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STABILIZED WAVELET APPROXIMATIONS
OF THE STOKES PROBLEM

CLAUDIO CANUTO AND ROLAND MASSON

ABSTRACT. We propose a new consistent, residual-based stabilization of the
Stokes problem. The stabilizing term involves a pseudo-differential operator,
defined via a wavelet expansion of the test pressures. This yields control on
the full L2-norm of the resulting approximate pressure independently of any
discretization parameter. The method is particularly well suited for being
applied within an adaptive discretization strategy. We detail the realization
of the stabilizing term through biorthogonal spline wavelets, and we provide
some numerical results.

1. INTRODUCTION

Wavelet bases are being increasingly used in the numerical solution of partial
differential and integral equations (see, e.g., [Da2, Co| and the references therein).
There are many aspects in a discretization procedure for such equations that can
benefit from the features of these bases. Wavelets share with other multilevel meth-
ods the capability of easily preconditioning the discrete realizations of symmetric
positive definite operators. More typical of wavelets is their orthogonality to certain
classes of smooth functions (e.g., polynomials), a feature which can be exploited in
the compression of dense matrices and—in a more general context—in the design
of adaptive discretization strategies. The finite-dimensional space, which is used
in a Galerkin-type approximation, is adaptively constructed by including in it pre-
cisely those wavelet basis functions that have the potential of representing the most
significant structures of the solution. From this point of view, wavelet projection
methods can be viewed as meshless methods, with a highly flexible mechanism for
adding/removing degrees of freedom.

Wavelets were originally introduced in unbounded domains, with a shift invariant
property (see [Me]). Currently, wavelet bases are available and easily computable on
fairly general domains in an arbitrary dimension. A popular strategy of construction
consists of decomposing the domain into the union of smooth images of a tensor
product reference domain. The wavelets are themselves images of tensor product
wavelets on such a reference domain; this allows the by now well-developed wavelet
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technology on the unit interval to be efficiently exploited (see [DS, CTU, CM2,
BCU]).

Fluid dynamics is a challenging field of application for wavelet-based adap-
tive discretization methods, since typically a flow exhibits well-localized structures
and/or coherent vortex patterns. For incompressible flows, the Stokes problem is
a simplified model which neglects convection and focusses on the viscous effects
and the divergence-free constraint. For these reasons, it has received considerable
attention by wavelet addicts, beginning with the pioneering work of Lemarié [L],
in which divergence-free wavelet bases were constructed in an unbounded domain
(see also [U]). However, for arbitrary bounded domains and boundary conditions,
divergence-free basis functions are difficult to build; hence, one restorts to the dis-
cretization of the continuity equation, thus coping with the well-known inf-sup
condition (see [BF]) which ties together discrete velocity and pressure spaces. Sev-
eral wavelet discretization methods have been recently proposed which fulfill that
condition (see [DKU1, Ma2]). This task is relatively easy in the case of nonadap-
tive approximations, when the discrete velocity and pressure spaces are uniform,
i.e., all the wavelet basis functions up to a certain maximal level are included. The
situation becomes considerably more intriguing in the adaptive case, when the need
for fulfilling the inf-sup condition contrasts against the desire to choose the discrete
velocity and pressure spaces as independently as possible, guided only by the local
structure of the flow.

Instead of satisfying the inf-sup condition, one can circumvent it. This alter-
native approach, first proposed by Hughes, Franca and Balestra [HFB] and now
popular in the finite-element community (see, e.g., [BF]), can be realized by ap-
pending a suitable consistent (i.e., vanishing for the exact solution) stabilization
term to the continuity equation. It prevents the onset of spurious oscillations in
discrete pressure, making the approximate problem well posed. The same effect can
be achieved by adding and then statically condensing auxiliary velocity functions,
the “bubbles” (see [BFHR]). The typical stabilization term acts at the elemental
level, and, through the choice of local tuning parameters, it provides stabilization
by controlling a mesh-dependent weighted norm of the pressure gradient.

Among the features of wavelets (as well as other multilevel bases, see, e.g., [BP}),
we recall the possibility of easily representing norms and inner products in Sobolev
spaces of fractional and even negative order. This can be exploited to design new
stabilized discretizations of operator equations. Such formulations are optimal from
the point of view of the functional setting. Some results on the use of wavelets in this
direction already exist. In [B], a multilevel least-square stabilization of the Stokes
problem is considered, whereas in [BCT] a multilevel SUPG-type stabilization of
the convection-diffusion equation yields control on some norm of fractional order
1/2 for the solution.

In the present paper, we exploit wavelets to design a new, consistent, residual-
based stabilization term for the Stokes problem, which replaces the classical term
introduced in [HFB] for finite elements. Our term yields direct control of the full L2-
norm of the pressure, independently of any discretization parameter. Furthermore,
basically no information on the discrete velocity space is needed. Consequently,
the method is particularly well suited for the discretization of the problem in an
adaptive framework as described above. Technically speaking, our term exploits the
expansion of the discrete pressures in a wavelet basis (associated with a possibly
nonconforming decomposition of the domain into macroelements), and the existence
of a local dual basis. A local right-inverse of the divergence operator is easily built
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on the space spanned by the latter basis. This operator is used to define the test
functions for the residual of the momentum equation, thus yielding the stabilization
device.

The content of the paper is as follows. First, we introduce our stabilization term
in an abstract setting, and we prove that it implies a uniform inf-sup condition
for both the continuous and the discrete velocity-pressure pairs of spaces. This
yields optimal a priori and a posteriori error estimates. Next, we detail a particular
construction of the stabilizing wavelets, based on the Cohen-Daubechies-Feauveau
[CDF] biorthogonal spline wavelets on the real line. Finally, we describe the results
of some numerical tests which demonstrate the feasibility of the proposed method.

The following notation will be used throughout the paper. If, for ¢ = 1,2,
N; are nonnegative functions defined on sets A; which may depend on certain
parameters, then Ni(a1) < Na(az) means the existence of a constant ¢ independent
of these parameters such that Ni(a1) < ¢Ny(ag),Vay € A1,Vay € As. Moreover,
Ni(a1) = No(az) means Ni(a1) < Na(az) and Na(az) < Ni(aq).

2. AN ABSTRACT FORM OF THE STABILIZATION METHOD

Given a bounded domain  C R? (d > 2) with Lipschitz boundary 992, we want

to approximate the Stokes problem submitted to homogeneous boundary condi-
tions:

(2.1) ~AU+VP = f inQ,
(2.2) v.U =0 iinQ
(2.3) U = 0 on Of).

Let us introduce the function spaces X = (H2(€))? for velocities and M ~ L*(Q)/R
(so that L2(Q) = M @span(1)) for pressures. Existence and uniqueness of a solution
(U,P) € X x M follow classically from the assumption f € X' = (H~1(Q))%
Throughout the paper, both the (L?(£2))%-inner product and the M-inner product
will be denoted by (-, +); the symbol (-,-) will indicate the duality pairing between
X’ and X. Let us equip X by the norm 9] ¢ = (V¥,V©)/? and M by the norm
lgllar = (a,9)*2.

In order to define the stabilizing operator and the approximation spaces, let us
assume that M is split as follows:

(2.4) M=My& M,

where the complementary spaces My and M are closed subspaces of M and satisfy
the following conditions:

i) M admits a Riesz basis U7 = {¢} : A € LP}, i.e., M = clos span¥? with
(2.5) 1Y axdillar ~ llallezery,

AeLr
for all ¢ = (g\)recr € £2(LP);

ii) My is a (possibly empty) finite-dimensional subspace of M; if My # (), then a
finite-dimensional subspace Xg of X is associated to it, such that the uniform
inf-sup condition

(2.6) 36p >0 : inf sup M > By
a€Mo g ¢ 1Vl 2 llgllas
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As a consequence of 1) and the Riesz representation theorem, there exists a dual
biorthogonal set UP = {¢f : X € LP} C Mg"; thus,
(2.7) (W5, 08,) = o ny VAN € LP,
and any g € M can be represented as

g= > @f  with g =(q,9%).

AeLP

Next, we associate a function Jf\ € X and a coefficient cy > 0 toeach A\ € LP.

These functions and coefficients are chosen in such a way that the operator S
(formally) defined as

(2.8) Yo=Y odf,  Sgi= > aad,

AeLr AeLr
satisfies the following conditions:

i) S is bounded from M to X ; thus, there exists a constant ¢, > 0 such that

(2.9) ISall g < ellallar, Vo € M;
ii) there exists a constant 5. > 0 such that
(2.10) ~(V4,8q) 2 Bullalliy,  VaeM;
iii) the orthogonality relation
(2.11) (qu,gq) =0, Yqo € My,Vq € M
holds.

We shall see below how such conditions can be fulfilled.
Finally, let us select (by some adaptive procedure, that we will not detail here) a
finite subset AP C LP; let us set Mpr = span{¢)} : X\ € AP} and Mp» = Mo@®Mps.

Furthermore, let us select a finite-dimensional subspace Xp X , containing the
subspace X defined in (2.6). Note that X+ need not contain any of the velocities
1} which enter into the definition of the stabilizing operator S.

We consider the following consistently stabilized Galerkin discretization of prob-
lem (2.1)-(2.3): Find @ € Xp» and p € Mp» such that
(2.12) (ViI,Ve) - (V-3,p) = (f,7), Vie Xy,
(2.13) (V-i,q) + 6(rés,Sqp) = 0,  VYge& Mo,
where 6 > 0 is a suitable stabilization parameter,

rés=f+Ai—Vpe X'

is the residual of the momentum equation, and pressures are split as ¢ = qo +qa €
My @ M according to (2.4).

In order to study this problem, let us introduce the bilinear form B : (X x M)2 —
R defined as

(2.14)  B((d,r), (5,q)] = (Vi V&) = (V- T,7) + (V - @, q) + §{Ad — Vr, Sqp),
as well as the linear form F : X x M — R defined as

(2.15) F(T,q) = (f,7) = 6(f, Squm).
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Then, problem (2.12)-(2.13) can be rewritten: Find (#,p) € Xpo x Myp such
that

Bl(i,p), (7,9)] = F(,q), V(7,q) € Xpv X Mp».

Note that the exact problem (2.1)-(2.3) can be equivalently written: Find (U,P) e
X x M such that

BT, P), (5,q)] = F(7,q),  ¥(¥,q) € X x M.

Thanks to condition (2.9), both forms B and F' are continuous on their spaces

of definitions. The following result will guarantee existence and uniqueness of the
solution of the above variational problems.

Proposition 2.1. Let 0 satisfy the inequality

. 2.
(2.16) 6 < min (1, m),

where o = 0 if Mg = 0, o9 = 1 if Mg # 0. Then there exists a constant 3 > 0
(independent of §) such that

- O (XNGY)
(@,7)EXXM (7,g)eX x M 11, ) s (T3 D 200

> B,

where X x M equals X x M or XAU X Mp», and the norm in X x M is scaled as
1@ 1%, = 1711% +dllalld;-

Proof. Taking (v, q) = (W, r) € X x M and using (2.10) and (2.11), one gets
Bl(@,r), (@,r)] = (Vi, Vi) = 6(Vrag, Srad) + (AT, Sraq)
> @)% + Bullrll3s + 0 (AT, Srad) -

On the other hand, by (2.9) and the Holder inequality |ab| < %az + 2% with an
appropriate choice of n > 0, we have

(AD, Sradl < AT g lISradl g < ] g l1Srall ¢

IA

. < p
el glirsallae € -1 + 5 Iraal
*

Therefore, we obtain

B(w, 1), (@,7)] > (1 - 55

Sl + 55 raly

This gives the desired result if My = (). From now on, let us assume that Mo =+ 0.
Recalling (2.6), let % € X, C X be such that (V - ¥, 70) > BollToll ¢ l|I7ollar, With
lvoll¢ = Yllrollar, v > 0 to be defined. Then,

B[(@,7), (~,0)] = —(Vai, Vi) + (V - Go,7a4) + (V - o, 7o)
> =@l lrollm — |

Using again appropriate Holder inequalities for the first and second terms, we get

B[(u_j’ ’I"), (——6070)] . HTOHM
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Summing up, we obtain

02 ﬁ* ﬁ
Bl(@ - o 1— - 2_‘ Pe 0
[(8,7), (@ = T, 7)] = ( 055 ﬁo)llwllx (03 B ) Il +r5 lIrollas
Now, we choose v = §—— ﬁ*ﬂo . The conclusion follows, taking into account (2.4). O

Proposition 2.1 allows us to establish classical abstract a priori and a posteri-
ori error estimates between the solutions of problems (2.1)-(2.3) and (2.12)-(2.13).
Since proofs are by now standard, we only give the results, in which the dependence
upon the stabilization parameter § has been made explicit.

Proposition 2.2. Under the conditions (2.5)-(2.6) on the pressure spaces, (2.9)-

(2.11) on the stabilizing operator S and (2.16) on the stabilization parameter §, the
following a priori estimate holds:

0= dlg+8 2P -pls S it (|0 dlg+5 VT - Vi)
TEX pv

2.1 £ P —qlly. O
(2.18) +q€%pll qlln

Proposition 2.3. Under the above conditions, the following a posteriori estimate
holds:

—

0 —dlg + V2P —ply<sup inf [rés,V — 5|
vexveXa IVl
(2.19) + sup inf 67V -1, Q — )| + 628, S(Q - )l
qehr achias 1@

We end this section by indicating a natural way of choosing the auxiliary func-
tions 9%, A € LP, in such a way that the crucial condition (2.10) is easily fulfilled.

Proposition 2.4. For any A € LP, let 1/7:{ € X be such that

(2.20) Vi =9 Q.
Furthermore, set
(2.21) ey =1

in the definition (2.8) of the operator S. Then, conditions (2.10) and (2.11) are
satisfied.

Proof. For any ¢ =Y. .0 (x5 € M, we have
—(Vq,Sq) = (¢,V-Sa) = Y an(e,V-93) = > a4,

AeLp XELP
and (2.10) follows from (2.5). On the other hand, (2.11) is a consequence of the
inclusion WP C Mg-. O

Remark 2.5. The choice (2.21) for the coefficients of S is the simplest one from the
theoretical point of view. A control of the L?(2)-norm of the pressure is assured
as well if we relax the condition into ¢y ~ 1,VA € LP. This enhances flexibility and
efficiency in our stabilization scheme, allowing for a local (in scale and position)
tuning of the coefficients. a
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3. THE CONSTRUCTION OF THE STABILIZING WAVELETS

In this section, we shall construct a Riesz basis WP for the pressure space, as
well as its companion biorthogonal basis ¥, for which it is easy to define auxiliary
velocities fulfilling condition (2.20). At first, we consider the reference domain
Q =]0,1[¢, where simple tensor product arguments can be used, starting from
biorthogonal bases on the interval (0, 1) suitably modified at the endpoints. Next,
we show how our construction can be transported on a domain 2, which is the
smooth image of the reference domain. Finally, we deal with more general domains,
using domain decomposition ideas.

3.1. Biorthogonal wavelets on the interval ]0,1[. As usual this construction is
obtained by restriction to ]0, 1[ and adaptation at the edges 0 and 1 of biorthogonal
wavelets on the line. The present construction only differs from existing ones (see
[CDV], [AJP] for the basic ideas and also [DKU2|, [Mal], [GT] for various specific
topics) in our choice of H{(0,1) boundary conditions for the dual wavelets, while
the primal wavelets (defining the pressure) have optimal order of approximation.
This specific choice is needed in order to build the stabilizing wavelets zﬁf\’g by
tensor products.

The construction on the line (see [CDF]) starts from a pair of compactly sup-
ported scaling functions (¢, ¢) of supports [—mq,m;] and [, 1] (with integer
edges) satisfying the two scale relations

¢ = Z V2R ¢(2. — m),

F= S VEhnd(2 - m)

for finite masks h and h, and the biorthogonality relations
(¢, p(x — k)) = 0y for all k € Z.
The primal and dual multiresolution analysis (MRA) spaces
Vi(R) C Vi1 (R), V;(R) C V;11(R)
are spanned by the biorthogonal compactly supported bases
;= {pj0 = 280(2. — k), k € Z},
O; = {Gjr=284(2. — k), k € Z}.

It is shown in [CDF] that the primal and dual wavelet spaces

(3.1)

W;(R) := Vi1 (R) NV (R)S, W(R) = Vi (R) N V5 (R)*
are spanned by the biorthogonal compactly supported wavelet bases
(3.2) W, ={289(20. — k), ke Z}, T; = {28(2. — k), k € Z},

where ¢ := 32 v2gm¢(2. —m) and ¢ == 3 \/§§T¢(2' —m) are the mother wavelets
obtained from the wavelet masks g, = (—=1)"h1_p, and Gm = (=1)"hi_m. The
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multiscale biorthogonal basis are defined (at least formally) by

\I’IZ@OUU\I’J‘ and\i/::@oUU\i/j;
jEN jeN

it is convenient to denote them by W = {¢)x, A € L}, ¥ := {¢x,\ € L}, where A
stands for (j, k) with |A| := j.

In [CDF] such compactly biorthogonal generators (¢, ) are built with arbitrary
smoothness. We denote by 7 and 7 the supremum of their smoothness measured
in H*. In addition, such generators can be built with arbitrary order of approx-
imations n and 71 in the sense that the integer translates of ¢ and (/5 span the
polynomials of P,,_; and P5_;.

Then it is shown that ¥ (and symmetrically ¥) is stable in H*(R) for the range
—min(7,7) < s < min(7, n) in the sense that ||| =) ~ (X rer 22s|(f,4hy)|?)1/2
for all f € H*(R).

Hypothesis 3.1. We shall assume in the following that the pressure generators are
chosen so that n >2, n>2and 7 >0, 7 > 1.

Starting from a pair of biorthogonal generators on the line (¢, g?)), all the con-

structions of new MRA spaces V; and 173 on the interval share the basic ideas
introduced in [CDV] and [AJP] to retain:

(i) the “interior” scaling functions on the line whose supports are in [dp277,1 —
d1277] for V; and [dp277,1 — d,277] for \7j, (where d = (dg,d;), d = (do,d;)
are pairs of nonnegative integer parameters);

(ii) at the edges 0 and 1, only the n (for V;) and 7 (for 17}) truncated linear
combinations of scaling functions that correspond to the reproduction on ]0, 1]
of the monomials of degrees « = 0,...,n —1 (for V;) and = 0,...,7 — 1
(for ‘7})

Then, the optimal orders of approximation n and 7 and the nestedness are pre-
served.

This strategy enables us, in addition, to take into account homogeneous bound-
ary conditions at the edges 0 or 1 for the primal or dual MRA. It suffices to retain in
the previous definition only the monomials satisfying the same boundary conditions
at the edges ¢ = 0,1. For our purposes, the dual MRA will satisfy homogeneous
Dirichlet boundary conditions at both edges while the primal MRA does not satisfy
any boundary condition.

Recalling that Supp ¢ = [—mg, m1], the primal MRA V; is defined as follows,
with CL = (CLo,CLl) = (—]., —1)5

(I)gnt = {80‘177,11: = (lsj)k”o’].]a k= mo —l_dUa .. a2‘7 —m1 — dl}a

0 0),d —1+ 7
o := {@g,i © = T T, o k) B0y,
, e Clat 1t}

1 1), -1 <
o) = {0 = ST (<1)%0%, Go.k) b2 ko
a:CL1+1,...,n—1}

V; 1= span (@go)) ® span (") @ span (@gl)).

)
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The dual MRA V; is defined similarly with d = (do,d;) and CL = (0,0). These
definitions of V; and ‘7] hold whenever j > jg for a coarse level jp such that there
is no overlapping of the subscripts in the definitions of ®¥** and CT?;’”

In order to obtain biorthogonal MRA spaces, the parameters d and d are chosen
to match the dimensions of V; and \7] separately at both edges, i.e., for e = 0,1

(3.4) me +de —n+ CL. = m, + d. — v + CL..

Then, the MRA spaces admit local biorthogonal Riesz bases ®; and <i>]» if and only
if two (one at each edge) fixed (independent of j) matrices are nonsingular, which
will always be assumed in the following. This property is shown in [DKU2] for
spline biorthogonal wavelets.

The biorthogonal bases ®; and d ; will include a fixed number of modified scaling
functions at the edges while all the other basis functions are scaling functions on
the real line ¢; j restricted to the interval.

The construction of local biorthogonal Riesz bases (¥, ¥;) of the wavelet spaces
W; == Vi N ‘7];, Wj = ~j+1 N le leads to a fixed number of locally sup-
ported modified wavelets at the edges while all the other wavelets are restrictions
of wavelets on the real line (3.2). In addition, the modified wavelets at the edges
are still dyadic dilate functions. For example, the primal wavelet basis writes

U, ={¢ja:a=0...,10}
U{tjr =220 — k)t k=wvo+1,...,20 —u; — 2}
U {wj,Qj—,B—l : 6 = Oa ceey V1}>
Wlth ¢j+1,a = \/§¢]’a(2) and ¢j+l,2j+1—ﬁ—l(1 — ) = \/iqu,Qj—,B—l(l — 2)
In order to prove the boundedness of the stabilizing operator defined in the next

subsection, we need to extend Meyer’s “vaguelette lemma” stated on the line to the
interval ]0,1[. Let us first recall the lemma on the line (see, e.g., [Me]).

Lemma 3.2. Let n be a compactly supported function such that n € H?(R) for
some o >0 and [,n =0. Then for all f € L*(R)

DA = k)P S I ey,

Jk€Z

or equivalently

1> diw2n(2. = ) |Fam S Y |dinl*

J k€L 3,kEZ

Lemma 3.3. Let 1 be a compactly supported function such that n € H°(R) for
some o > 0 and fRn = 0. Moreover, let 77((10), a=0,...,v, be compactly supported
functions of H°(]0,00|); similarly, let ng), B8 =0,...,v1, be compactly supported

functions of H? (] — o0, 1[). For j > jo, let us set K; :={0,...,27 — 1} and, for any
k EICj,
(21, ifk=0,... v,
nik =212 (2. — k), fk=vy+1,...,20 — 1y — 2,
0 (1=27(1 ), fk=2 —u —1.
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Then for all f € L?(]0,1])

(3.5) S i)l S 11220010
J2Jo,kEK;

or equivalently

(3.6) | Z dixnkll72qonp S Z |dj i .

J2Jjo.kEK; J>J0,k€EK;
Proof. Let f the extension by 0 of f to R. Applying Lemma 3.2 one has

2 i joke{vott,2i——2p [(Fmp)? < 2 kez I(f,29/2n(27. — k)2
{ ; 2112 2
s “f”fﬂ(R) = “f||L2(]0,1[)'

On the other hand, one can always extend the functions 17((10) ,nél) on the line so
that these extensions are compactly supported functions of H?(R) with vanishing
mean values. Applying again Lemma 3.2 to these extensions yields (3.5). Finally,
by transposition of the operator f — (f,7;,x);>jo,kek,, Property (3.6) is equivalent
0 (3.5). O

For example, applying Lemma 3.3 to the primal and dual wavelet bases W :
®j, U Ujsj, ¥y and V=&, U Usso ¥;, we deduce that they are blorthogonal
Riesz bases. Using the combination of inverse and direct estimates in V; and in-
terpolation theory will yield more precisely the stability of ¥ in Hg; (]0, 1[) for the
range 0 < s < min(7,n) and symmetrically for ¥ (see, e.g., [Co], [Dal]).

3.2. Pressure and stabilizing wavelets on the reference domain. Let us
consider the biorthogonal MRA in L2()

d
V@ =@, ~Q=®v

The corresponding wavelet spaces WJ(Q) (and similarly Wj (€2)) are spanned by the
tensor product wavelet bases

. d
= Q65 5=,

e€& m=1

where £ := {0,1}¢/{(0,...,0)} and ©5" = ®; if e, =0, O™ = U; if £, = 1.
We decompose Vj, () as

‘/jO(Q) = span{l} ® Mjo
and correspondingly

Vio () = span{do} & M,
with M jo L 1 and Mjo L ¢o. Then we choose

= M;, & P W;()

Jj>Jo
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so that the primal and dual pressure wavelet bases read
2. P p,Q 5p. . &P 5,0,
N U I CAEN e o U I I AN
Jj>jo Jj2jo

for a given choice of biorthogonal bases (%, @ @p Q) of (M, M ,). For the con-

Jo»
struction of the stabilizing wavelets at level Jo 1t is convenient to choose a ten-

sor product basis for <i>p S For example in dimension two, let us assume that
;= {pjmk=1,.. K } with [ @;x(s)ds = C279/2 for all k, then we set

Zp -
<I>§.’0 = {(@jor — Bk 1)®¢7]0’k'}k 2, K; k'=1,.,K;
U{(p]071®(¢]0,k/ @]O,k, 1 }k/._z K

In the following it is convenient to use the notation WP = {2 . X e £P},
~ PN ~ )Q ~
PP = (YR 1 X € LP}.

Stabilizing wavelets. Given any ’(/~J§Q € \]NEIP’Q, one has for at least one index (chosen
arbitrarily) m(A) € {1,...,d}

PE(#) 1= 0(Em(n) ® Q) &),
I#m(\)

with fO s)ds =0, él( ) = fl(l) =0 and ”é“LQ(]O,l[) ~ “gZHLQ(]O,l[) ~ 1. Then, we
define for all A € £?

(3.7) { :’:\z (0 ,...g{z/;f\’ﬁj...,O), where -
PY(E) = (fg 7 0(5)ds) © @y (1)
Each ZE:"\Q belongs to (HL(Q))¢ and satisfies the condition
(3.8) Vot =g g
Using these velocity wavelets, we introduce the stabilizing operator S defined as
gfj = Z,\e[:p @\JK’Q
Proposition 3.4. S is bounded from M to (HE(2))%.

Proof. By transposition (as for the vaguelette lemma), it is equivalent to prove that
for all v € L2(12)

Z S 10,0032 < lvl2,

i=1 xelp

For j > jo, let T; denote any one of the collections of L2(]0, 1)-functions ¥; or
277 —\If or 27 fo \I/ Slmllarly let =; denote any one of the collections of L2(]0,1()-

functlons <I> or 27 9 @ From Lemma, 3.3 and Hypothesis 3.1, the collections T;
satisfy for all fe L2 (]O 1[)

DTN S 1F1Z2q01p

Jj2Jo
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where (f,Y;) denote the vector of scalar products with the basis functions. On the

other hand, from the local supports of the basis functions of =; and Hypothesis 3.1,
one has for all f € L2(]0,1])

I 2D S 112 go.ap-

For |A| = j fixed, the collection of wavelets {8%.1/};’9} splits into (d? — 1) blocks,
each of them being a tensor product of at least one of the T; type and at most d—1
of the Z;-type. Hence, we can easily conclude with a tensor product argument. [J

Remark 3.5. As pressure wavelet bases, we could have also considered tensor prod-

ucts of univariate wavelet bases. Let (¥, ¥) be the univariate wavelet bases on the
interval, then we set

TP = (@70 @ @) UBPE, TP = (@4 @ 0;,) U dh.

The stabilizing wavelets are defined as in (3.7) where in this case, for A € Lr,
A= (ji, ki, 1l =1,...,d), the index m(\) is chosen so that it corresponds to the

maximum scale j;, I = 1,...,d. The boundedness of S is proven similarly by a
slightly modified tensor product argument. O

3.3. Extension by mapping. Let us assume that € is such that there exists a

regular one-to-one parametrization s from Q) to . We denote by J the Jacobian
matrix kL.

Let us set M = M = {gorx~t,q€ M} ~ L?(Q)/R; consequently, let My be
empty. The push forward

U = {wi’ﬂ ok™h A e LP)
is a wavelet Riesz basis of M and
WP = (| ok N e £7)

is its dual Riesz basis with vanishing mean value. The following lemma is a key
ingredient in the construction of the stabilizing wavelets.

Lemma 3.6. For any \ € LP, the Piola transform of 1/_;;9, i.e., the velocity defined
as 15%\ = |J]J_1(1/_;;’Q o k™) € (HH())?, satisfies
Vgl =9f  inQ.

Proof. By integration by part and a simple change of variable it is easily checked
that for any ¢ € L*(Q)

(¢, V- JK)L%Q) =—(V(go H),iﬁf\’ﬂ)(m(m)d =(go=r, 1/ji’Q)Lz(Q) = (¢, 9%) L2 (-
]

We can now state the following result.

Proposition 3.7. The stabilizing operator S defined by (2.8) and (2.21) satisfies
properties (2.9), (2.10) and (2.11).

Proof. The bound (2.9) can be easily obtained from Proposition 3.4 and the regular-
ity of the parametrization. Property (2.10) derives from Lemma 3.6 and Proposition
2.4. Property (2.11) is trivial. O
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3.4. Extension by domain decomposition. Finally, we consider the case in
which € is decomposable (not necessarily in a conforming way) into the union of
disjoint subdomains €;, i = 1,..., N with Q = Ufil Q;. Each € is the image of
the reference domain under a smooth mapping k;, as in the previous subsection.

For i = 1,..., N, let M; be the space of pressures in 2;, obtained from M
by the mapping procedure described above. Let W? and W? be the corresponding
biorthogonal Riesz bases. Then, we set

N
i=1

The wavelet Riesz basis WP of M is defined by taking the union of the local Riesz
bases extended by zero outside their subdomain of construction. The dual Riesz
basis WP is defined similarly. Note that this choice leads to discontinuous pressure
wavelets at the interfaces of the decomposition, whereas the dual basis functions
are in H} (). For simplicity we have taken the same reference wavelet basis WP
on M for each subdomain §;, i = 1,...,N. The analysis would obviously extend
to different choices of the reference wavelet bases for each subdomain.

Let My C L?(92)/R be the subspace of the pressures which are piecewise constant
on each subdomain. Then we set

M = My& M~ L*(Q)/R.

Note that the dual pressure basis W7 is orthogonal to M.

The stabilizing velocities are defined as follows. For each subdomain §2;, we
consider the velocities defined via the Piola transform as in Lemma 3.6 and we
extend them by zero outside the subdomain. It is immediate that the velocities so
obtained are in X , and Proposition 3.7 holds as well.

Thus, we are left with the inf-sup condition (2.6). We now give a fairly general
condition on the discrete velocity space X Av, which guarantees its validity. Taking
into account the definition of My, we can easily adapt to the present situation an
argument, based on Fortin’s lemma, which is classical in the finite element theory
(see, e.g., [BF]). For the reader’s convenience, we report the details.

We aim at defining a linear operator IIxv : XX Av such that

(3.9) Maedlg < I0llg, Ve X,
and
(3.10)

N

(V : (17— HAvﬁ),q)[;(Q) = Zin / V- (17— HAvﬁ) dz =0, Yq € M.
i=1 2

The latter identities hold if

(3.11) / HAvﬁﬁdyzf §-idy, VieX, i=1,...,N.
aﬂi aQi

In order to fulfill these conditions, let us set I';; := 0€Q; N 0€; and let us define the
index set

I:{(z,j)1§z<]§Nand lF273|>0}

Let us make the following
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Hypothesis 3.8. For any (i,4) € T, there exists 7(*7) € X o such that

”—’(M)HX' <1, g d) ig supported in Q; U Q;, / g9) 7 (6d) dy =1,
y;

where 7(49) denotes the normal unit vector oriented from €2; to Q;.

Let us define
= Ty

(1,7)€T

Then, it is immediate to check that (3.10) holds. On the other hand, setting
Z(i,5) :=={(l,m) € T:{l,m} N{i,j} # 0}, we have

Maed% = > > (/ ”ﬂ(”)dv)

(4,§)€T (ILm)€T

x (/ 7. dm d7> (g(i,j),g(l,m))i
Tim

S > ) l/”ﬁ’]d’le/ -7 4™ dy|

(4,5)€T (I,m)€Z(,5)

Yoo > @@ 19l e

(1,9)€Z (L,m)€Z(4,5)

By observing that card Z(4,7) < 1 independently of the number of subdomains, we

easily get (3.9). The constant implied by the symbol < is independent of A¥ and
the number of subdomains.

We summarize our result in the following proposition.
Proposition 3.9. Let Hypothesis 3.8 be satisfied, and let us define
Xo := span {79 : (i,7) € T}.
Then, the inf-sup condition (2.6) is fulfilled. O

4. NUMERICAL RESULTS

We aim at solving the Stokes problem in the square 2 = QO =)0, 1[2. Although the
main interest of our stabilization method concerns its use in an adaptive framework,
hereafter for simplicity, we shall only consider uniform discretization spaces Xpv =
X J, for the velocity and My» := M, for the pressure, where J, and J;, are suitable
level indices.

Precisely, the velocity discretization is X J, =Xy, x Xy, where X, is the Q
finite element space (with Hi boundary conditions) on the dyadic grid {(277vk,,
2= ky)s ky,ky = 0,...,27}. Equivalently, X, is the tensor product MRA space
obtained from the spline generator on the line ¢? := (X[O,l])*z. A wavelet decom-
position is obtained on X ;, from the spline biorthogonal wavelet generator on the
line 9™ which corresponds to the choice of a dual generator ¢p>™ (7, being an
appropriate index, see [CDF]).

As far as the pressure is concerned, let (V}, X~/J) be the biorthogonal MRA on
the interval [0, 1] obtained, as described in Section 3, from the spline biorthogonal
generators on the line (¢2,¢>™) (for a suitable 7i,), with dy = d; = 2 and dg =
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d; = 0. This choice of (d,d) is imposed by the Hi boundary conditions on the
dual MRA Vj. It results that the dimension of the pressure MRA on the interval
is 27 — 1 rather than 29 + 1. The pressure space My, ~ V; ® V; /R and its dual

My, = {q € YN/JP ® YN/JP, fQ(j = 0} are obtained from these MRA on the interval
as described in Section 3. We shall use in the following experiment tensor product
stabilizing wavelets 1/_;;9 as given by Remark 3.5.

About the level indices, let us observe that for J, = J, := J, the nonstabilized
approximation admits no spurious mode (due to the dimension 27 — 1 of Vj),
although the inf-sup constant behaves like 277. Hence, to illustrate the efficiency
of the stabilization, we will rather be interested in the cases J, > J, for which the
nonstabilized approximation is not well posed.

The velocity and pressure test and trial functions are expressed in their scal-
ing function bases. Only for the computation of the stabilizing term, we resort to
wavelet decompositions of the pressure and the auxiliary velocity. The resulting as-
ymptotic complexity of this term is O(N (log(N))?) where N := 22max(Jo.»)  Note
that it could be further reduced to N by using an appropriate wavelet compression
(see, e.g., [DPS]).

The wavelet bases scalar products involved in the stabilizing terms are computed
within round-off error solving small eigenvalue-eigenvector problems (see [DM]).
For that purpose we need a third auxiliary MRA obtained from the compactly sup-
ported spline biorthogonal generators on the line (@', ¢ +1) (see [CDF] for their
definition). The corresponding wavelets (1711 hL»+1) satisfy the properties

o 1 /= ... d B -
1,Ap+1 _ - 2,y t 2,hp+1 _ —4 1,7y
(02 (z) 4/_ YR (t)dt, WP

(see [L] for details).

Let us denote by A, G, D and S, respectively, the matrices in scaling function
bases for the Galerkin Laplacian, gradient, divergence and stabilizing operator S ,
respectively. The Galerkin matrix in scaling function bases of the operator H :=
—§*A from M to X’ is denoted by H.

By construction, the matrix C := DS is equal to 777, where 7 is the trans-
formation computing the components of the pressure in the wavelet basis from its
components in the scaling function basis. Hence, the matrix-vector products CQ
and C~1Q are computed in O(2277) operations by two fast wavelet transforms.

With these notations, the stabilized Stokes system amounts to finding vectors U
and P such that

AU +GP = F
DU - §HU +6CP = —6SF.

In order to solve this system efficiently, we eliminate the pressure in the continuity
equation and substitute the pressure in the momentum equation. Furthermore,
in order to recover the symmetry we add the consistent term —H7C~'DU to the
resulting equation. This yields a symmetric system for the velocity U, namely

(4.1) (A — %gc—lp +GCYH — HTC—1D> U=F+GCtSTF,

that can be shown, as in Section 2, to be positive definite provided the stabilizing
parameter ¢ is sufficiently small.
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The pressure is recovered solving the equation

(4.2)

CPz—%DU+HU—STF,

which is accomplished by two wavelet transforms.

It is of primal importance to study the dependence of the discretization error on
the stabilizing parameter §. To this end, we solve a Stokes problem (with nonzero
right-hand side) having as exact solution u(z,y) = v(z,y) = (1 — z)y(1 — y) and
p(z,y) = e*°s(22+39)  In the construction described above, we fix 7, = 2 and

np, = 6 and we vary the values of (J,,Jp). Figures 1 and 2 exhibit the resulting
error behavior. We can make the following observations.

(i)

(i)

(ii)

The minimum value of the parameter § for which the operator is positive
definite is close to 0.01 independently of the discretization. This latter value
of § always results in the best (or nearly best) approximation for the velocity.
For the discretization (J, = J,J, = J + 1), the discrete divergence free
functions, i.e., the velocities ¥ € va such that (V-7,q) =0, Vg € My, are
indeed exactly divergence free, so that the consistency error related to this
constraint vanishes. Consequently, when the pressure approximation error is
larger than the velocity approximation error, we expect a much lower velocity
error for the discretization (J, = J,J, = J + 1), than for (J, = J, = J)
or even (J, = J, = J +1). This is indeed the case in the numerical results
displayed in Figures 1 and 2. In particular, the consistency error clearly
dominates Figure 2-(E) (when compared with Figure 2-(F)), while this is not
the case for Figure 2-(B).

For small § (no stabilization effect), the discretization (J, = J,J, = J+1)

exhibits spurious modes for the pressure. They can be filtered out setting
§ := 6, =00 in (4.2), as shown in Figure 1.
The velocity system is solved by a conjugate gradient algorithm with a diago-
nal type preconditioning in the velocity wavelet basis (see, e.g., [J], [DK] and
[CM1] for numerical experiments). This ensures that the condition number
of the preconditioned matrix is bounded uniformly with the scale parameter
Sy

For § much smaller than 0.01, the convergence is very slow although the
system is positive definite. This is due to the term —% GC~'D, which consid-
erably deteriorates the condition number of the system that roughly behaves
after preconditioning like %.

For § larger than 0.02 — 0.03, the system is no longer positive definite and

the residual strongly oscillates. Thus, in order to investigate these cases, a
direct solver must be used.
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FIGURE 1. Dependence on § of the velocity H} and pressure L2
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