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GEOMETRY OF THE JANTZEN REGION
IN LUSZTIG’S CONJECTURE

BRIAN D. BOE

ABSTRACT. The Lusztig Conjecture expresses the character of a finite-dimen-
sional irreducible representation of a reductive algebraic group G in prime
characteristic as a linear combination of characters of Weyl modules for G. The
representations described by the conjecture are in one-to-one correspondence
with the (finitely many) alcoves in the intersection of the dominant cone and
the so-called Jantzen region. FEach alcove has a length, defined to be the
number of alcove walls (hyperplanes) separating it from the fundamental alcove
(the unique alcove in the dominant cone whose closure contains the origin).
This article determines the maximum length of an alcove in the intersection
of the dominant cone with the Jantzen region.

1. INTRODUCTION

The Lusztig Conjecture [6] expresses the character of a finite-dimensional irre-
ducible representation L,, of a reductive algebraic group G in characteristic p as
a linear combination of characters of Weyl modules for G. The parameters w live
in the affine Weyl group W, an infinite group; this (at first glance) makes actual
verification of the Lusztig Conjecture for any given group look like an “infinite”
problem. However, the only w’s to which the conjecture actually applies are those
for which wp is dominant and in the Jantzen region

(1.1) J={Ae X(T)@zR | (A d) <plp-h+2)},

where X (T') denotes the group of characters of a maximal torus 7" of G, p is half
the sum of the positive roots, &g is the highest coroot, and h is the Coxeter number
of G. Geometrically, the relevant w’s are in one-to-one correspondence with the
alcoves lying in the intersection of the dominant cone and the Jantzen region, a
bounded set in X = X(T') ®z R. In particular, the conjecture actually applies only
to a finite set of w’s; call this set L.

Some questions naturally arise:

1. What is the cardinality of L7

2. How many elements of W, must be computed before all elements of L are

certain to have appeared?

3. What is the maximum length of an element of L?

The first question is quite easy to answer (see Lemma 2.1). But if one were pro-

gramming a computer to check a particular case of the Lusztig Conjecture, one
would like to be able to provide the answer to the second question as input. The
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FIGURE 1. Geometry of the affine Weyl group of type Gs

cardinality of L seems to provide very little information about the answer to the sec-
ond question. On the other hand, an answer to the third question would be almost
as useful, from the point of view of predicting in advance how much computation
is necessary. It also turns out to be an interesting geometric and combinatorial
problem. It is this last question which will be answered in the present article. (See
[8] for a survey on the current status of the Lusztig Conjecture itself.)

More precisely (see Section 2 for unexplained notation), let C be the dominant
cone

(1.2) C={ eX|(\a)>0 forala € RT}
and define the k" level (k =0,1,2,...)
(1.3) Ck={AeClkp<(N\a)<(k+1)p}

An alcove is a set of the form
(1.4) A={N€ X | kap < (M &) < (ko +1)p foralla € R}

for certain integers k., and the standard alcove Aq is obtained by setting all k, = 0.

The alcoves are the connected components of X — |JH, where H is the collection
of hyperplanes

(1.5) Hor={XN(\&) =kp}, a€R, kel

It is well known that W, permutes the alcoves simply transitively and, for w € Wy,
the length £(w) of w is equal to the number of hyperplanes H € H such that wAg
and Ag are on opposite sides of H (cf. [3]); set L(wAo) = £(w).

In Figure 1 we show the geometry associated to the affine Weyl group of type
G'9: the simple roots oy and asg, and the highest short root ag; the root hyperplanes
H,p, a € R; the standard alcove Ag (shaded); levels 0 through 4 of the cone C;
and the lengths of the alcoves in those levels.

Our main theorem computes the maximum £(w) for wAy C Cg. In the theorem,
p may be any positive integer (not necessarily prime).
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TABLE 1. Maximum length in level k&

| Type of G | k even | kodd |
A, k L%J
B, k("37)
C, n<3 kE(2n —1)
n>4| k% | kY 241
Dp, n>4 k(3)
n==6 16k
E, n=7 27k
n=2~8 46k 46k — 2 — 85k1
Fy 11k 11k — 2
G. %]

Theorem 1.1. Let W), be an affine Weyl group associated to a simply connected
almost simple algebraic group G defined over Z. Let Cy and Ay be as above. For

each nonnegative integer k, the mazimum £(w), w € Wy, for which wAy C Cy is
given in Table 1.

Since (for p sufficiently large) L={w e W, |wpeCNJ} ={we W, |wA C
Cy for some 0 < k < p— h+ 1}, we immediately obtain the answer to Question 3.

Corollary 1.2. Let G be a simply-connected almost-simple algebraic group over a
field of characteristic p, and Wy the affine Weyl group of G; assume that p > h,
the Cozeter number for G. Then the mazimum length of a parameter w to which

the Lusztig Congecture for G applies, max{ {(w) | w € Wy, wAg CCNJ }, is given
in Table 2.

TABLE 2. Maximum length in the Jantzen region

| Type of G | Maximum length |
An (p—n) [(E;l—)zj
B, (p—2n+1) ("'2"1)
Cpn n<3i(p—-2n+1)(2n-1)
n>4 (p—2n+1) "72
Dpyn>4| (-2n+3)(3)

=6 16(p — 11)

E, n=7 27(p — 17)
n= 46(p — 29)

2 T(p—11)

e | %)
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Proof. Substitute Kk = p—h+1 in Table 1, along with the known values h = n+1,
2n, 2n, 2(n — 1), 12, 18, 30, 12, 6 in types A,, By, Cn, Dn, Es, E7, Eg, Fi, G
respectively (cf. e.g. [3]), and use the fact that (except in type A,) p is odd and h
is even, thus k is even. O

Notice that the group G and its representations really play no direct role in
Theorem 1.1; it is actually a theorem about the geometry of affine Weyl groups.
In the next section we will approach the problem from this more elementary point
of view, and prove some general preliminary results. The remaining sections are
devoted to proving the theorem in each of the various types.

2. NOTATION AND GENERALITIES

We write N as usual for the set of positive integers, and Z, for the set of non-
negative integers. For a € R and n € N, write ¢ (mod n) for the remainder when
a is divided by n; i.e., a = ng + [a (mod n)], where ¢ € Z and 0 < a (mod n) < n.
By a half-integer we shall mean an element of Z + %

Let A be an ng-dimensional affine Euclidean space with ng > 1, and H a set
of hyperplanes in A. The connected components of A — | JH are called alcoves.
For H € H write sy for the orthogonal reflection of A with fixed point set H,
and let Wy be the group generated by the reflections sy. Write X for the set
of translations (i.e. vectors) in A. Then X ~ R™, and Wy acts naturally on X.
Assume that Wy is an infinite discrete subgroup of the group of affine motions of
A leaving H stable, and that the action of W3, on X is irreducible. It follows from
[2] that Wy is an affine Weyl group associated to an irreducible root system R of
rank ng, and each alcove is an open simplex with ng + 1 faces. We can therefore
define a dominant cone C, levels Cx, and fundamental alcove Ag in this context, and
pose Question 3 (see also [5]).

Equivalently, beginning instead with an irreducible root system R of rank ng in
a Euclidean space X, we can construct its associated affine Weyl group concretely
as follows. For a € R let s, be the reflection through a acting on X. Fix a system
R* of positive roots, A the corresponding set of simple roots, and W the Weyl
group of R. Let h be the Coxeter number of R, p half the sum of the positive
roots, and «ag the highest short root of R (this makes ¢ the highest coroot). Write
M ay =2\ 0)/(a,a) = (N &), for A € X, € R. Fix a positive integer p (which
need not be prime). For k € Z let H,y be the hyperplane defined in (1.5), and
Sa,k the affine reflection in Hq ks 1.e., Sax(A) = A — ((A\, @) —kp)a, A € X. Then
the affine Weyl group W, is the group generated by all s, ¢, a € R,k € Z.

Recall the definitions of the dominant cone C, the standard alcove Agp, and the
Jantzen region J from Section 1. An element A € X is called integral, or a weight,
provided (A, a) € Z for all & € R. A weight A is called dominant (resp. regular
dominant) if (\,&) € Zy (resp. N) for all @ € RT. We assume henceforth that
p > h; this is necessary and sufficient to ensure that Ag contains a regular dominant
integral weight (cf. [4, Part II, 6.2 (10)]). We have

(2.1) Ag={2eX|0<(\a) forallae A, (\,ap) <p}
(cf. [3, Sec. 4.3]). Similarly
(2.2) CnJ={reX|0<(\a) foralae A (N ay) <plp—h+2)}
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by (1.1, 1.2). Thus CNJ is the expansion of Ay by a factor p—h + 2. In particular,
Vol(CNJ) = (p—h+2)™ - Vol(Ap). Since, aside from a set of volume zero, C N J
is the disjoint union of the alcoves wAg, w € L, and since Vol(wAg) = Vol(Ayp), we
obtain the following easy answer to Question 1.

Lemma 2.1. The cardinality of L is (p — h + 2)™.

We now begin to work on Question 3; more generally, we wish to determine the
maximum length of an alcove in any level k of the dominant cone. Notice first
that the answer is independent of the choice of p — increasing p simply expands
the whole picture, and does not change either the level of an alcove wAy or the
number of hyperplanes separating wAg from Ag (since this is just £(w)). It will be
convenient to choose p so that there is a unique dominant integral weight (namely
p) in Ag; then each alcove wAy C C will contain a unique dominant integral weight,
wp. We claim this happens when p = h. To see this, recall that (p,a) = 1 for
all @ € A, and also h = (p,ap) + 1. Thus p € Ag, by (2.1). If X\ # p is regular
dominant integral, then (A, &) € N for all & € A, and (A, 8) > 1 for some § € A.
This implies that (A, &) > (p, ) for all « € A, while (A, 8) > (p, 8), which in turn
implies that (A, ag) > (p, ap) (write ag as a positive integer linear combination of
the simple roots, observing that every simple root occurs in the highest short root).
By integrality, (A, ag) > (p, o) +1 = h = p, and thus \ ¢ Ay. We set p = h for
the remainder of this article.

Fix k € Z, let A be an alcove in Ci, and let A\ € A. For o € R¥, the number
of hyperplanes H, ; (i € Z) of type « separating A and Ag is [ (A, a)/h]. Thus our
problem is to compute

(2.3) max 2 L\, @) /h],

a€R*

where the maximum is taken over all elements A € C with (\,a) ¢ h Z, Yo € RT.
Because the value of | (A, «)/h] is constant on each alcove A (and each alcove
contains an integral weight), we may restrict attention to the integral weights A\ €
Ck. Thus the maximization in (2.3) may be restricted to those weights A satisfying

1. kh < (A, o) < (k+ 1)h,

2. (\,a) e Nfor all « € A, and

3. (\,a) ¢ h N for all « € RY.

The actual determination of the maximum in (2.3) depends on explicit knowledge
of the roots, and proceeds case-by-case. The roots and weights “naturally” occur in
some R™ (usually n = ng, but in some cases it is more convenient to take n > ng);

we shall use the notation z = (z1,...,2,) for an integral weight in R™. Write
(2.4) F(z)= > (z,a)/hl,
a€R*

the function to be maximized.

Because of the discontinuities in F', it is difficult to maximize using “standard”
techniques. Instead, our main tool is provided by the following lemma.

Lemma 2.2. Assume F attains a maximum on Cy at x, where x is integral and
lies on none of the hyperplanes H, ;. Then (x,00) = —1 (mod h) and (z,a) # —1
(mod h) for ag # a € RY.
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Proof. First let ap # o € R*, and suppose (z,a) = —1 (mod h); for definiteness,
write (z,a) = ih — 1 for some i € Z. Then s4,:(z) =  + a € C, which means
that = belongs to an alcove A having H,,; as one if its walls, and moreover s, ;A
and Ap lie on opposite sides of Hy ;. Thus F(sqz) = F(z) + 1, but sqx still
belongs to Cy (since the only wall that has been crossed is of type «, and a # ag
by assumption). This contradicts the hypothesis that F'(z) was a maximum value
of F in level k.

On the other hand, the alcove A containing x must have some wall H such that
reflecting A across H produces an alcove in C with length one greater. The only
remaining possibility is that H is of type ap; i.e., {z,ag) = —1 (mod h). O

We have now reduced the problem to maximizing F(x), subject to:
1. {z,a0) = (k+1)h -1,
2. (z,a) e Nfor all a € A,
3. (z,a) ¢ hN for all « € R", and
4. (z,a) -1 (mod h) for all ap # @ € R™.

In the classical cases, these conditions on x are enough to determine x (mod h) to
within a handful of choices. We then analyze how to assign each |z;/h] (given z
(mod h)) in order to maximize F, subject to the constraints 1 and 2. Finally, we
choose the z (mod h) which produces the largest value of F. In Sections 3-6 we
implement the strategy just described for each classical irreducible root system in
turn. Although the approach is unified, there are interesting subtle differences to
each type of root system.

In the exceptional cases, there are longer lists of possible z (mod h), and this
strategy (while feasible, with the assistance of a computer in type E,), is tedious.
Instead, we adopt a different approach (suggested by the referee), which involves
computing the generating function of dominant alcove lengths. (Both methods

produced the same answers!) The generating function method is described and
carried out in Section 7.

(2.5)

3. TYPE Ap—1 (n>2)

Let 1,...,&, be the standard basis for R™, and (, ) the standard inner product.
We take the simple roots for A,_1 to be the elements ¢; — e;41, 1 < i < n. The
positive roots are then the ¢; —€;, 1 < ¢ < j < n. The highest root is ap = €1 — €p,
and h = n. Thus the conditions (2.5) on z are

1 —zp=(k+1n—-1,

(31) Ty — Tig1 eN (1 <1 <n),
zi—z;Z0or —1 (modn) (i<y, (i,7)# (1,n)).
Note that p = 5(n—1,n—3,...,1 —n), and the weights = we consider are of the

form wp = p — Z?;ll ni(e; — €;41) with n; € Z. It follows that the entries x; are
all integers when n is odd, and are all half-integers when n is even.

Let’s first consider z (mod n). Since z; — z; # 0 (mod n) for i # j, the z;
(mod n) are distinct. Since there are exactly n possible distinct integer (resp. half-
integer) remainders modulo n, it follows from the Pigeonhole Principle that the z;
(mod n) are the n distinct remainders. Moreover, using the condition z; —z; # —1
(mod n) for i < j except when (4, j) = (1,n), we see that the indicies 4, j associated
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with successive remainders (where we view 0 as succeeding n—1, and % as succeeding
n— %) must be decreasing except when i = 1, j = n. This easily implies that

(3.2) z; —Zip1 =1 (modn) forl<i<m;

notice that this already implies the condition z; — z,, = —1 (mod n).
Now we need to determine |z;/h]|. Observe that

Ty — Ty
F(x) = —_—
@=- ¥ |23,
1<i<j<n
and set Fj; (z) = [(z;—2;)/n]. Set m = |5]. Recall from (3.1) that @; > @441 + 1.
Suppose that z,_1 > z. + h + 1 for some 1 < r < m; in this situation we say
that there is a gap between z,._1 and z,. Then z, can be increased by h (or z,_1

decreased by h) without affecting z (mod h) (or any of the conditions in (3.1)).
Define z’ by

T S -
(3.3) 2l = {“’” Tt
x;, iFET

Now the sum of the coordinates of 2’ is no longer zero (as required in type A), but
we can rectify that by defining z” via 2/ = 2} — 1, 1 <4 <n (recall h = n in type
A,_1). And since F(z") = F(z'), we may as well work with the simpler 2’ instead
of 2. We will compare F(z') to F(z). We have

Fi?r(xl) :Fz,_r(m)_]-a i <r,

Foi(@') = F () +1, j>r,
whence F(z') = F(z) — (r— 1)+ (n—r) = F(z) + n+ 1 —2r > F(x) since
r < (n+1)/2. Similarly, if  has a gap between z,_; and z, for > m + 1, then
we obtain a larger (or equal) value of F' by decreasing x,_1 by n. In particular, if
F(z) is the maximum value of F on level k, we may assume that the only gap in

x is between x,, and Z,,+1. Using (3.1) and (3.2), we deduce that the maximum
value of F' on level k occurs at

Z=(a,a—1,...,a—m+1l,a—m—kna—m—kn—1,...,a— (k+1)n+1)
(where a is chosen to make > #; = 0). It is easy to see that
k%z, n even n2
F(Z) =km(n—m) = 2 =k [—J .
kn4_1, n odd

Keeping in mind our shift from n to n — 1, this proves Theorem 1.1 in type A.

4. TYPE B, (n >2)

We take the simple roots for B, to be the elements €; —e;41, 1 < i < n, together
with ep; the positive roots are €; £ &5, 1 <19 < j < n, together with g;, 1 <7 < n.
The highest short root is ag = €1, and h = 2n. Thus the conditions on z are:

1= (k+1)n— 3,
z;—xi41 €N (1 <i<n), wnE%N,
zi—xzjZ0or —1 (mod2n) (i<j),
zi+z;Z0o0or —1 (mod2n) (i<yj, (i,5)# (1,1)).

(4.1)
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Setting
(4.2) y=(T1,. ., Tn;—Tp,...,—T1),

we see from (4.1) that the y; (mod 2n) are 2n distinct half—integers between 0 and
2n. By the Pigeonhole Principle, {y; (mod 2n)} = {%,2,...,2n — L }. Moreover,

y; —y; # —1 (mod 2n) when ¢ < j except for (7,7) = (1, 2n) Wthh forces y =
(2n—— 2n—3,...,3, Hor(n—3,n—-3,...,52n—1,. .. n+ 3 n+1) (mod 2n).
Thusz=(2n—12n—2, ... .n+3)or (n—3,n—2,...,%) (mod 2n), and the

condition on z in (4.1) implies that the former happens when k is odd, the latter
when k is even.

For the “gap analysis,” suppose that z has a gap between z,._; and z,; i.e.,
ZTp_1 > X + h+ 1 for some 1 < r < n. Define z’ as in (3.3). Observe that

fa- 3 [552) 5 |22

1<i<j<n 1<i<j<n

and set Fg(:v) = |(@; £ z;)/(2n)]. Then

Fijr(wl) - szr(w) 1, 1<,
Fo@)=F @) +1,  j>r
Fi-:r'l’(x/) :Fz_f_r(x)“'—lv 1#7"
Ff(z") = Fl.(2) +2,
whence F(z') = F(z) = (r—=1)+(n—r)+(n—1)+2=F(z)+2(n—7r)+2> F(z).

In particular, if F(x) is the maximum value of F' on level k, then x cannot have
any gaps. But we know z; = (k+ 1)n — ; combining this with our previously
determined expressions for x (mod 2n), we ﬁnd that the maximum of F in level k

occurs at
fi=(( Dn—L4 (k+l)n—2,..  kn+3).

It is easy to compute F (&) = k(™$'). This completes the proof of Theorem 1.1 in
type B.

5. Type C,, (n > 2)

We take the simple roots for Cy, to be g; — €;41, 1 < i < n, together with 2¢,;
the positive roots are &; £ ¢;, 1 < i < j < n, together with 2¢;, 1 <4 < n. The
highest short root is g = €1 + €2, and h = 2n. Thus the conditions on x are:

z1+zo=(k+1)2n -1,

iEi—ilZH_lEN (1§i<n), T, €N,

(5.1) zi—x; Z0or —1 (mod 2n) (i< j),
zi+x; #0or —1 (mod2n) (i<yj, (4,7)# (1,2)),

z; Z0or —1 (mod2n) (1<i<n).
Consider the remainders +xz; (mod 2n). These are all positive, and distinct except
possibly x; = —z; (mod 2n) for some i. But then z; = n (mod 2n), and this can
happen for at most one 7 (otherwise we’d have z; —z; = 0 (mod 2n) for some i < j).
Defining y = (Y1, .- Ynj Yn+1,---»Y2n) as in (4.2), the Pigeonhole Principle implies
that {y; (mod 2n) } = {1,...,2n—1} with some y; = yon+1-¢+ =n (mod 2n) (1 <
t < n), but with no other duplications among the y; (mod 2n). Note also that y;
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(mod 2n) and ya,4+1—; (mod 2n) are never consecutive integers, because they occur
symmetrically with respect to n. Moreover, the conditions y; —y; Z —1 (mod 2n)
when i < j except when (i,7) = (1,2n—1) or (2,2n), and y; Z —1 (mod 2n) when
i < n force y (mod 2n) to be one of the following:
y=02n—-q,q—1,9g—2,...,2,1,2n—g—1,2n—q—2,...,n+ 1,n;
nn—1,...,q+2,g+1,2n—1,2n—2,...,2n—q+1,q),
G=(q-1,2n—qq—2,...,2,,2n—q¢—1,2n—q—2,...,n+ 1,n;
nn—1,...,q+2,g+1,2n—1,2n—2,...,¢,2n —q+1).
The first form is allowable for 1 < ¢ < n, whereas the second (which is obtained
from the first by interchanging y1 and y9) is allowable only for 1 < ¢ < n, due to
the condition y; — yo Z —1 (mod 2n). Then z (mod 2n) must be one of
2n—qq—1,q—2,...,2,1,2n—q—1,2n—q—2,...,n+ 1,n),
(¢—L,2n—q,q—2,...,2,1,2n—g—1,2n—q¢—2,...,n+ 1,n).
Anticipating the condition x; > x;41, we set
g=Un—q,2n+qg—1,2n+q—2,...,2n+2,2n+ 1,
2n—q—1,2n—q—2,...,n+1,n), 1<g<n,
Z=(4n+qg—1,4n—¢,2n+q—2,...,2n+2,2n+1,
2n—q—1,2n—q—2,...,n+1,n), 2<q<mn,
"r=(nn—1n-2,...,2,1),

2Zz=02n+1,2n—2,2n—3,...,n+1,n).

(5.2)

We have shown that if F' has a maximum on level k at z, then z = %2 (mod 2n),
where 2 is one of the weights in (5.2).

For the “gap analysis,” assume first that = has a gap beyond z9; i.e., 2,1 — 2, >
2n for some 2 < r < n. Define z’ as in (3.3); then z’ is a legitimate parameter in
the same level as z. In type C,,,

T; — X T + x5 T;
Fa)= 3 [—p ) {—J+ SRETE
1<i<j<n 2n 1<i<j<n 2n 1<i<n 2n
Thus F(z') = F(z)—(r—1)+(n—r)+{n-1)+1=F(z)+2(n—r)+1> F(x).
We deduce that if F(z) is a maximum on level k, then z has no gaps beyond zs.
Next, suppose z € C has a “double gap” between x; and zg; i.e., 1 — 29 > 4n.

Define z’ by
, z;, —2n, i=1,
CEi = .
z; +2n, 1>1,
so that 2’ = z (mod 2n) and 2’ € Ci (recall that z; + zo is constant on level k).
In this case, F(2') = F(z) —2(n—1) +2(";") =1+ (n—1) = F(z) +n? — dn + 2,
so that F(z') > F(z) provided n > 4, whereas F(z') < F(z) if n = 2, 3.
Thus, when n > 4, we obtain the largest value of F'(z) on C for a given z
(mod 2n) by taking x; (resp. xz2) as small (resp. large) as possible (subject to

21+ 29 = (k+ 1)2n — 1 and 7 > x2), and then taking z; (i > 2) as large as
possible (subject to z;—1 > z; > 0). When n < 3 we do exactly the opposite:
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choose z; as large as possible, and z; (¢ > 2) as small as possible, subject to the
aforementioned constraints. More precisely, for n > 4, we must consider

(5.3) ="z 4+t 2n(l,...,1) +J-2ney,

where %z is one of the weights in (5.2), t € Z4, and § € {0,1}. When n < 3, we
must consider

(5.4) r= "2+t 2ne;.

It is easy to check that F(z +t-2n(1,...,1)) = F(z) +tn?, and F(z +t-2ne;) =
F(z)+t(2n—1). Also, if z € Cx then z+t-2n(1,...,1) € Cxyor and z+t-2ne1 € Ciys.
Now if z = (z1,...,2y) is either 2Z or %z (2 < g < n), then

.’f=(132,331,323,...,l‘n)+2n'61

(where 2% := 2z), with Z one level above x, and F(Z) = F(z) 4+ 2n — 2. Since
F(Z) < F(z + 2ne;) (and both elements are in the same level), we may disregard
weights of the form (5.3) or (5.4) with %2 = 2z or 9% (2 < ¢ < n) when trying to
maximize F.

For the remaining weights %z in (5.2), we compute the data in the following
table.

Ox ‘ Level l F(°z)
"z 0 0
°z 1 %nz - %n +1

iz (2<g<n)| 2 |3n-2+("3")+ (5"

Evidently F'(9z) (2 < g < n) is largest when ¢ = n—1, with F(""'z) =n?—in+1.
Assume that n > 4. Then the possible maxima of F(z) on levels 0 through 3
are among the values in the following table.

Level T F(z)
0 nx 0
1 2z in?—1in+1
1 "r 4+ 2neq 2n —1
2 n-lg n?—in+1
2 2% + 2ner in?+2n
2 | "z+2n(1,...,1) n?
3 n=ly 4 2ne; n®+3n
3 |2z+2n(1,...,1) | 3n?-in+1

(We used the computation on level 1 to avoid considering the translates of "z +42ne;
to levels 2 and 3, etc.) Clearly the maximum value of F on level k is
k o

F("z +kn(l,...,1)) = 5" (k=0,2),
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and
27 ko 1
Using (5.3), we find that these two formulas extend to arbitrary k € Z,, for k even
or odd, respectively.
Now assume that n < 3. In a similar fashion, we find that the possible maxima
of F(x) on levels 0 through 2 are among the values in the following table.

Level x F(x)
0 "x 0
1 ’z n?—in+1
1 "z + 2ne; 2n—1
2 nlg n?-1in+1
2 "r + 4neq dn — 2

A little algebra shows that the maximum value of F' on level k, 0 < k < 2, is

F("z +k-2ne;) = k(2n —1). Using (5.4), we find that the same formula holds for
arbitrary k € Z..

This completes the proof of Theorem 1.1 in type C.

6. TYPE Dy, (n >4)

We take the simple roots for D, to be &; — g;41, 1 < i < n, together with
€n—1 + €n; the positive roots are ; = ¢;, 1 < 4 < j < n. The highest root is
ag = €1 + &2, and h = 2(n — 1). Thus the conditions on x are:

z1+x2=2k+1)(n—-1) -1,
T —Tit1 €N (1§i<n),
(6.1) Tp-1+Tn €N,
z;—z; Z0or —1 (mod2(n—1)) (i<yj),
zi+zj#O0or —1 (mod2(n—1)) (i<4j, (4,4) #(1,2)).
The second and third conditions imply that either all x; are integers, or all z; are
half-integers. But since p = (n —1,n —2,...,1,0) and x = wp for some w € W,

it’s clear that in fact all z; € Z. The same two conditions imply that z; € N for
1 <i < n, but 2, may be < 0 (provided z,—1 + z, > 0). Given z = (z1,...,%n)

satisfying (6.1), notice that z~ = (1, ...,Zn—1, —@n) also satisfies (6.1). Moreover,
since
XTi— X T; + X
(6.2) Fa)= 3. L___J} S L_J ,
1<i<j<n 2(n—1) 1<i<j<n 2(n—1)

we have F(z~) = F(z). Thus, without loss of generality, we may assume z; € Z,
for all 4.

Proceeding as in the C,, case, we find that the +z; (mod 2(n—1)) are all distinct
except that z; = —z; =0 (mod 2(n — 1)) for some unique ¢, and z; = —z; =n—1
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(mod 2(n — 1)) for some unique j. This in turn leads to the following possibilities
for  (mod 2(n — 1)). The “minimal” (lowest level) weights are

(2n—1,2n-4,2n-5,...,n,n—1,0), g=1,
63) o= (dn—qg—4,2n+qg—-3,2n+q—4,...,2n—1,
2n—q—3,2n—q—4,...,n,n—1,0), l1<g<n-1,
(n—1,n-2,...,1,0), g=n-—1.
If %2 = (x1,...,2,) is either a 92 (1 < ¢ < n — 1), or (recursively) obtained from

a 9z via one (or more) of the operations in (6.4) below, then the following are also
possibilities for  (mod 2(n — 1)):

0z =%+ (n—-1)(1,...,1),
(6.4) 0% = (29,21, 23,...,%n) +2(n — De1 (g #1),
6‘; = (xla v 7xn—2,xnaxn—1) + 2(71 — 1)(1, cey 1,0) (q 7& n— 1)

Remark 6.1. If %z € Cj, then Oz, 0z € Cr+1 while 0 € Cr12. Using (6.2), we
find that F(Oz) = F(°z) + (3) = F(°z) + in% — in, F(%z) = F(°z) +2n — 3, and
F(%z) = F(°z)+n?—n—1. Since in®—3n > 2n—3 (recalln > 4), F(Oz) > F(Oz),

and since 2(3n? — in) > n? —n -1, F(%z) > F(Oz). Thus for the purposes of
maximizing F on a given level, we may ignore the operations ~ and ~.

For the “gap analysis,” assume first that = has a gap beyond x»; i.e., T,._1 — 2, >
2(n—1) for some 2 < r < n. Define 2’ as in (3.3); then 2’ is a legitimate parameter
in the same level as z. Using (6.2), we compute F(z') = F(z)— (r— 1)+ (n—7) +
(n—1)=F(z)+2(n —7r) > F(z). So we may assume that  has no gaps beyond
xI9.

Next, suppose = has a gap between z; and x2: 21 — x2 > 2(n — 1). Define 2’ by

o z;—(n=1), i=1,
o lzm+(n—1), i>1,

so that ' =T (mod 2(n — 1)) (notation as in (6.4)), a legitimate parameter in the
same level as z. Then F(2') = F(z)—(n—1)+(";") = F(z)+1(n—1)(n—4) > F(x).
Thus we may assume = has no gaps at all. More precisely, in view of our earlier
analysis of z (mod 2(n — 1)), we need only consider ¢ = %2 +t(n—1)(1,...,1) for
1<¢g<n-landteZ,.

The only integral weight in level 0 is, of course, "~z = p, and F(""!z) = 0.
In level 1 we have F(*z) = in® — 3n +3, and F(" 'z + (n — 1)(1,...,1)) =
(3) = 3n* — in > F(*z). Thus (}) is the maximum value of F" on level 1 (and
we need not consider translates of 'z by multiples of (n — 1)(1,...,1) in higher
levels). In level 2 we have (for 1 < ¢ <n—1) F(9z) = 3n? + in+ (§) — 1, which
is maximized when ¢ = n — 2: F(""2z) = n? — 2n + 2. The other possibility is
F(*lz+2(n-1)(1,...,1)) = 2(}) =n%?—n > F("?z). Thus the maximum value
of F on level 2 is 2(72‘) Finally, we conclude that the maximum value of F' on any
level & > 2 must be attained at "~z +k(n —1)(1,...,1), and that maximum value
is k(3).

This completes the proof of Theorem 1.1 in type D.
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7. THE EXCEPTIONAL TYPES

Recall that if A is an alcove in the dominant cone C, £(A) denotes the length of A:
the number of hyperplanes separating A from Ag. Set L(A) to be the level of A, so
that A C Cpa). Similarly, if a weight X is in the dominant alcove A, put £(\) = £(A)
and L(\) = L(A). Concretely (recall (2.3)), £(A\) = > ,cp+ (A a@)/h], L(A) =
[{\,ag)/h]. Let t, z be indeterminates, and define the alcove length generating
function

(7.1) gt,z) =Y AL,
AcCC

Viewing g(t,2) = ez 9k(£)2* € Z[t][[]], our problem is to find the degree of gk (t)
for k € Z. Tt turns out that g(t, z) can be calculated, using the fact that the affine

Weyl group is the semidirect product of the Weyl group W and the root lattice
(cf. e.g. [3]).

Remark 7.1. Tt follows from the proof of Lemma 2.1 that g, (1) = (k+ 1)™ — k™0,
the number of alcoves in Cy. By a result of Bott [1], g(t,1) = [[7°(1—¢%)~!, where
the e; are the exponents of W.

Assume for the moment that the root lattice ZR equals the weight lattice P =
{dxeX|(\a)eZforalae R}. Let wy,...,wy, be the fundamental dominant

weights (a basis for P) corresponding to some fixed ordering A = {a1,...,0n,}, SO
(wi, aj) = 8;;. For w € W, write wp = ) nfw;, and set
(7.2) Aw = wWp + Z hw.

i n’ <0

Notice that ), is a dominant weight, because n¥ = (wp, a;) = (p,w ;) = (p, )
for some o € R, and |(p,a)| is an integer between 1 and maxgegr(p,5) = h — 1.
It follows analogously that, for any weight 1, A, + hi lies on none of the root
hyperplanes H, x; i.e., it lies in some alcove.

Recall that each dominant alcove A contains a unique regular dominant integral
weight A, which in turn is obtained by applying a unique element of the affine Weyl
group Wp, to p. By the semidirect product description of Wy, taking into account
the scaling by h and our assumption that ZR = P, we have

(7.3) A=wp+hY kiwi =y +he)

for some unique w € W and k; € Z; here ¢ = anv>0 kiw; + Zn?@(ki —1)w; € P.
In fact, we show that v is dominant (though not necessarily regular). For ny’ > 0:
n¥ +hk; >0 = hk; > —nl > —-h = k; > -1 = k; > 0; while for n}" <0:
nY +hk; >0 = hk; > —n? >0 = k; >0 = k; > 1. Conversely, to
each w € W and each dominant weight v, there corresponds (via (7.3) and the last
sentence of the previous paragraph) a unique dominant alcove A.

For 1 <1 < ng define ¢; = £(hw; + p) and L; = L(hw; + p).

Lemma 7.2. Let ¢ = Y kw;, ki € Zy, w € W, and set A = Ay, + hyp. Then
L)) = L(My) + S kiL; and £(0) = £(Ay) + > kil;.

Proof. Fix a =3 a;a; € RT. Note that
A=wp+h Z kiw; + h Z (k; + 1)w;.

n¥>0 n¥<0
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Thus
L\, @) /h] = [{wp,a)/h] + Z kia; + Z (ki + 1)ay,

ny >0 n <0

while
]_(Aw,a>/hJ = l_<wpa a>/hJ + Z a4
n’ <0

and
(7.4) Lk + pya) /h] = (P, a) + [(p, ) /h] = Ek ai,

where we have used again the fact that 1 < (p,a) < h — 1. In particular, putting
¥ = w; in (7.4), we have |(hw; + p,a)/h] = a;. Thus [(N\,a)/h] = [(Aw,@)/h] +
> kil (hw; + p,a)/h]. Taking a = g, or summing over all @ € RT, gives the
desired results. a

Proposition 7.3. When the root lattice equals the weight lattice, the alcove length
generating function is given by

(7.5) g(t,2) = Z H0w) L) /H gl L

weWw

Proof. By the lemma and the discussion preceding it,

g(t,z) = Z Z O kils L)+ kiLs
weWw k€24,
131:3710
= Z te(Aw)zL(A Z Htklzlzkl i
weWw ki€zy, i=1
1<1,<'n,0
o
weW i=1k,€Z,
= Z H#0w) ,L(Aw) /H i,
weWw

O

In general, the root lattice is a sublattice of index f, say, in the weight lattice.
Now for each dominant alcove A there will be f pairs (w,), with w € W and
1 dominant integral, for which A = Ay, + hyy € A. Thus the expression on the
right hand side of (7.5) will equal f - g(t, z). But since we are only concerned with
the highest power of t occurring with each power of z, the scalar coefficient f is
irrelevant.

Our strategy then is to compute, for each exceptional Weyl group W, the data
L Aw), L(Ay), w € W, and £;, L;, 1 <1 < ng. Using (7.5), it is then straightforward
to read off the maximal alcove length in each level.

Example 7.4. The case of G,. Here one finds that

(t2) = L4 (t+ 82+ 3)z + (¢ + 2t5 +18)22 + (t7 + 8 + %) 23 + ¢102¢
gnE = (1= 1522)(1 — t1929) ‘
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TABLE 3. Maximal £(\,,) for Ay, in level L

L: | O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Fy 0 9 21 30 41 50 61 69 77 85 86
Eg o 15 30 44 58 72 86 97 108 119 120
Eq o 26 51 76 100 124 148 172 196 218 240 262 284 301 318 335 336
Eg 0 36 91 135 181 226 271 316 360 406 449 494 538 582 625 670 711

L, cont’d: l 17 18 19 20 21 22 23 24 25 26 27 28
Eg l754 796 837 880 917 956 993 1032 1061 1090 1119 1120

TABLE 4. Fundamental weight data

Fy Es Ey Eg
i\ & Ly | & Li| ¥t L;| & L
1122 2|16 1|34 2|92 2
2142 4 (22 2 |49 2 |136 3
3130 3130 2|66 3 |182 4
4116 2 142 3 |96 4 270 6
5 30 217 3 (220 5
6 16 1 (52 2 |168 4
7 2r 1114 3
8 58 2

What is the highest power of ¢t occurring in the coefficient of z* when this expression
is expanded as a power series in 2?7 When k = 3m, the highest exponent of ¢ is
clearly 10m, coming from 1-1 - (¢1923)™. (The first factor represents a term from
the numerator, the second a term from 1/(1 — t%22), and the third a term from
1/(1 —t92%).) When k = 3m + 1 we obtain 10m + 3 from 3z - 1- (¢1°23)™. And
when k = 3m + 2 the highest exponent of ¢ is 10m + 6, which arises from both
922 .1 (t192%)™ and 14522 . (#1923)™. Thus the maximal length of an alcove in
level k of the dominant cone in type Gz is [(10k)/3].

Notice that in the numerator of g(t, z), we do not care about the actual coefficient
of 27, but only the degree in t of this coefficient. Thus we need only keep track of
the highest length £()\,,) which occurs for each level L(\,), as w varies over W. In
Table 3, we present this data for the remaining exceptional types. Except for Ejg,
the values for £(w) and L(w) were computed using a FORTRAN program written
by the author. For Eg, the calculations were done by the computer algebra software
GAP [7], combined with its accompanying Coxeter group package chevie, and an
extension of chevie kindly provided by Frank Liibeck.

The lengths and levels for the regular dominant weights hw; + p are easy to
calculate, and are presented in Table 4. (Labeling of the simple roots follows [2].)

Proceeding as in Example 7.4, we find that for Fy, when k = 2m, the maximum
length in level k is 22m = 11k, whereas when & = 2m + 1, the maximum length
is 22m +9 = 11k — 2. In Ej, the maximum length in level k is 16k for all &, and
in F7 it is 27k. In Eg, when k = 2m, the maximum length is 92m = 46k; for
k=2m+3 (m >0) it is 92m + 136 = 46k — 2; and for k = 1, the maximum length
is 36 = 46k —10. This completes the verification of Theorem 1.1 for the exceptional
types.
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