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COMPUTING CLASS FIELDS VIA THE ARTIN MAP

CLAUS FIEKER

ABSTRACT. Based on an explicit representation of the Artin map for Kummer
extensions, we present a method to compute arbitrary class fields. As in the
proofs of the existence theorem, the problem is first reduced to the case where
the field contains sufficiently many roots of unity. Using Kummer theory and
an explicit version of the Artin reciprocity law we show how to compute class
fields in this case. We conclude with several examples.

1. PRELIMINARIES

Let k/Q be an algebraic number field; we denote its ring of integers by ox. A
congruence module m formally consists of an integral ideal my and a formal product
e of real places () of k viewed as embeddings into R. By I™ we denote the set
of all ideals coprime to mg, by P, the set of principal ideals generated by elements
o = Imod*m (ie., @ = Imodmg and o > 0 for all (.)?|m,,) and finally by
Cly, := I™/Py the ray class group modulo m. There are efficient algorithms for
computing ray class groups [6, 17] provided we already know the unit and class
group of k.

An ideal group H (defined modm) is a subgroup of I™ containing Py,. For any
ideal group H let H := I™/H.

Now, let K/k be a finite extension. By 0/, we denote the relative discriminant
of K/k as an ideal of o.

From now on K/k will always be a finite abelian extension. In this context we
denote by o, the Frobenius automorphism belonging to the unramified prime ideal
p of k. We will make extensive use of the Artin map, the multiplicative extension
of the function mapping unramified prime ideals to their Frobenius automorphism:

(,K/k): I°x/k — Gal(K/k) : a = Hpvp(a) — Hg;p(u),
pla pla

where o, (z) = 2N®) mod P for any P|p and any z € ok.
With this in mind we can define class fields:

Definition 1.1. Let m be a congruence module, H be an ideal group and K/k be

LK/
an abelian extension. K is the class field belonging to H iff Gal(K/k) ( f:/ ) I™/H.
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The famous existence theorem of class field theory states that for every ideal
group there is a class field and every abelian extension is the class field to a certain
ideal group.

The main theorems of class field theory used here can be found in text books
treating algebraic number theory, e.g., [11, 15, 16].

Later we will give an algorithm to compute the class field corresponding to H.
The algorithm will follow closely the proof of the existence theorem as given in
[15, XTI §2]. First we reduce the problem to the case when k contains “sufficiently
many” roots of unity. In this case we can use Kummer theory and the Artin map
to compute the class fields. As a last step we have to compute a certain subfield of
this large class field, again using the Artin map and elementary Galois theory.

2. THE ARTIN MAP

We recall the following properties of the Artin map ([15, X, §1: A2, A4, Thm.
1-3):

Theorem 2.1. Let K/k be a finite abelian extension.
1. Let K'/K/k with abelian K'/k, then

('aK,/k)lK = (’K/k)
2. Let E/k be finite, then

(wKE/E)|k = (., K/k)o Ng/ -
3. If m is divisible by all ramified primes, then
(I™, K/k) = Gal(K/k).

4. There exists a congruence module m such that Py, C ker(.,K/k), any such
module m is called admissible.

Later on, it will be important to have an efficient method for actually computing
(a, K/k) for some ideals a of k. Let K/k be a finite abelian extension, and o1, ...,
on, be the k-automorphisms of K. For arbitrary (abelian) extensions K/k it is a
hard problem to compute the o; [1, 13], but for the extensions occurring in our
context, we already know the whole Galois group.

Since the Artin map is the multiplicative extension of the Frobenius map, we
start with the investigation of Frobenius automorphisms. Let p be an prime ideal
of k which is unramified in K. We have

op(z) = V%) mod P;
for all prime ideals B;|p, and therefore
op(z) = V% mod pog

for all z € og. Since we assume knowledge of all automorphisms, we simply com-
pute V() mod pog and compare this to o(z) mod pok for all o € Gal(K/k). If we
do this for sufficiently many elements we can easily identify oy.

Later on we are mainly interested in Kummer extensions. In this case we can
speed up the computations quite a bit. Let K := k(y) be a Kummer extension with
generator y := /i (for some p € k). Without loss of generality we can assume that
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0i(y) = ¢ty holds. On the other hand we have yN®) = u9y" for N(p) = qn + r,
0 < r < n. In basis representation w.r.t. the basis 1, y, 42, ..., y" ! the congruence

oi(y) = yN(") mod pog

reads:

(0,¢4,0,...,0)=(0,...,0,u9,0,...,0) mod pog

(where u? is the (r +1)* component) and therefore neccessarily r = 1 holds. Since
the determination of i is equivalent to the computation of o; = oy, we see that

for Kummer extensions the Frobenius automorphism can be computed in the base
field.

Note 2.2. For an arbitrary ideal a we have two possibilities: either use the defini-
tion and factor the ideal, compute the automorphisms corresponding to the prime
divisors and compose them; or establish the surjection from the ray class group into
the Galois group. The main problem with the first approach is that we frequently
need to factor large ideals having norms of more than 1000 digits and large prime
factors. For the second approach we need the images of certain ideals generating
the ray class group. Numerical experiments show that very few (compared to the
group order) small ideals usually suffice to generate the ray class group, as one
would expect (see [2]). So it makes sense simply to choose small random prime

generators for the ray class group to avoid the factoring and use them to get the
surjection.

3. CLASS FIELDS

In this section we reduce the problem to the case where the field contains suffi-
ciently many roots of unity.

Let H be the product of cyclic groups of prime power order: H = [['_, ;.
Using the Artin map, it follows immediately that K = szl K; with K; belonging
to Hz

From now on we assume H = Cj- for some prime p. Let E := k(Cpr), then
F := KFE is the class field over F belonging to some ideal group Hg. Since
Ng/k(Pmog) € P we can define Hg modulo mog. Using

Ng/k : Clwog — I™/H : aPmog — Ngyk(a)H,

we easily compute Hp = I8 /Hp = P, ENE?/lk(I:I ) as a pre-image of a homomor-
phism between finite groups.

Using the approximation theorem, we see that we can use any multiple of mog
to define Hg.

Let S be a finite set of places of E such that S contains all primes dividing m
and p and enough primes to generate the (ordinary) class group of E, finally let
s := |S|. We consider the field G := E(*/Ug), where Us are the S-Units of E.
By the Dirichlet unit theorem we have G = E( /ey, ..., #/€;), where €1,... ,€5_1
generate a free group and €, is a generator for the torsion units of og; hence G is
a Kummer extension of degree (p")°® over E with Galois group isomorphic to C,.

Analyzing the proof of the existence theorem presented in [15], we see that G
contains the class field F over E that we are looking for; we are going to compute F'
as a subfield of G. To illustrate the relation of the various fields, we have included
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the following diagram (n := p", in the most simple case, i.e., Q({,) and k have no
common subfield and (F : E) = n):

E(\”/é—l) F:E({‘/ﬁ)=E("e?15?s) E({/ﬁ:)

K
B = k(Gn)

n

¢(n)

k

Since G is abelian over E, there is an admissible module @ such that I™ —
Gal(G/E) = Cj. is surjective and Py is contained in the kernel, ie., Clg —
Gal(G/FE) is a well-defined epimorphism.

Since m must be divisible by all ramified primes (and by m) we need to get their
exact powers or at least upper bounds.

Lemma 3.1 (Hasse). Let G/E be a Kummer extension of exponent n. Then

m:= H pHpC(P)
plh pin
plog e

with

1
c(p) = (Up(n) + 5_—1> er/q(p/p) +1
is an admissible module for G/E.
Proof. [10, (166), pages 232-233] O

Note that since G/FE is a Kummer extension it is possible to compute the dis-
criminant and the exact conductor of G/E. Although this is (computationally) not
difficult, it is more time consuming to compute the conductor than to work with
the too large ray class group defined by the estimate of Hasse.

From the properties of the Artin map we see that F' is the field fixed by all
automorphisms of G/E corresponding to ideal classes of Clg that become trivial in
Hpg. Therefore we need firstly to compute those classes and secondly to compute
the field fixed by the corresponding automorphisms. Of course, everything said in
2.2 applies here too.

Cls is given as a direct product of cyclic groups; hence the natural surjection
¢ : Cls — H can be represented by a matrix M. Since we are only interested in
groups of order p” we can define M modp”. Now the classes we are looking for
correspond to the null space of M modp”.
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Next we compute the automorphisms belonging to the null space and the field
fixed by them. We are looking for a certain Kummer subextension of G of degree
dividing p", so there is a generator of the form p := H;zl e;j with 0 <n; <p". We
notice that the group of E-automorphisms of G consists of elements of the form

O /G G R

with m = (m;)i1<j<s € (Z/p"Z)*. Using this representation we get
S
om (/) = [T G2™ /i,
j=1
so a necessary and sufficient condition for »{/p being fixed by oy, is

S
Z n;m; = 0modyp”.
j=1

Starting with generators for the kernel of ¢, we then compute the corresponding
m’s. These m’s yield a (modular) linear system, whose solutions define p.

Using these ideas, we can give a complete algorithm for computing the class field
of E:

Algorithm 3.2. Input: m, Hg = Cpr, E 3 (Gpr.

Output: p such that E( #/) is the class field belonging to H.

Compute S as described above.

Compute a basis for the S-units.

Compute m and Clg.

Compute a; generating the kernel of ¢.

For each such a; compute the corresponding automorphism as a vector m; €
(Z)p"Z)°.

6. Compute the null space of (m; ;)i ; asn € (Z/p"Z)*.

7. Compute u.

TUR R =

Note that by using Theorem 2.1 1, we can compute m; ; independently for each
ideal a; and every e;—we never need to actually generate G.

4. INTERSECTION

In the last section we have seen how to compute class fields when E contains
sufficiently many roots of unity. So as a last step we are required to compute a
subfield K of E. Different from the situation in the last section, this subfield will
not be a Kummer extension, so we have to use a slightly different approach. First
we choose 7 € F' such that F' = k(n), e.g., we can take n = »{/j1+1(, for a suitable
I € N. Next, we compute the minimal polynomial m,, of  over K. The coefficients
ao, ... ,at of m, are guaranteed to generate K since K(n) = F' and

deg(my)(k(ao, ... ,a¢) 1 k) = (F : k) = deg(my)(K : k).

Since we are looking for a cyclic extension of k of prime power degree, one coefficient

of ag, ... , a; must be a primitive element for K /k. So it remains to give a procedure
to compute my,.
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From [15, XI §1] we know that K'E = F'is abelian over k and that p"ox N Ng/ (M)
is admissible for this extension. In order to use the Artin map, we have to compute

Gal(F/k).
As in [20, Lemma 1] we extend the automorphisms of E/k to E( »/i) = F/k:

Lemma 4.1. Let F := k(¢ o), k(C,) =: E be arbitrary and 7 : ¢, — (F €
Gal(F'/k). Then if F/k is abelian there is an o € E such that

%:F-—»F:{% - aonnakv}

G+ Cn

is an extension of T.

Proof. Since F/E is normal, E({/7(a)) = F and, using [14, page 58], ¥/7(a) =

ag Var with ged(k’,n) = 1. It remains to show k£ = «'modn. We define two
automorphisms:

n:F--»F:{Va - ao\/"a*"}

and '
TQIF-*FI{{ZE : C”Ci/a}.

Since F/k is abelian, we have

CragVar =7 on(Ya) = on(Va) = Cﬁlao Var',

Finally we get k¥ = x’ mod n. O

Together with the automorphisms of F'/E (which are trivial to compute) we have
a generating set for the Galois group of F/k.

Now we will proceed as in the last section. First compute a set of ideals gener-

ating the kernel H of ¢ : ClpropnNg i () = H, then the set T of all conjugates (in
F)ofn

T :={(a, F/k)(®/p) | a € H},

and then the minimal polynomial as m, := [, cp(z — 7).

5. COMPLETE ALGORITHM

We summarize the complete algorithm:

Algorithm 5.1. Input: k, m and H.
Output: Polynomials f; € k[x] generating the class field.

1. Compute H = [[ H; with H; = C,ri =: Ch,.

2. For each i: '
(a) Compute u; using Algorithm 3.2.
(b) Compute Gal(k(Cp,, ™/Hs))-
(c) Compute n; and m,,.
(d) Compute the minimal polynomial for each coefficient of my, until one
with the appropriate degree is found.
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In the actual implementation the overall structure is slightly different. Since one
of the most time consuming parts of the algorithm is the computation of the class
group of E (E;), we group all H;’s having the same order together. Another rather
surprising bottleneck is the computation of the minimal polynomials in step 2(d),
especially if p;* > 10, since this involves computations in fields of large degree (up
to p(p}*)p}") over k.

In order to compute 7, we first compute the Galois group of F/k. Depending
on the representation of the automorphisms, we either already have a primitive
element or the conjugates of #»{/i and (pr. In the first case we are done; in the
second case it is easy to check some small [ to detect if ={/i + I(pr is a primitive
element.

A last problem is the reduction of the polynomials f;. The polynomials found
using the above procedure are far from being optimal (with respect to the size of
the coefficients). Although there are some procedures that heuristically reduce the
size of the polynomials ([4, polred], [5], [9, p. 69]), there is no known (efficient)

algorithm that is known to succeed, i.e., one that will find a smaller polynomial if
possible.

6. EXAMPLES

We start with a small example illustrating the various steps of the algorithm.

Let k := Q(+/10) and m := loi. We take H := Py, and get Cl = Cly, = (p3) = Co,
with ps = 20y + v/100;, being the unique prime ideal over 2.

In the first step we are required to split the group into factor groups of prime
power order. Since our group is of order 2, we can skip this step.

We now proceed to compute the class field. Since (o = —1 € k, we get £ = k.
The set S now contains the prime ideals ps over 2 and both infinite places. A basis
for the S-units consists of the unit 3 + v/10, the torsion unit —1 and the po-unit
2. The estimate from Hasse yields m := pgpg)pg) as an admissible module for G.
The corresponding ray class group now is isomorphic to C2 x Cy of order 16. As
generators we compute a1 = (1—4v/10)og, ag = (1+41/10)0y, and az = 50 ++/100%.
Next we compute generators for the kernel of . We decompose the basis a1, az, a3
of Cl in Cly, and get the following matrix:

(00 1).
We see that the null space mod2 is generated by a;, daz. To compute the
corresponding Artin automorphism we factor a;, (¢ = 1,2) and get a3 =
(3,2-4+/10)(53, 13++v/10) =: p{"plY) and ay = (3,4++/10) (53, 40++/10) =: pPp'2).

Computing N(p$”) = 3, (v3+10)® = (3 + v10)v/3 + /10 and (3 + /10) —

(e pgl), we see that the Frobenius automorphism of pgl) in k(v/3+ v/10) is triv-
ial. Similary we compute the automorphisms of the other pairs of prime ideals and
generators. We summarize the results in the following table.

[3+v10 -1 2

PO [ (2 -1 1
P2 1 -1 -1
p%? (-1)? (-1 -1
p2 | (02 (12 1
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Now we can compose the automorphisms to get the Artin automorphisms for a;
and as:

[3+VvI0 -1 2
a || (12 -1 (-1)?
al -1 -1 (1)

As a matrix over Z/27Z this reads as (9 } ) with nullspace generated by (0,0, 1).
We conclude that k(1/2) is the class field belonging to m = lo.

To illustrate Algorithm 5.1 we have to choose a different example. We take the
same base field, but as m we choose m := 90“3&) and we get Cl, = (p2) = Chs.
This time have to use a decomposition, Cly, = I,/(p3) x I™/(p3). Using the above

procedure for H; = (p3) Py, we find that k((s, ¥/1+ () = E(Y1+ () = F. Asa
module (in E) we used m = 8log.

As stated above, an admissable module for F/k is pox N Ngsp(m) =

131220kpg)p§,20), the corresponding ray class group is ismorphic to C2% x Cgrag
and may be generated by a; := (780765561 — 86099392v/10), a; :=
(1 + 13122¢/10) and a3 := (—2 + 34/10,15 — v/10). We decompose a;, g, a3 in
Cly, and get a1 = p3 Py, a2 = p5 Py and ag = py mod p3 Py,. Therefore the kernel of
the embedding ¢ is generated by a; and as. Next, we have to extend the automor-
phisms of E/k. Since Gal(E/k) is cyclic of order two we need to extend 7 : (3 — (2.
As stated in Lemma 4.1 we have to compute g = {/7(p)/p? in E with p=1+4(s.
Since 7(u) = —(3 and p? = (3, we can use ap = —1, Gal(F/k) = (¥) = Cs. The au-
tomorphisms corresponding to a; and as are calculated as above: first factorize the
ideal into prime ideals, next identify the Frobenius automorphisms corresponding
to the prime ideals, and as a last step compose the automorphisms.
The factorization of a; yields

a1 = (43,28 4 1/10)(7232053, 6912383 + v/10) (1721868839, 1721737619 + /10)
D) (1)
= P43 Pr232053P 1721868839

and ap = (1721868839, 131220 + V10) =: pg27)21868839. The corresponding Frobenius
automorphisms are as follows.

(1) (1) (1) (2)
P4z Pro32053  Pi7o1868839  Piv21868839
7:4 ,7*?2 7:3 ,7":3

And therefore a; + 7% and ag — 73. Multipliying (z — ¥/)(z — 72 ¥/1) we get
= (Yp—Cs \3/ﬁ2)a: +1 as a minimal polynomial for E/K and x® — 3z + 1 as the
minimal polynomial of —(¢/z — (3 \3//72) over k.

As a second example we take k as the maximal real subfield of Q({27) and
m := 81og. We get C12 Cy, Cly = Co7 and K/k is generated by (& := Car + (57'):

2% — 272% + 3242 — 22772 + 103952 — 323192"7
+697682'° — 1046522 + 1074062 — 729302° + 30888z” — 73712°
+8192° — 272 — 2 — TE+ 62 + 1463 — 765 1+ ¢7

Finally, some series computation. Let k be the field generated by a zero p of
2% +32% + 224+ 1. We have Cl = Cy, o, = Z[p|, and 0, = —4595. For all 2 <7 < 18
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TABLE 1

i || Order | Decomposition | Polynomials

4 2 Co 2+ p
7 3 Cs 234+ (24 3p%+p*)2% — (8 —6p+10p% +4p%)z —
(11 — 5p + 10p% + 4p3)
8 8 Co x Cy z? — 2p,
4 (2-2p+6p% +20%)z% + (3 —3p% — p?)
9 9 C? 3 -3z -1,
23 -3z — (2—2p—Tp? — 2p%)
11 5 Cs x5 — (114 15p2 + 5p3)x + (44 — 30p + 62p% +

24p%)23 — (107 — 68p+94p? +40p3)x? + (122 —
34p+107p? +41p3)z — (42— 10p+53p% +19p%)
2] 8 C3 z? +p,

x? — (2 +4p — 2p* = p°),

2?4+ (24 5p — 2p* — p°)

13 12 Cy x Oy 23— (14+3p—9p? —3p3)z? + (24 5p — 24p? —
8p°)x — (6 — p — 13p% — 4p°),

24— (5p+2p%)z3 — (8 —10p — 11p% — 3p)2% +
(1427p—34p> —16p%)2— (13+73p+15p% —4p°)
16| 32 Cy x Cg zt— (4+4p+4pH)2? + (4 + 8p + 6p% — 6p%),
z8 — (32— 12p + 32p + 12p)zb + (132 — T4p +
144p+56p)z* — (16 —8p+88p+28p)x2 + (16 +

51p + 40p + 8p)
17 8 Cs 28— 27— 728 4+6254+ 1524 — 1023 — 1022 +4x+1
18| 27 (o 23 —(2-3p+2p2+p)22 —(5—-3p+2p?+p?)z—1,

23+ (14 p)x? — (9— 20+ 11p% +4p>)x + (9 —
5p 4 7p* + 3p%),

23— (3+3p)z2 + (3+18p+3p?)z+ (T+29p+
57p? + 15p3)

such that the conductor of Cl;y is (i) we compute the corresponding ray class
fields, i.e., defining equations for the cyclic factors of prime power degree. The
corresponding decompositions are summarized in Table 1. Since the polynomials
involved are quite large, we only present reduced examples here. The running times
vary between seconds for the small examples (Cs, Cs, Cy4) up to 10 minutes for the
large ones (Cs) plus eventually several hours for a size reduction.

The complete algorithm is part of the current KASH release [12] and is available
via anonymous ftp from the following URL:

ftp://ftp.math.tu-berlin.de:/pub/algebra/Kant/Kash

7. COMPARISON

There are some other methods known for computing class fields. For ray class
fields of imaginary quadratic fields there is the classical approach using complex
multiplication [19] that is very fast and applicable even if the ray class group has
cyclic factors of a large prime power order. A drawback of this method is that one
is not able to compute arbitrary class fields. In practice this limits the method to
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ray class groups of order not larger than 300, since the polynomials become quite
large.

There are efforts to use similar (i.e., analytical) methods for other base fields by
using Stark units. One obstacle here is that it is not proven that this method actu-
ally works. However, if one gets results, it is possible to verify them unconditionally.
Currently those methods work for small (degree < 4, discriminant < 600000) to-
tally real fields [3, 8, 18]. However, if these methods are applicable, they are usually
quite fast, especially for large cyclic factor grops.

For Hilbert class fields (i.e., m = o) there is an algorithm due to Daberkow and
Pohst [7] using a classical result of Hecke about ramification in Kummer extensions.
This approach has two disadvantages: firstly, the authors get a large number (ex-
ponential in the group order) of candidates for F' and have to use sieving techniques
to find the correct one; and secondly, it is not possible to deal directly with groups
having cyclic factors of order p" with r > 1.

There is a recent algorithm due to Cohen [5] that generalizes the approach of
Daberkow and Pohst to arbitrary class fields. He can limit the number of possible
generators in an efficient way, but still has difficulties for r» > 1.

Common to all algebraic approaches is that they require the knowledge of the
class group of E. The calculation of Clg can be time consuming.
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