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CONVERGENCE OF A SPLITTING METHOD OF HIGH ORDER
FOR REACTION-DIFFUSION SYSTEMS

STEPHANE DESCOMBES

ABSTRACT. In this article, we prove the convergence of a splitting scheme of
high order for a reaction-diffusion system of the form u; — MAuw + F(u) =
0 where M is an m X m matrix whose spectrum is included in {z > 0}.

This scheme is obtained by applying a Richardson extrapolation to a Strang
formula.

1. INTRODUCTION

Let N, m be two integers. We consider the reaction-diffusion system:

a—u—MAu—l—F(u)zo, reRN, >0,
(1.1) ot
w(0,z) = ug(z), z € RN,

We suppose that u belongs to R™, that F is a C® function from R™ to itself
satisfying

(1.2) F(0) =0

and that M is an m X m matrix whose spectrum is included in {9z > 0}. Let L be
the space L2(RM)™NL®(RY)™. We assume that the initial condition ug belongs to
L and that (1.1) has a unique solution belonging to C([0, 7], L) for all 7 > 0. We will
denote u(t,.) by T%ug, that is to say T* is the flow associated to (1.1). For example,
systems of type (1.1) cover the case of reaction-diffusion systems with symmetric
positive definite matrix and the case of complex Ginzburg-Landau equations. We
are going to prove the stability and convergence of a splitting method for (1.1).
This method is based on the classical decoupling of the diffusion and ODE parts
of (1.1), leading to a Strang’s formula, which we extrapolate. More precisely, given
vp and wq in L, we introduce the following equations:
Ov

EZ_MAUZO’ zeRN t>0,
(1.3)

v(0,z) = vo(z), x=€RN
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and

a—w+F(w):0, zeRN, t>0,
(1.4) ot

w(0,z) = wo(z), z€RN.

Let X'vy and Ytwp be the respective solutions of (1.3) and (1.4). The motivation
for the splitting method that we consider is essentially numerical; the numerical ap-
proximation of the solution of a heat type equation and the numerical approxima-
tion of a scalar ordinary differential equation are easy, but a numerical integration
involving the two operators together is bothersome for the following reasons: if we
opt for an explicit scheme, the time step At is limited by O(Az?); if we choose an
implicit scheme, we have to solve a large system of nonlinear equations which re-
quires the updating of the linearized operator at each time step, a computationally
expensive operation.
The Strang approximation formula ([14], [15]) is defined by

(1.5) Ztu = X2yt X2y,

and is of order two, at least formally. For example, numerical results in the case
of complex Ginzburg-Landau equations with periodic boundary conditions are pre-
sented in Goldman and Sirovich [7]. Unfortunately, Q. Sheng has proved in [12] that
it is generally impossible to generate automatically stable schemes of order higher
than two. More precisely, a linear combination with positive coefficients of products
of exponentials of the form exp(yAt),exp(6Bt) when « and § are positive, and A
and B are dissipative is at most an approximation of order two to exp(¢t(A + B)).
As in Goldman and Kaper [8], we propose a scheme of order greater than 2. This
scheme is obtained by applying a Richardson’s extrapolation to Z¢ and is given by

(1.6) Wty = %Zt/zzt/% - %Ztu.

It is formally of order 4 [5] and the implementation of this scheme in the case
of complex Ginzburg-Landau equations with periodic boundary conditions is pre-
sented in Descombes and Schatzman [1]. The comparison between error and CPU
time favors this scheme over Strang’s classical scheme (1.5). Thus the purpose of
this paper is to obtain the stability and convergence of this scheme. But the sta-
bility of higher order methods requires a much more refined analysis than for (1.5),
which we undertake here.
Denote H the Hilbert space LZ(R)™. We need a contraction property of the
operator Xt in H, which is not true if we use the canonical Euclidean scalar product.
Therefore, we equip the space R™ with a noncanonical scalar product. Since M is
" a matrix whose spectrum is included in {:Rz > 0}, we define the following matrix:

+oo
(1.7) S = / e M g Mg,
0

Denoting by 1 the identity of any algebra of operators, it can be easily checked that
S is a symmetric positive definite matrix satisfying

+o0 d
(1.8) SM + M*S = —/

—sM* —sM
— =1.
0 dS (e € )
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We denote (.|.) the Euclidean scalar product in R™; for any vector w € R™, w 3# 0,
(1.8) implies

(SMw|w) = (W|M*Sw) = (ww) — (SMw|w),
and therefore
(SMwlw) = %(wlw) > 0.

Hence there exists a constant 8 > 0 such that for any vector w € R™,

(1.9) (SMw|w) > B(Sw|w).
From now on, the scalar product of two vectors w, n in R™ will be w-n = (Sw|n)
and the corresponding vector norm is denoted I | The space H is equipped with

the scalar product defined for all v and w in H by

(vlw)g = / v-wdz,
RN

the associated norm is denoted |.|;r and the operator norm |.|z(gy. For all v in H
and ¢ > 0 the operator X satisfies

(1.10) lXtU|H < |U|H.

Let us introduce some other functional spaces: the space L>™(R™)™ is equipped
with the norm |.|o0; H*(RY)™ and H2(R™)™ are the usual Sobolev spaces, equipped
with the norms |.| g1 and |.|g2. Finally, the space Ly denotes the subspace of L made
out of functions which belong to C*4(R™)™ whose first four derivatives are bounded.
In this article, we use the classical multi-index notation: if a = (ay,...,0,) € N7,
lo| = a1+ ...+ @, and 0% = 97" ... 9%~. The main result is Theorem 4.11 which
can be stated as follows: for all ug in Ly and for all 7 > 0, there exists C and hg
such that for all h € (0, hg], for all n such that nh <7

(W) wo = T | < Ch 1 hlfuo| .

We observe that this result is slightly different from the one obtained in [2]: here
we work with a rather general system of reaction-diffusion but with stronger as-
sumptions on the initial data; in [2], only a scalar reaction-diffusion equation was
considered, but L* estimates were obtained. More precisely, for a scalar reaction-
diffusion equation of the form

ou %
o Tt ) =0, zeR, >0,
U(O,l)) = Uo(iﬂ), z€R,

with f a Lipschitz continuous function belonging to C*(R) with bounded derivatives
and ug a continuous function bounded over R, we have shown that the difference
between (W")" ug and T™ug in L-norm is in O(V/h).

This article is organized as follows. In Section 2, we prove some results on the
operators —MA and Xt = eM2, In Section 3, we consider the linear case of
(1.1), where F'(u) = Vu and V is bounded; in this case the explicit solution of
(1.1) is given by efMA2=V)yy. We deduce from properties of sectorial operators
an estimate on the difference between e!MA=V) and Zt = tMA/2g—tV tMA/2 iy
operator norms L£(H) and L£L(H?, H). In Section 4, we prove Theorem 4.11 with
the help of a comparison with the linear case.
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Remark 1.1. Theorem 4.11 remains true if F' depends also on the space variable.
We suppose that F = F(u) for simplicity.

2. SOME PROPERTIES OF THE OPERATOR—M A

In this section, we begin by recalling the definition of sectorial operators, as given

by Henry [10]. For 6 in (0,7/2) and real a, we denote S, ¢ the subset of C defined
by

Spo={CeC:0<]arg((—a)|<mand (#a}.

Definition 2.1. A linear operator C in H is called sectorial if it is closed, densely
defined, and if there exist #, a and My > 1 such that Sg ¢ is included in p(C), the
resolvent set of C, and such that for all ¢ in S 9

(2'1) I(C‘C)_l‘ﬁ(H) < MO/‘C“""

For any ¢ in (6,7/2), we denote by I' a contour in S, ¢, which verifies I'(—s) =

I'(s). Let us define Dy by
Dg: s— se',

and we also request I' to be asymptotic to Dy as s — +oo (see Figure 1).
From Henry [10], we know that if C' is a sectorial operator in H, then —C'is the
infinitesimal generator of an analytic semigroup {e~*“};>0, where

(2.2) 0 = 1 [ et e _ o)t ac,

27 T

FIGURE 1. The path I" in the complex plane.
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Given an m x m matrix M whose spectrum is included in {{Rz > 0}, we define
the operator A by

D(A) = H*RM)™, A= -MA,
and we have the following result.
Theorem 2.2. The operator A is sectorial in H.
The proof depends on the following lemma.

Lemma 2.3. There exist 6y € (0,7/2) and a constant C > 0 such that, for all
(e So’go.‘

(2:3) sup (¢ = M) emy < C/K|
and

-1
(2.4) igg |t(¢ —tM) |B(Cm) <C.

Proof. Let us denote by i1 an eigenvalue of M such that |argpui| > |argu| for
all © € o(M). We introduce € > 0 such that |argu| + € < /2, and we choose
0o = |arg pa| + €.

We now suppose that ¢ belongs to Sy g, and we consider w and % in R™ such
that

(2.5) (¢ — tM)w = 9.

Our purpose is to show that there exists a constant C' > 0 such that |w! < C|9|/|(].
We assume that w # 0, we take the scalar product in the complexified space C™
with w, and we take the imaginary and the real part of this scalar product to obtain

(2.6) |S¢|w] < |9
and
(2.7 RCw - w—t(SMw|w) =R (¢ -w) .
We infer from (1.9) and (2.7) that
(2.8) (R¢ = tf)|w] = —|9l.
If R¢ < 0, we deduce from (2.8) that
(2.9) [RCJw] < ]
We add the square of (2.6) and (2.9) and we find
V2l
w| < .
=g
If R¢C > 0, then |S¢| > |¢] sin By, and we infer from (2.6) that
%]
< .
1< sty

Therefore (2.3) is established with C' = max(v/2, 1/ sin ). Finally, we deduce (2.4)
from (2.3) and the triangle inequality. O
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Proof of Theorem 2.2. Let u belong to H and let
Fe) = [ e
RN

be its Fourier transform; here (x.£) is the duality product of z and £. It is a well
known fact that

F(Au)(€) = —4m?[E2F (u) ().

For 0y defined in Lemma 2.3, we deduce that the resolvent set of A is included in
So,6,- Moreover, for all ( € Sp g,, we have

F(C+MA)Yu)(€) = (¢ — 4n|€]* M) " F(u) (),
and it follows from (2.3) that
-1
(¢ + MAY |y < O/
This concludes the proof of Theorem 2.2. O
We will need also estimates on 8;(¢ + MA)~! and 9;;(¢ + MA)~!

Lemma 2.4. There exists a constant C > 0 such that for alli and j in {1,... ,n},
for all ¢ € Sp,, and for all v € H, we have

(2.10) |9:(¢C + MA)~ u[H_ C{g\lu]H and  |8;;(C+MA)~ u|H<ClulH

Proof. Since
1) PO ¢+ MO )|y < sup (16716 = 167 ey ) ol

the second inequality of (2.10) is a consequence of inequality (2.4). For u in H, we
have
IV(C+ MA) ulfy < [A(C+ MA) ulg|(C+ MA) uly
C
< —lulf

e

and this proves the first inequality of (2.10). O
We now prove the regularizing effect of the operator X* = etM4,

Lemma 2.5. There exists a constant C > 0, such that, for all w € H, all j €
{1,...,n} and all t > 0, the following z'nequalz'ty holds:

(2.12) |0; (" u)|, < \/_|u|H
Proof. Since, for all j € {1,...,n}
F (9 (M5)) (§) = —2migze* MU F(u) (),
it is sufficient to show that there exists a constant C > 0, such that
1%
BR™) TVt

If we let v/t€ = 7, it is also sufficient to see that

—M|n|?
sup . nle ‘ S C.

IN

ap [l
EER™
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For ¢ in R™ and s > 0, denote v(s) = e *M. Tt follows from (1.9) that ~y(s)
verifies

S + Bh(s)F <0,

thus

Y (s)]? < e[y,

and we infer that

sup ||77|€_M|n|2| < sup <|n|e—5|n|2) <C.
neRm B(R™) neRm
This concludes the proof of Lemma 2.5. O

Finally, we give the following result, which can be deduced from Theorem 1.4.3,
page 26 of Henry [10]:

Lemma 2.6. Let u belong to H2(RY)™. There exists a constant C > 0 such that
for allt >0

(2.13) |etMAu - u|H < Ctlu|ge.

3. ESTIMATES ON THE LINEAR CASE

In this section, we consider the linear case of (1.1); more precisely, we consider
the equation

%—MAU-I-VUZO, zeRN t>0,
(3.1) ot
u(0,z) = ug(z), z e RY,

where V is a bounded function. We deduce from a representation formula of
7% = tMA=2VetMA an estimate on the difference between e2(MA=V) and
etMAe=2tV tMA YWe now introduce some classes of functions V.

Definition 3.1. We denote V*(c) the set of functions V of class C* such that there
exists ¢ > 0 such that for all z € RY and all & € N* with 0 < la] < 4,

0%V (z)| <c,

and we denote V*°(c) the set of functions V of class C* belonging to V*(c) and
such that 0*V is of slow growth for |a| > 5.

Let V5, 1 < i,5 < m, be m? elements of V*°(c) and let us denote V by the
matrix

V = (Vijhici,j<m.

With a slight abuse of notation, we will say that V belongs also to V*>°(c). We

identify V' and the matrix multiplication by V' and introduce the operator B defined
by

D(B)=H, B=V.
It follows from Definition 3.1 that B is bounded in H and thus sectorial in H.
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3.1. A representation formula for Z2?!. We assume that V belongs to V>°(c).
We have shown that the operator A = —MA and B = V are sectorial. Without

loss of generality, we suppose that the number a of Definition 2.1 vanishes also for
the second operator

(3.2) a=0.

This assumption will be dropped at the end of this part.

Let Hy be the Schwartz space S(RY)™, which is a dense subspace of H. We
notice that AHy and BHj are included in Hy. Moreover, for all z in p(A) (resp.
in p(B)), (z — A)"'Hy (resp. (z — B)"1H,) are included in Hy. For ¢ € C3,
¢ =(¢1,¢2,C3), we let I¢ = ¢y + 2¢2 + 3. It follows from (2.2) that, for all u € Hy,
we have the representation

Z%u = %;2)3/1“ - e (G + MA) T G - V) (¢ + MA)  u dC,

where I'1, I'y, '3 are paths like in Figure 1. We also have the following result.

Lemma 3.2 (Dia and Schatzman [3]). For all u € Hy, we have

(3.3) d%ZZt“ +2(V — MA)Z%u = R(t)u,
where

1
3.4 R(t)u = ———/ et EFy(¢)ud
< ) ( ) (271'2)3 Iy Xy T O(C) C

and Fy(C) is defined by

Fo(Qu=—2(G+MA) 3 (G 4+ MA) (G = V)7 (G + MA)
(3.5) (G AMA) T (G~ V) T 2 (G = V) P (G MA)
(G MA) s (G 4+ MA) T (G = V)7 (Ga+ MA)
with
(3.6) Y2 = [V, [V, MA]}, 5 = [MA, [MA, V]
3.2. Applications of the representation formula. We infer from (3.3) and

Duhamel’s formula that for all v in Hy

¢
(3.7 72y = 2(MA=V),, +/ eQ(t_S)(MA—V)R(S)u ds.
0
The following theorem enables us to estimate the function R(t)u. We recall that
V(c) has been defined at Definition 3.1.

Theorem 3.3. There exists a constant C(c) such that for all V € V*°(c) satisfying
(3.2) and all w € Hy, the following estimate holds:

(3.8) vt €]0,1], \R(t)uly < C()|ula.

Remark 3.4. The principle of the proof is identical to the principle of the proof
given in [4], but the result is different since the commutators are of higher order.
The difficulty is seen in the analysis of (3.28) and (3.33) below. Thus, instead of
an estimate |R(t)|zz) = O(t), we find an estimate |R(t)|, ) = O(1).
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We will prove Theorem 3.3 in several steps. We perform the change of variable
(21,22, 23) = t(C1, (2, (3) and obtain

1 dz
3.9 Rtu:———,——/ e % Fy(z/thu —.
( ) ®) (2mi)? Dy xtTy Xt o=/t t3

Thanks to Cauchy’s Theorem, we can rewrite (3.9) under the form

1 / _ dz
—— e~ Folz/t)u —.
(2m)3 Jp, xryxrs ( t3

Using the decomposition of Fy given in (3.5), we write

B = (e (ern (o

(3.10) R(t)u =

t

P (E) = (rma) () () (5 o)

P = (3 eae) " (Fema) " (2-v) 7 (2 o)

Without loss of generality, we assume that, for all z € I'y x I'y x I's,

(5)-a(o) o (eme) " (79) (ome)

(3.14) lzi| > 1, i=1,2,3.

This relation leads to a simplification of the proofs in [4]. The proof of Theorem
3.3 depends now on two lemmas:

Lemma 3.5. There exists a constant Ca(c) such that, for all t €]0,1], z € T'; x
Fg XFg anduEHo

[Py (z/t) ulg < Ca(e)t* |ulm.
Proof. We calculate the commutator v, appearing in (3.12). For all & € N™ such

that [ < 4, let us define the matrices 9,V by 0,V = (0aVij)1<i,j<m- It is clear
that

(3.15) [A, V] =AV +2 i(an)&,
(3.16) A, V], V] =[AV, V] +2 i[aiv, V]0; + 2i (B;V)?.
Since

v = [V,[V,MA]] = [[MA,V],V] = M[[A, V], V] +2[M, V][A, V] + [[M, V], V]A,
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we deduce from (3.15) and (3.16) that

2 =M[AV, V] +2) " M (9;V) +2[M,V]AV

+ ﬂi(M[aiv, V] + 2[M, V]&V)Bi + M, V], V]A.

The important piece of this decomposition of 5 is the last one: it would vanish in
the scalar case, the fact that we have a system makes the problem more difficult.
We infer from this decomposition that there exist bounded functions N and N,
i€ {1,...,n}, depending only on M and the first two derivatives of V such that

(3.17) Y2 =N+ iNiai +[[M, V], V]A.

i=1
We use this decomposition to estimate Po. We infer from (2.1) and (3.14) that

N(Z—2 —V>_2 (fti +MA)_1u

(3.18) :

< C(o)t3|ulg.
H
We now have to estimate 0;(2o/t— V) ~2(23/t+ MA)~1u. We recall that for general
operators C, D and ¢ in C, we have
(319)  C-D)'=(-D)C+(-D)CDI(C-D)"
Since [0;, V] = 8;V, we deduce the following relations:

(320) & (272 - V)_l - (272 —V)_lé‘i + (%2 - V)_l av (%2 —V)_l,

(B21) o (2 - V>_2 = (272 - V)_2 8 + (272 - V>_2 oV (272 - V>_1
L) o (2 )
We infer from Lemma 2.4 that for all 4, 4 in {1,...,n},

0; (z%—l—MA)_lu

< C(e)Vt|ulg;
H

thus we deduce from (3.21) that

< C(e)(t* + t%2)|u) &,

vau(3 V) (2 vma)

H
and so

1

(3.22) Nid; (%2 - V) -~ (Z—; +MA) w

< C()t®?|uly.
H

Finally, we have to estimate A(zq/t — V)~ 2(23/t + MA)~'u, we deduce from (3.19)
that

(323) A (Z—f . V>_2 = (%2 —V>_2A+ (%2 —V)_2 (A, V] (%2 —V>_1

SRRSO
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We infer from (2.1) and Lemma 2.4 that

(Z—2 —V)_ZA (%3 —i—MA)_lu

(3.24) :

< C()t?|ulg.
H
Let us denote
@ ()= (2-r) N (E ) (G e ()
We deduce from relation (3.15), decompositions (3.20) and (3.22) that
@ (3) (F+ma) o

It follows from (3.17) and estimates (3.18), (3.22), (3.24), (3.25) that there exists
C'(c) such that for all ¢ €]0,1], z € I’y x 'y x I's and u € Hy. We have

z92 -2 zZ3 -1 2
Y l{—-V —+MA) ul <C()t*|ulg.
( t ) ( t ) .
We now deduce from (2.1) and the definition of P, that there exists Ca(c) such that
z
z < 4
‘Pg (t) U’H < CQ(C)t |UIH

This concludes the proof of Lemma 3.5. O

(3.25)

< C(c)t?’\/ﬂulH.

Lemma 3.6. For j € {1,3}, there exists a constant Cj(c) such that, for all t €
]0,1], z€l'y xT'y xI'y (l’ndUEH(),

(3.26) |Pj (z/t) ulm < Cj(e)t|ul-
Proof. We first develop the commutator

We notice that this operator involves generally a bilaplacian, as soon as the problem
under consideration is not scalar. We begin with the case j = 1, let us define

Ny= (2 o 2(21 IR
(3.27) Ql(t>u - ( L MA) (M, [M, V]]A ( £ +MA) ( : V)

z3 -1
We infer from Lemma 2.4 and (2.1) that
(3.28) Q1 (/1) ulg < Cle)t|uln
Consider now the operator L defined by

L= M2(A, (A, V] + MM, [A, V]JA + MIA, [M, V]]A.

Using (3.15), we deduce that there exist bounded functions N, N?, N}, i in
{1,...,n} and N;j, i and j in {1,...,n}, depending only on M and the first four
derivatives of V such that
(3.29) L=N+ Y N+ > Nydj+ Y, NaA

1<i<n 1<4,5<n 1<i<n
We infer from (2.1) and Lemma 2.4 that
(3.30)

Cvara) s (o)™ (2 0) " (o)

<C(e) BVt u|g.
H
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Relation (3.26) concerning P is now a consequence of (3.28) and (3.30).
There remains to consider the case of P;s. The proof is very similar: we first
study the function

ANy (2 - 2 (2 )
Qg(t)u—(t +MA> (M, [M,V]|A (t +MA) (t v)
z3 -1
x (? + MA) u,
that we rewrite under the form
z _ Z1 -1 Z1 -1 z9 -2
QQ(;)u_ (7+MA> (M, [M,V]]A(7+MA) A(7 —v)
z3 -1
It follows from (3.23) that Q2 admits the decomposition Q2(z/t) = Q3(z/t) +

631 Qs(D)u= (2 +nma) via(2+ ma)” (2-v) ”

t t
2 -1
% A (?3 + MA) u,
and Q4(z/t) is a function which can be estimated thanks to (3.25) by
(3.32) Qa (2/t) ulr < C()t*ViE|uln.
We also notice that
(3.33) Qs (2/t) ula < Ct3lulg.
We return to the decomposition of L given in (3.29) and let
L =1L+ Lo,
with
Ly=N+ Y N+ > Nydy and Ly= Y NOA.
1<i<n 1<i,j<n 1<i<n
We infer from (2.1) and Lemma 2.4 that
(3.34)
(Z+ MA>_1 L (2 + MA)_l (Z-v) - (2+ MA>_1 Wl <Ol
and deduce from (3.22) that
(3.35)
(eaes) () (3] 3 oa) ] s

Relation (3.26) for P is now a consequence of (3.32), (3.33), (3.34) and (3.35). [

Proof of Theorem 8.3. It follows from Lemma 3.5 and Lemma 3.6 that there exists
a constant such that, for all ¢ €]0,1], z € 'y x I'y x '3 and u € Hy,

|F (2/t)ulr < C()t*|ulm,
and with the help of relation (3.10) this proves (3.8). O

Now we can prove the following theorem.
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Theorem 3.7. There exists a constant C(c) > 0 such that for all elements V of
V> (c) satisfying (3.2),

vt e [0,1], ‘etMAe—QtvetMA _ eZt(MA—V)‘ - < C(olt.
L(H

Proof. We can deduce from (3.7) that for all u € H,
t
Z%y — th(MA"V)u’ < / ‘62(t_s)<MA_V)R(S)U’ ds.
H 0 H

Since the operator V is bounded in H, the operator —MA + V is a bounded
perturbation of a sectorial operator, and so is sectorial. This proves the existence
of a constant C(c) > 0 such that for all ¢ € [0, 1],

< C(e).

’€2t(MA—V)'
L(H) —

Then we deduce that

¢ ¢
/ |2t MA=VI R(g)u| gds < C’(c)/ |R(s)u|gds,
0 0
and thanks to Theorem 3.3, we obtain that for all u € Hy and for all ¢ € [0, 1]
(3.36) ‘(z?t - eZt(MA_V))u‘H < C(O)t|ulg

Since Hy is dense in H, (3.36) holds for all u € H, thus we have

‘Z2t _ th(MA——V)’ < C(e)t.

L(H)

The condition V' € V*°(c) satisfying (3.2) can be weakened:

Theorem 3.8. There exists a constant C(c) > 0 such that for all elements V of
Vi(e),

(3.37) vt € [0,1], etMA 2V tMA _ (2t(MA-V) . < C(e)t.

Proof. If we suppose a # 0 and nonnegative for example, we let U = V — ¢ and we
can see that

ePMA 26U (tMA _ 20t tMA —tV tMA 2(MA-U)

and 2at eZt(A—V)’

=€

so the result remains true. Finally, for V in V4(c), as in [4], we can construct a

sequence V;,, belonging to V*°(c) which tends to V, and we can pass to the limit in
our estimates. U

The estimate of Theorem 3.8 is optimal, as is shown in the following result.

Theorem 3.9. There exists a choice of M and V such that there exists a constant
C > 0 such that, for small t,

(338) etMAe—QtVetMA _ e?t(MA—V) > Ct.
L(H)
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Proof. We suppose that m = 2 and choose

w0 =)

Let « belong to H and denote P(t)u = eMBe=2tVetMAy _ 2HUMA=V)y  The
Fourier transform of P(t)u is given by

FP(t)u)(€) = (6—47r2t1v1|§|2e—2tVe—47r2tM|£|2 _ 6—87T2tM|£|2—2tV) Flu)(€).
Thus the operator norm of P(t) for ¢t > 0 verifies

42 2 _ a2 2 g2 2_
]P(t)'g(H) — Su};’v |6 4mitM €| e 2tVe 4n tMIg)* e 8 tM|&| 2tV|B(]Rm)~
£ER

We choose ¢ such that 27|¢| = 1/+/t and we deduce that
lP<t)l£(H) Z le—Me—QtVe—M _ 6_2N1_2tV|B(Rm).
An elementary calculation shows that

o3 -2 _ -4
oM =2tV =M _ —2M=2tV _ (8 2e +g e ) ,

and so our assertion is proved. O

In [9], [4] and [11], which give scalar results, estimate (3.37) is replaced by an
estimate O(t'7¢) with ¢ > 0. However, in the vector case Theorem 3.9 implies
that estimate (3.37) is optimal and does not suffice to prove convergence. However,
it is possible to go around this difficulty by considering Z2t — e2t(MA=V) a5 an
operator from H2(RM)™ to LZ(RN)™. In the sequel, this loss of regularity will be
compensated for by the regularizing property of etM%.

Theorem 3.10. There exists a constant C(c) > 0 such that for all elements V of
V4,
(3.39) vt € [0, 1], MAB =2V IMA _ 2H(MA=V) < C(e)t?.
L(H4,L2)

Proof. In a first part, we assume that V belongs to V*° and satisfies (3.2). Let u
belong to H2(RM)™. Using the proof of Theorem 3.3 and that |u|g < |u|ge, it is
sufficient to estimate (3.27), (3.30), (3.31) and (3.35). For all, we must obtain an
estimate with a power of ¢ greater than 4 instead of 3 or 7/2.

We study (3.27) and (3.31); the analysis of the other expressions is quite similar

and is left to the reader. Assume that z3 belongs to I's. Since u € H2(RM)™, we
infer from (2.1) that

‘A (%3 +MA>_1u <

(%3 -I-MA)_lAu

S C’tlule

H H

Thus for (3.31), we obtain

Qs (2/t) ulmr < C(e)t*|ul .
For (3.27), we recall that

@ (2)o= (rna) prnvian( o) (2 -v)

X (Z—: —i—MA)_lu.
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Denote

Qi1 (%)u — A (%1 + MA>_2 (%2 - V) B (273 n MA>_1 u.

We infer from (3.19) that

A(F ) (Frma) Tu= (Zv) A (T ema)
() Bz
X (z?g + MA)_1 U.
Thus
‘Ql,l (%)U’H < C(e)t®|ulg2,

and we deduce that
IQl (%)u‘H < C(O)t | 2.

Finally, following the method of [4], Section 3, if V belongs to V4, the result remains
true. O

4. PROOF OF CONVERGENCE

In this section, we prove the convergence of our scheme. In a first part, for
uo in H, we compare Z'uy and Tfug in H-norm and deduce an estimate on
Wtug and T'ug in H-norm. In a second part, we use this estimate to study
|(Wh)nu0 — T"Pugly.  Since for all 7 > 0 the solution of (1.1) belongs to
C([0,7],L), we can reduce the proof to the case where F is a C® function with
compact support and satisfying (1.2). We denote 7 a constant greater than the
maximum of the first three derivatives of F' and such that, for all v and v in H,

(4.1) |F(u) = F(v)lg <~lu—vla.

Since, in this case, F' is a Lipschitz continuous function, we begin by recalling some
properties of the flows Y* and T?, defined in the introduction.

4.1. Some properties of Y and T" in the Lipschitz continuous case. We
infer from Gronwall’s Lemma the following result.

Lemma 4.1. There exists v such that for all ug and vo in L and all t > 0,
(42) YtU,Q - Yt’UolH S 6’% IU() — ’U()‘H .

We have the same result for the flow T%; a proof can be found in Smoller [13]
Theorem 11.15 p. 117.

Lemma 4.2. There exists v such that for all ug and vg in L and all t > 0,
(43) ‘TtUO - Tt’U()lH < e’yt |u0 - ’UolH .
Remark 4.3. The same result holds in L®-norm with Ce?* instead of 7%,

Finally we recall the regularizing effect of the flow T:
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Lemma 4.4. There exists a constant C > 0 such that for all up € L, all t >0

CeCt CGCt
(44) thuOlHl S 7|U01H and ‘TtUO‘Hz S ——t—lu0|H.
Proof. Using the regularizing effect of the operator e"™% given in Lemma 2.5, the

proof is identical to the proof of Proposition 2.1 of [6], to which the reader is
referred. O

4.2. Comparison of W* and T when F has a compact support. For all ug

in Ly, we denote C(ug) a constant depending on maxo<|q|<a |0%Uoleo. We begin
with the first result.

Theorem 4.5. For all ug in Ly and t € [0,1], the following estimates holds:

(4.5) |Ztu0 — TtuolH S C(uo)t|u0\H
and if ug belongs to H?(RNV)™
(46) thUO — TtU()lH S C(’U,O)tZl’U,ole.

We will prove Theorem 4.5 in several steps by introducing auxiliary functions.
We prove estimate (4.6) using the result of Theorem 3.10. With the same method
and Theorem 3.8 we can prove estimate (4.5), which is left to the reader. Thus we
prove only (4.6) which is the harder of the two. We introduce the function T, (uo)
defined by the solution of the system

ov

@) 5 MAwv + DF(ug)v = DF (ug)ug — F(ug), =€ RN t>0,
v(0,z) = ug(z), z € RV,

We also introduce Y, (uo, X*/?up) defined by the solution of
0

48) a_l: + DF(up)w = DF(ug)uo — F(ug), = €RN, >0,
w(0,z) = eMA2y4(x), z € RV,

Finally, we define Z{ uo by

(4.9) Zt w0 = XYL (ug, X' ?uq),

and we write

t t t t 1 t
Zrug — T ug = Z'ug — Zappuo + Zappto — Tapptio

(4.10) + Téppuo — Ttug.
In the following sequence of lemmas, we compare the three differences appearing in
the right hand side of (4.10). For simplicity we denote
G(ug) = DF(ug)up — F(uo).
Lemma 4.6. For all ug in Ly and t € [0, 1], the following estimate holds:

(411) IZZPP’U,O — Tépp’U,olH < C(Uo)tz|U0|H2.

Proof. Using Duhamel’s formula, the solution v of (4.7) is given explicitly by

t
vzet(MA—DF(ug))uo_l_/ e(t—s)(MA—DF(uo))G(UO)dS,
0
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and the solution z of (4.9) is given by

t
5= et]V[A/Z (e—tDF(uo)etMA/Zuo ‘|‘/ e—(t—s)DF(uo)G(uo)dS> )
0

Thus, we have

v— = et(JVIA—DF(uo))uO _ etMA/2e—tDF(u0)etMA/2u0

t t
-I—/ e(t"s)(MA"DF(”O))G(Uo)ds — etMA/2 </ e_(t_s)DF(“(’)G(UO)ds>
0 0

that we rewrite as
(4.12) vy — et(MA—DF(uO))uO _ etJVIA/Ze—tDF(uO)etJVIA/Zuo

t
+ (1 _ etMA/Z) </ e—(t—s)DF(uo)G(uo)dS>

0

t t
+/ e(t—s)(MA—DF(ug))G(uO)dS_/ e_(t_s)DF(uo)G(uO)dS.
0 0

Using (3.39), we deduce that
(4.13)

et(]\/IA—DF(uo))uO _ et]VIA/2€—tDF(u0)etMA/ZuOl < C(Uo)t2|uo|H2-
H

Since F' has a compact support and vanishes at 0, we have
(4.14) |G (uo)| g2 < C(uo)luol g2,

and we deduce from Lemma 2.6 that

T
(1 _ etJVIA/Z) </ e—(t—s)DF(uo)G(uO)ds>

0

(4.15)

< C(UO)t2|UO|H2.
H

There remains to estimate the last term of the right hand side of (4.12). Since
(4.16) MA=DF(u0)) _ g=tDF(u0) — HMA=DF(uo)) _ 1 | 1 _ g~tDF(uo)

and since the operator MA — DF'(uy) is sectorial, we infer from Lemma 2.6 and
(4.14) that

(4.17)

t t
/ 6(t_s)(MA_DF(uO))G(’U,0)dS — / 6_(t—s)DF(uO)G(uO)dS S C(Uo)tzluO[Hz.
0 0 H

We can now deduce estimate (4.11) from (4.13), (4.15), (4.17). This concludes the
proof of Lemma 4.6. O

Lemma 4.7. For all ug in Ly and t € [0, 1], the following estimate holds:
(4.18) |T§ppu0 — T | < C(uo)t?|ug|p.

Proof. For u = T*ug and v the solution of (4.7), let us define y = v — u. The
function y verifies the system

(4.19)

% — MAy + DF(up)y = F(u) — F(uo) — DF (uo)(u — ug), = €RN,t>0,

y(0,z) =0, z € RV,
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Denote Go(u,ug) = F(u)—F(uog)—DF(up)(u—up). It follows from Taylor’s formula
that

1
(4.20) |Go(u,uo)| g < /0 (1 —t)D?F (uo + t(u — up)) (u — up) ® (u — up)dt|

H

and since D?F' is bounded, it follows from Remark 4.3 that

|Go(u,uo)lr < Cuo)|u — uolm-

Since u — ug is solution of

¢
U—uy = (etMA - 1) uo +/ e(t=IMA R (y)ds,
0

we deduce from the boundedness of F' and from Lemma 2.6 that for ¢ € [0, 1]

lu — ol < Ctluo|m2,
and therefore

|Go(u,uo)lg < C(uo)t|uol a2
Since the function y = v — u is solution of (4.19), we obtain that
lyl < Cluo)t?|uo| .

This concludes the proof of Lemma, 4.7. [m
Lemma 4.8. For all ug in Ly and t € [0,1], the following estimate holds:
(4.21) |Zpto — Ztuolm < C(uo)t®|uol g
Proof. The proof is identical to the proof of Lemma 4.7 and is left to the reader. [

Proof of Theorem 4.5. We deduce from the decomposition (4.10) that relation (4.6)
is a consequence of (4.11), (4.18) and (4.21). O

A consequence of the previous result is the following:

Theorem 4.9. For all ug in Ly and t € [0,1], the following estimates holds:

(4.22) [Wtug — Ttuglg < Cluo)t (|u0|H n |Tf/2uO|H) ,
and if ug belongs to H?(RN)™
(4.23) (Whug — Ttuo|g < C(uo)t? <|u0|H2 + |Tt/2u0|Hz> .
Proof. We only prove (4.23). We notice that
(4.24) |Wtug — Ttug|ly < % ‘Zt/zZt/zuO - Zt/QTt/QuO‘H
(4.25) ;2 'Zt/QTt/zuO - Ttuo'

3 H
(4.26) + % |T o — Zug|, -

We can estimate (4.26) thanks to (4.6). We also observe that we infer from (1.10)
and (4.2) that

ZH2 7t 2y — Zt/QTt/ZuolH < et th/QuO - Tt/Zuo'H < C’(uo)t2|u0|H2‘
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We now have to work with the last term (4.25). We already notice that Ttu, =
Tt/2T% 2y, thus we infer from (4.6) that

Zt/th/zuo — TtUQ H S O(Uo)t2|Tt/2uO|H2,
so our claim is proved. O

4.3. Convergence result. We will use the following result.

Lemma 4.10. If F satisfies (4.1), there exists a constant Cy > 0 depending only
on 7, such that for all ug and vy in H and all t € [0, 1],

(4.27) [Whug — Wl g < (14 Cot)|ug — vola.
Proof. We rewrite Wtuy — Wty as
Wtug — Whog = ZH2 72820y — 282 724,
+ % (20221120 — 20722020y — Z'ug + Z'v) .
We deduce from (1.10), (4.2) that
|22 7820y — 2812 2 20| 5 < €7 |ug — voln.

Since for ¢ € [0, 1], there exists C; > 0 depending only on v, such that e < 1+Cit,
we can see that

(428) [Zt/ZZt/ZUQ — Zt/ZZt/zv()'H S (1 + Clt)l’LL() — ’1)0|H.

Denote w = Z4/2Z¢/2uy — 742 7t/29y — Ztug 4+ Ztve. Our purpose is now to prove
that there exists a constant C' > 0 such that |w|g < Ctlug — vo|gr. We let

wy = 2422120 — 22 722y and wo = Ztug — Ztvp.
We now use that Ytug verifies
t
Yiug = ug — / F(Yug)ds.
0
Thus
t t
wa = Xtug — Xty — X2 / F (Ys (Xt/zuo)) ds + Xt/? / F (YS (Xf/%o)) ds
0 0

and

wy = X'ug — Xt
_ x3t/a /t/z (F (Ys (Xt/4Zt/2u0)) —F (Ys (Xt/“Zt/zvo)) )ds
0
_ seise /t/2 (F (Ys (Xt/4Zt/2uO>) _F (Ys (Xt/4Zt/2v0)) )ds.
0
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We deduce that
w— X3t/4 /t/2 (F (Ys (Xt/4Zt/2uO>) _F (Ys (Xt/4Zt/2v0))>ds
0
+ X/ / v (F (Ys (Xt/4Zt/2uo)) _F (YS (Xf/4zt/2vo))>ds
0
- xve [ (v (x70)) = £ (v (x0%00) ) s,
0

and we infer from (1.10), (4.2) and the boudedness of F' that |w|g < Ctlup —vo|n,
where C depends only on «y. This concludes the proof of Lemma 4.10. O

Theorem 4.11. For all ug in Ly and for all 7 > 0, there exists C and hgy such
that for all h € (0, hol, for all n such that nh <7

|(Wh)" o — T"huO'H < Ch| 1 hlfuo|x-

Proof. We fix 7 > 0 and we reduce the proof to the case where F' has a compact
support and satisfies (4.1). The triangle inequality gives

l(Wh)n o — TnhUO'H < Z '(Wh)n—j—l WhTiky, — (Wh)n—j—l T(j+1)hUO'H ,

and we infer from Lemma 4.10 that

|
-

n

4.29 W) uy — T g 14 Coh)* I~ |Wh Tty — TPy,
H H

<.
Il
o

For the case j = 0, it follows from (4.22) that
[Whuo — Trug|ir < Cuo)h(|uol e + [T 2uglmr).
For j > 1, we notice that T7%uq belongs to H2(R™)™ and we use (4.23) to obtain
(WhTityg — TTIhg| gy < C(T9hug)h? (]Tjhuole + IT(j+1)hu0|Hz) .
But for all jh < 7, C(T?"ug) is bounded, and we deduce from Lemma 4.4 that
TP ug| g2 4 | TV g g < j%ecjh\uolH.
Thus we obtain with (4.29)

n—1 Co(n ji— 1)hh

I(Wh) uo—TnhUO\ < C(up) Z—T———i—h luo| -

For small h, we have

n—1 Cy(n—j—1)h
Ry ?J— < e%7h|Inhl,

j=1

and we obtain
‘(Wh)nuo - T"huo\H < Ch|Inhljuo|g.

This concludes the proof of Theorem 4.11. O
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Remark 4.12. The previous estimate is better than the one given in [2], with a rate
of h|In h| instead of v/A but unfortunately far from the fourth order. One way to
increase the rate of convergence is to assume that wug is smoother, for example if
ug belongs to H? we do not need to use the regularizing effect of T* and we obtain

an estimate with a rate of h. We can also see that a similar proof of Theorem 3.10
can show that

vt € [0,1], GHMA =2tV tMA _ 2(MA-V) <C(e)
L(H*,L?)

and in that case the rate is of h2. Unfortunately, for the scheme W?, we cannot do

better (i.e., an order greater than 2) because of estimates (4.24), (4.25), (4.26) and
working directly with W? seems to be very hard.
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