2% — (to + t1)z + tot1 = 2% + = + tot1. Hence
—1 4 /1 —4tpty

5 .

to,tl =

From [15, pp. 200-201] we have that 1—4tyt; = £r asr = %1 mod 4, respectively,
hence

—1+Er
Ty
where the sign of r under the radical is determined by whether » = £1 mod 4. In
1985 R. Schoof showed in [18] that if n is a quadratic residue mod p, then \/n can be
deterministically computed in [ in time O((|n|1/ < log p)°). Since tq and ¢; exist,

it follows that 1 —4tgt; is a quadratic residue mod p and so can be deterministically
computed in time O ((r'/?*<logp)?). O

to,t1 =
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6. THE SUM OF THE g;(z)

In this section we see how to compute the sum of the irreducible factors of the
cyclotomic polynomial.

We combine the results of Theorem 3.5 and Lemma 3.3 to prove

Lemma 6.1. Given p and r, distinct primes, then we may explicitly compute

go(z) + -+ 4+ gm—1(z) € Fplz], the sum of the irreducible factors of the rth cy-
clotomic polynomial over Fy, in time O(r°).

Proof. Adding the coefficients for z° from Theorem 3.5 we have

m—1 m—1 m—1 m—1 /m-—1
(6.1) ST S o) =S 80+ 3T Y o
u=0 =0 u=0 u=0 =0

Now, using Lemma 3.3, we have that (6.1) equals

m—1 /m-—1 m—1 /m—1
0
mB® + (Z o) yti | =mp + 37 D )yt
u=0 =0 =0 u=0

m—1 m—1 m—1 m—1
=mp®+ 3 | el }:mﬁ?’wz | 3 ol
i=0 u=0 =0 a=0
m—1 m—1 m—1
:mgg0>+(§jag?; (Zti — Bl — zag?;>.
a=0 =0 a=0

Theorem 3.5 proves that the ag?g and ﬁgo) may be computed in time O(r4). Per-
forming the above computation will therefore cost O(r®) operations, and then re-
peating for all values of s takes us to O(r%) operations. O

Example 6.2. From Example 3.6 we get that the sum of the factors of ®19(z) over
[, for any prime p with ord(p,19) = 6 is

325 — (tg +t1 +to)xd + (—Tto — Tty — Tty)x* — (—=3tg — 3t; — 3ta)z®
+(—7t0 —Tt1 — 7t2)$2 — (to +t + tg)l‘ +3
= 38+ 2+ 72— 323 + 72+ + 3.
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