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bijective mappings (as for BVPs for example) and of the qualitative, asymptotic
properties of flows (like stability in the sense of Lyapunov for IVPs).

In my opinion the representation of the practical applicability of (multiple) shoot-
ing methods for regular ordinary BVPs is somewhat misleading. The much older
representation in [2] seems to me to be more mature.

Writing a good textbook always requires, in addition to the authors’ expert
knowledge, that the development in the field concerned has been finished to a
certain extent. A certain distance is necessary to be able to restrict oneself to the
most essential things. In the case of the DAEs in Part IV, the stage of development
essential for a really good textbook has not yet been reached, in my opinion, and the
two authors are themselves too strongly involved in this development to keep the
necessary distance. Hence, the nice character of a textbook gets lost in Part IV. This
is rather a part of a monograph with a great amount of subproblems and approaches
strung together. For example, in spite of the mentioned sound restriction to globally
Lipschitz-continuous vector fields in the beginning, the authors do not introduce a
global notion of index for DAEs then. Just for these already complicated equations,
they start with a local notion of index, which is confusing not only for beginners.

As intended by the authors, this new textbook is a strongly advisable aid for
introductory courses to the numerics of regular ODEs. In particular, I consider
the IVP part to be so exceptionally successful that I will advise students to use it
as first literature for studying on one’s own. For the BVP part it requires a few
additional comments to achieve a more balanced education.

The abundant source of instructive examples and exercises in all parts of this
book will be extremely valuable for all teachers.

Altogether, a gain!
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6[65L05, 34A50, 58F99]—Geometric integration: numerical solution of differen-
tial equations, C. J. Budd and A. Iserles (Editors), Philosophical Transactions of
the Royal Society, Mathematical, Physical and Engineering Sciences, The Royal
Society, UK, April 1999, vol. 157, no. 1754, pp. 943-1133

The present issue of volume 357 of the Philosophical Transactions of the Royal
Society of London, Series A, is entirely devoted to geometric integration. Under
this heading, several recent developments in the numerical treatment of differential
equations are collected. They have as a common theme the idea to preserve as far
as possible structures (symmetries) of the exact flow in numerical discretization.
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This book starts with a paper by C. J. Budd and A. Iserles with the title of the
book, “Geometric integration: numerical solution of differential equations on man-
ifolds”. This article provides an interesting introduction to the topic of geometric
integration: it briefly mentions different numerical approaches that have been de-
veloped in this context, and it addresses their importance for a large number of
real applications. The remaining contributions of this issue treat different aspects
of geometric integration; they are research articles, and they are independent of
each other.

Much recent research is devoted to the solution of differential equations on man-
ifolds having a Lie group action. Their discretization by a numerical algorithm
usually involves computations in the corresponding Lie algebra. For reasons of
efficiency, the number of appearing commutators has to be kept as small as pos-
sible. The article by H. Munthe-Kaas and B. Owren “Computations in a free Lie
algebra” extends Witt’s formula on the number of commutators of a fixed length
(of the Hall basis) to graded Lie algebras. This allows one to get upper bounds
on the number of necessary commutators in a numerical method. A substantial
improvement of Runge—Kutta methods for Lie-type equations has been obtained
by suitably regrouping the arguments of the commutators.

Differential equations of the form y’ = a(t)y, where the solution y(t) evolves in
a Lie group and where a(t) is a smooth function in its Lie algebra, are the subject
of the paper “On the solution of linear differential equations in Lie groups” by
A. TIserles and S. P. Ngrsett. It is based on an explicit formula of the solution given
by the Magnus series. This contribution presents a new one-to-one correspondence
between the individual terms of the Magnus series and binary trees, which allows
one to derive explicit recurrence relations as well as a convergence proof of the
series. By suitably truncating the series and by ingeniously evaluating the appearing
multiple integrals and commutators, new efficient methods are proposed for this
class of methods.

In the contribution “Geometric integration using discrete gradients” by R. I.
McLachlan, G. R. W. Quispel, and N. Robidoux, it is pointed out that ordinary
differential equations with first integrals and/or Lyapunov functions can be writ-
ten as “linear-gradient systems” & = L(z)VV(z), where L(z) is a matrix-valued
function. Using discrete gradients, numerical methods are derived that preserve ex-
actly first integrals and Lyapunov functions. This method is successfully applied to
Hamiltonian, Poisson, and gradient systems, and also to many dissipative systems.

Geometric aspects of partial differential equations are the subject of the article
“Self-similar numerical solutions of the porous-medium equation using moving mesh
methods” by C. J. Budd, G. J. Collins, W. Z. Huang, and R. D. Russel. The role
of conservation laws and similarity solutions is discussed, and adaptive numerical
discretizations are studied which admit discrete forms of conservation laws and
which have discrete self-similar solutions. It is shown that such methods capture
correctly the long-time dynamics of the underlying partial differential equation.

The composition of simple methods with favorable geometric properties (sym-
plecticity, volume preservation, ...) automatically inherits these properties, and it
also allows us to increase the order of accuracy. One possibility to get the corre-
sponding order conditions is by using the Baker-Campbell-Hausdorff formula. The
article “Order conditions for numerical integrators obtained by composing simpler
integrators” by A. Murua and J. M. Sanz-Serna presents a different approach based
on a new type of rooted tree. As a result, the authors derive a simple presentation
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of the order conditions, which is obtained by a simple transcription of the structure
of the corresponding graph.

The stable computation of trajectories of N-body problems is important for
astronomical applications as well as for studies of atomic systems. The article “Re-
versible adaptive regularization: perturbed Kepler motion and classical atomic tra-
jectories” by B. Leimkuhler discusses the impact of symplectic and time-reversible
integrators on the energy error, it studies time transformations and the use of vari-
able step sizes, and it presents a series of interesting numerical experiments with a
new code that is especially written for the simulation of perturbed Kepler motions
and classical atomic trajectories.

To sum up, this issue shows several important aspects of the wide field of geo-
metric integration, all of which are written by experts in this topic.
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7[87TMxx, 65Pxx|—Dynamical systems and numerical analysis, by A. M. Stu-
art and A. R. Humphries, Cambridge University Press, New York, NY, 1998,
xxi+685 pp., 23 cm, hardcover, $64.95, softcover $39.95

To come to the point first: This is an extraordinarily well-made monograph on
dynamical systems which are generated by application of linear multistep methods
and Runge-Kutta methods to explicit ordinary differential equations (ODEs). In
particular, emphasis is put on the qualitatively correct reflection of properties, resp.
the structure of the dynamical system generated by the ODE itself.

The principle aim of this book is—according to the two authors—to address two
questions:

I. Assume that the differential equation has a particular invariant set. Does the
numerical method have a corresponding invariant set which converges to the
true invariant set as At — 07 If so, what is the rate of convergence?

II. Assume that the vector field defining the differential equation has a partic-
ular structural property which confers certain properties on the dynamical
behaviour of the equation. Find special numerical methods which inherit
these structural properties under mild or no restrictions on the time-step
or, for general numerical methods, find conditions on At under which these
structural properties are inherited.

During the last 15 years, considerable progress has been made in answering these
questions. Numerous articles have been written, by numerical mathematicians as
well as analysts, among them, not least the two authors of the present monograph.
In this 700-page monograph they collect these results to form a comprehensive and
cogent account which “is intended to be accessible to anyone familiar with either
dynamical systems or numerical analysis theory and, with a little work, to someone
familiar with neither.”

No doubt, this book is a considerable gain for all those who want to get familiar
with this field of mathematics as well as for someone requiring a reference text for



