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THREE- AND FOUR-DIMENSIONAL
K-OPTIMAL LATTICE RULES
OF MODERATE TRIGONOMETRIC DEGREE

RONALD COOLS AND JAMES N. LYNESS

ABSTRACT. A systematic search for optimal lattice rules of specified trigono-
metric degree d over the hypercube [0,1)® has been undertaken. The search
is restricted to a population K(s,d) of lattice rules Q(A). This includes those
where the dual lattice AL may be generated by s points h for each of which
|h| = § = d+ 1. The underlying theory, which suggests that such a restriction
might be helpful, is presented. The general character of the search is described,
and, for s = 3, d < 29 and s = 4, d < 23, a list of K-optimal rules is given.
It is not known whether these are also optimal rules in the general sense; this
matter is discussed.

1. INTRODUCTION

We consider cubature rules for [0,1)® of trigonometric degree d. Such a rule in-
tegrates correctly all s-dimensional trigonometric polynomials of degree d. Specif-
ically, it integrates exp(2mih - x) correctly for all h := (hy, ho,... , hs) € Z° that
satisfy |h| := >°7_, |he| < d. Lattice rules have played a significant role in the
development of this area. For background information of a general nature on lat-

tice rules, we refer to [SJ94] and to [CS96] for lattice and other rules of specified
trigonometric degree.

Definition 1.1. An s-dimensional lattice rule is a cubature formula that can be
expressed in the form

Qf=Qlt,D,Z s|f

i d )
(11) — zl: 22: Z ! ]1Z1 L B 1.
o dldg 1 d2 dt '
Pji=lja=1 =1
where d; are positive integers and z; € Z° for all 1.

In this theory it is conventional to refer to Z° (the set of points all of whose
components are integers) as the s-dimensional unit lattice denoted by A§. The
abscissas of the lattice rule Qf lie on an integration lattice A, that is, a discrete
subset of R® that is closed under addition and subtraction and that contains Aj. The
arguments in the right-hand member in (1.1) may be assembled into two matrices.
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These are the ¢ x t matrix D = diag{d;} and the t x s matrix Z whose ith row is z;.
The rank and invariants of a lattice rule play no major role in the theory treated in
this paper, and their definitions are omitted. However, we remark that much of the
previous work in this area has been restricted to rank-1 simple lattice rules. These
are rules that can be expressed in form (1.1) above with ¢t = 1 and z; having 1 as
its first component.

All cubature rules @ have an abscissa count N(Q) and have a trigonometric
degree, say, d(Q). It turns out to be more convenient to work with

(1.2) 0:=d+1,

which we term the enhanced degree. An optimal rule of enhanced degree ¢ is one
whose abscissa count is known to be as small as or smaller than the abscissa count
N(Q') of any other rule Q' of this same enhanced degree 6. In this case we denote
this count by Nyin(s,d). A standard goal, which is our ultimate goal, is to find
optimal rules.

Optimal rules are already known for s = 1 and 2 for all §; they are also known
for all s with 6 = 1,2, 3,4 and for (s,d) = (3,6). In each of these cases, at least one
of these optimal rules is a lattice rule. Except in the cases just mentioned, no rule
is known to be optimal, and it is not known whether there is any case in which one
of the optimal rules is not a lattice rule.

A lower bound on Npin(s, §), which is based on the character of the set of moment
equations, appears in [CS96], is denoted here by Ny g(s,d), and is available for all
s and d; however, except in the aforementioned cases, it is not known whether this
bound is attained. In particular:

Nue(1,6) = 6

NME(Q,(S) = 52/2 d even

= (5241)/2 § odd

(1.3) Nup(3,8) = 6(6%+2)/6 § even
= §(82+5)/6 § odd

NME(4,<5) = (52((52+8)/24 d even

= (6*+146%+9)/24 §odd

A completely different bound, valid only for lattice rules, follows from apply-
ing Minkowski’s celebrated theorem about admissible lattices to an s-dimensional
octahedron (s, §) defined in (2.3). In the present context, this provides a bound
N > §%/s! for lattice rules. A much deeper result of his introduces a “critical lat-
tice” for s = 1, 2, and 3. The consequence for us is that a bound exists that is
specific for lattice rules:

53
s16(s)”

Clearly 6(s) < 1. The only known values of §(s) are (1) = 0(2) = 1 and 6(3) =
18/19. In the literature on geometry of numbers [GL87], 6(s) is known as the
“density of closest (or densest) lattice packing” for the s-dimensional octahedron.
Nontrivial upper bounds for 6(s),s > 4, appear to be unknown. Every lattice
rule provides a lower bound for 6(s). Examination of our recent results in Table
2 establishes 6(4) > 212, This improves the result of Klyuchnikov and Restsov
[KR95], 6(4) > %—g—, by a margin of approximately 0.02. In our context, N is an

(1.4) N > Ncp(s,0) =
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integer, so the above inequality may be sharpened to
(1.5) N > Nep(s,0) := I—NCL(S,(SH.

For s =1 and 2, Noy, = Nyg. For s =3 and § = 8 and > 10, N¢op > NyE.
Numerical values of Ny;g and N¢gp, are given in Tables 1 and 2.

A small amount of literature (mostly in Russian) has been devoted to optimal
cubature rules. The optimal rules mentioned above appear in papers by Mysovskikh
[Mys85, Mys87, Mys88] and Noskov [Nos85, Nos88a, Nos88b] and are elaborated
by Beckers and Cools [BC93], Cools and Sloan [CS96] and Cools and Reztsov
[CR97]. The three-dimensional rule is classical and due to Minkowski (see [Fro77]
and [Min67, Chapter XIX].

Furthermore, Noskov and Semenova have published many nonoptimal individual
three-, four-, and five-dimensional rank-1 simple lattice rules and several families;
see, for example, [Nos88a, Nos91, NS96, Sem96]. Each family is a one-parameter
system (the parameter being essentially the degree) of rank-1 simple lattice rules;
and, since the parameter is unbounded, these include rules of arbitrarily high degree.
It is not revealed how they were discovered, but clearly careful effort was expended,
and they are far more economical than those (such as the center and vertex rule)
previously available. However, it appears that none is likely to be particularly close
to optimal. To our knowledge these are the only lattice rules available that are
reasonably efficient from the trigonometric point of view.

We have carried out a large-scale computer search with a view to clarifying the
situation as far as optimal [attice rules in dimensions 3 and 4 are concerned. We
have managed to reach degree 30 in three dimensions and to reach degree 24 in four.
In this paper, we describe this search and give some background in the context of
other analogous searches. We present some of the results.

Our search is however restricted to a subset of the lattice rules, namely, K(s,d)
of Definition 2.7 below. There are compelling reasons for believing that the optimal
lattice rules are members of this set, but this has not been proved. We have come
across no counterexample nor any suggestion that such a counterexample may exist.

Nevertheless, we retain the distinction and refer to the optimal lattice rules of this
set as K-optimal lattice rules.

2. UNDERLYING THEORY

The theory on which our search is based is closely analogous to the theory on
which some searches for good lattices are based. We give a brief description here,
mainly to introduce the standard notation.

A lattice A may be defined in terms of an s X s matrix A known as a generator
matriz. This means that all elements of A are of the form = = MAA, where A € Z°.
The dual lattice A* may be defined as one having generator matrix B = (AT)~L.
The reader will recall that, since A is an integration lattice, that is, A D A§, its
dual At is an integer lattice and may be generated by an integer-valued matrix B.

When U is any unimodular matrix, H = UB is also a generator matrix for A,
For any given B, there exists a particular choice for U that will provide a generator
matrix H = UB that is in Hermite normal form (utlf). That is,

H..>0

(2.1) H,.=0 r>c
H,.€[0,H..) r<c.
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A (1-1) correspondence exists between the set of s-dimensional lattice rules and the
set of s X s matrices in Hermite normal form. This has been exploited previously
to organize searches [L.S93] but is not exploited in that way here.

The quantity | det B| is conventionally known as the order of the lattice A+. The
simplex whose s + 1 vertices make up the s rows of B, namely, b; (j = 1,2,...,s),
together with the origin O is known as a basic cell of A*. (Any simplex obtained
in this way using any generating matrix UB is also a basic cell, as is any simplex
obtained by translating one of these simplices.) The s-volume of a basic cell is
|det B|/s!. In fact, all s-dimensional simplectical regions whose vertices are distinct
elements of A1 have s-volume k|det B|/s!, where k is some nonnegative integer.
(Any set of vertices for which & = 1 forms a basic cell.) The relevance of the basic

cell to our search lies in the fact that the abscissa count of @ coincides with | det B
(see [Lyn89]), that is,

N(Q(A)) = |det B = HH”

This may be reexpressed as follows.
Theorem 2.1. The abscissa count N of Q(A) coincides with the order of A*.

When Q(A) is the lattice rule whose integration lattice is A, the associated
Poisson summation formula reduces to an expression for the discretization error,
namely,

Equ/ =QWf—1f=Y" fu,

heAl
h#0

where fh is the Fourier coefficient of f and At is the dual lattice of A. When f
is a trigonometric polynomial of degree d or less, f = 0 when |h| > d, so all but
a finite set of terms in this sum vanish. Thus, the condition that Q(A)f is exact
for these polynomials reduces to the condition that A+ has no elements, other than

the origin itself, in the region |h|<d, which we denote by Q(s,d). We may restate
this as follows:

(2.2) 5(Q(A)) := d(Q(A)) + 1 = min |h].

This equation relates the location of points h € At with the enhanced degree & of
Q(A). We may use classical terminology to reexpress the import of this equation
in terms taken from the geometry of numbers [GL87].

Definition 2.2. (Classical) A lattice L is “admissible” with respect to a region
if all its elements (other than the origin) lie outside Q.

Such a lattice is conventionally known as an 2-admissible lattice. Applied to our
region

(2.3) h € Q(s,d) when |h|<§,
we have the following definition.

Definition 2.3. An (s, §)-admissible lattice is an integer lattice having no ele-
ments, other than the origin, in the interior of Q(s, d).

Using this terminology, we may write the content of (2.2) as follows:
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Theorem 2.4. Q(A) is of enhanced degree § or greater if and only if AL is (s, §)-
admissible.

This theorem, together with Theorem 2.1, leads to the following geometric char-
acterization.

Theorem 2.5. Q(A) is an optimal lattice rule of enhanced degree § when At is an
Q(s, §)-admissible lattice and no other (s, §)-admissible lattice has a lower order.

In passing, it is pertinent to mention that many other criteria are in use to
characterise efficient cubature rules, and that some, like the enhanced degree in
(1.2) above, are based on exact evaluation of specified sets of Fourier coefficients.
Some of these latter are discussed in Lyness [Lyn88] and may be described in terms
of Q-admissible lattices with € redefined appropriately. The two most familiar
choices are illustrated in, e.g., [BC93]. Other choices are investigated in [CR97]
and [LS97].

We now return to the problem at hand. In this paper, Q) is defined in (2.3) and
we are treating the enhanced degree, defined in (1.2).

A dynamic approach to the problem of finding an optimal rule might involve
perturbing any given (s, d)-admissible lattice A, with a view to reducing the
s-volume of its unit cell but-keeping it (s, §)-admissible, that is, not allowing any
lattice point to enter the fixed region (s, d).

It is reasonable to believe that the process of making this unit cell small, that
is, making the lattice A+ denser and reducing its order, would, in general, move
lattice points towards the origin. This process would be seriously inhibited by the
boundary of (s, d). Ultimately, (as the wiggle room disappears) one would expect
progress to come to a complete stop (grind to a halt) at a stage where many points
of A1 were (jammed) on this boundary. Thus, it is plausible to believe that the
lattice A of an optimal lattice rule Q(A) of enhanced degree § will have a dual lattice
A' with many elements on this boundary. The underlying feature of our search is
that it is limited to dual lattices having this property.

The (s — 1)-dimensional facet-pair of an s-crosspolytope is the s-dimensional
generalization of a two-dimensional pair of opposite faces of a regular (three-
dimensional) octahedron. We recall the following notation:

x| = [(z1, 22,23, ..., @s)| = |21] + [@2] + @3] + ... + |2s]
h € Q(s,d) when |h|<é
h € Q(s,d) when |h| = 6.
In the sequel, o; stands for +1 or for —1.

Definition 2.6. The facet-pair F'(6,01,02,03,...,0s) comprises h satisfying
h € Q(s,6) and
either
h; = oi|h;| for all i =1,2,3,... ;s
or

hi = —Uilhil for all i = 1,2,3, A
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Definition 2.7. The population K (s,d) comprises all s-dimensional lattices that
may be generated by s point pairs, each of which belongs to a distinct (s — 1)-
dimensional facet-pair of the s-octahedron (s-crosspolytope) €2(s, §).

Note that a lattice in K (s, ) cannot have enhanced degree exceeding ¢ because,
by definition, it includes points h having |h| = §. In general such a lattice is of
degree less than 6.

We search this population for the rule or rules defined as follows.

Definition 2.8. A K(s,d)-optimal rule is a rule of minimum abscissa count among
those of enhanced degree § whose dual lattice A+ is in K (s, 6).

In the next section, we shall require subsets of K (s,d). These will be denoted
by K(s,d;X), where X will identify the particular subset in question.

3. THE SEARCH PROGRAMS

In this section we describe the implementation of programs based on the ideas
and definitions introduced at the end of the preceding section. It has turned
out that the four-dimensional program is significantly more complicated than the
three-dimensional program. For this reason, after introducing some common s-
dimensional notation, we describe the three-dimensional program first. Then, with
the underlying ideas exposed in the simpler context, we treat the four-dimensional
program.

In three or more dimensions, significant effort can be saved by exploiting the
existence of sets of symmetrically equivalent lattices. A group of linear transfor-
mations takes the s-cube, or the s-octahedron, into itself. Applying one of these
transformations to a rule or a lattice provides another (generally different) rule or
lattice having the same geometric characteristics. Naturally, two lattices related
in this way have the same (enhanced) degree and the same order (abscissa count).
A set of symmetrically equivalent lattices may have as many as s!2°~! members.
Once one member of such a set is established to be optimal, the other members
of the set may be rapidly identified and are also optimal. Thus, if we are able to
subdivide the search population in such a way that a search over one part will re-
cover only symmetric equivalents of a search over another part, we may exploit this
by searching only one of these parts. A search over the second part can be safely
omitted, as it would reveal only optimal lattices that are symmetric equivalents of
optimal lattices already identified.

In three dimensions, it is particularly easy to exploit the concept of sets of
symmetrically equivalent lattices. In view of Definition 2.7 above, the set K (3,9)
includes all lattices generated by three points by, bs, and bg, where each lies on a
different facet-pair. We define a subset of K(3,4), which we denote by K*. This
includes only lattices generated by

b, € F(6,+,+,+)
(3.1) by € F(5,+,+, )
by € F(6,+,—,+).

It is straightforward to show that all lattices in K(3, ) have a symmetrically equiv-

alent lattice in K*. Thus, we may restrict our search to the elements of K* and
then include, in addition, all symmetric equivalents. The outcome is the same as
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if we had treated all the elements of K (3,d), but is obtained at approximately one
fourth the cost. (The corresponding statement in four dimensions is not true.)

Our search module has two principal modes of operation. In mode 1 (its usual
mode) it requires as input numerical values of § and Ny, and Ny. It also requires
a specification of the population to be treated. (When s = 3, this is simply the
set K* discussed above. For s = 4, as described later, several different population
specifications may be used in different runs.) It carries out a search over this
population set and either

(A) provides the generator matrix of a lattice AL for which the rule Q(A) is of
enhanced degree §, the order N of this rule satisfies N € [Ny, Ny], and there
is no rule of lower order in this interval; or

(B) reports that no lattice AL of enhanced degree § with N € [N, Ny] exists in
the specified input population.

To obtain this information, the search module proceeds as follows. It carries out

a loop over all matrices B whose rows by, bs, ... , bs are elements of their respective
S
facet-pairs (see (3.1) above). Thus, there are possibly s _:iI 1 matrices B

to consider. For each, the order |det B| is evaluated. Unless |det B| € [Ny, Ny,
this matrix B is abandoned, and the next matrix B is treated.

In the relatively few cases in which | det B| is within these limits, an algorithm
for determining the enhanced degree of A* (or an upper bound on this) is invoked.
Unless this enhanced degree is ¢, this matrix B is abandoned and the next one
is treated. Should this enhanced degree turn out to be ¢, ipso facto one lattice
satisfying (A) above is available. In mode 1, the search immediately downgrades
Ny to N — 1 and continues (unless N = Ny, in which case it stops).

In all cases, if the module encounters no Q(s, §)-admissible lattice of enhanced
degree ¢, the conclusion (B) above is reported.

The module can also be run in mode 2. This requires the same input as in mode
1. However, instead of downgrading Ny to N — 1 when one lattice satisfying (A)
is encountered, it downgrades Ny to N and continues until all matrices B have
been treated. This mode is normally used when the optimal N,,; has already been
determined and is invoked to see whether there are several different solutions. One
sets Np, = Ny = Nopt.

The list of rules in Table 3 was obtained as follows. For each value of 4, the search
module was used with Ny large and N = max(Nyg(3,6), Nor(3,4)) as given in
(1.3) and (1.5). The value of N returned in item (A) was used in a second run
using mode 2. Finally, the list of matrices was processed to remove all symmetric
equivalents. Note that, without the second run, one of the entries for each of § =
5 and 11 in Table 3 would have been missed.

The 4-octahedron has eight facet-pairs.

Fy F(,+,+,+,+) E
F F(6,—,+,+,+) O
F, F(6,+,—,+,+) O
Fy F(6,—,—,+,+) E
Fy, F(6,+,+,—+) O
Fs F(,—-,+,—+) E
FG F(63+a_a_)+) B
F7 F((Sa_)_)—)"‘") 0
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Bach has been assigned a serial number, which appears as a subscript in col-
umn 1. For later convenience, in column 3 we have assigned a parity to each.
F(6,01,02,03,04) is of even parity E if the set (01,03,03,04) contains an even
number of elements +1.

Every lattice A% in K(4,8) is generated by four points on four distinct facet-
pairs. We term such a set of facet-pairs a quartet (of facet-pairs). If we were to
take no account of the symmetric equivalents, we would need to treat every distinct
quartet separately. There are seventy distinct quartets, this being the number of
ways of choosing four facet-pairs from the total of eight facet-pairs listed above.
The following discussion is devoted solely to establishing Theorem 3.4 below, which
assures us that only four of these quartets need be searched to ensure that we
recover at least one symmetric equivalent of every optimal rule.

Definition 3.1. An individual quartet, denoted by q(Ni, Na, N3, Ny) where 0 <

N; < Ny < N3 < Ny <7 comprises a set of four distinct facet-pairs Fi,, Fiv,, Fin,
and Fl,.

The type of a quartet g is min(NE, NO) where NE is the number of even facet-
pairs and NO is the number of odd facet-pairs in q. For example, ¢(0,4,5,6)
contains three even facet-pairs, namely, Fy, Fs, and Fg, together with one odd
facet-pair, Fy. Thus its type is 1, this being the minimum of NE =3 and NO = 1.

Definition 3.2. Let q(Ni, N2, N3, Ny) be one of these 70 quartets. The population

K (4,6;q) comprises any lattice that may be generated by four points b;, where
b; € Fn,, 1t =1,2,3,4.

The union of all seventy of these populations K (4, §;q) includes all lattices that
may be generated by four distinct points, each of which lies on a distinct facet-pair
of the 4-octahedron, and so coincides with K (4,4).

Let G; be an element of the group G of 384 affine transformations that take the
4-octahedron into itself. Specifically, this transformation takes any facet-pair Fly,
into some other facet-pair Fy,, which we may denote by G; Fi,. By the same
token, this transformation takes separately each of a set of four facet-pairs into
another set of four facet-pairs.

Definition 3.3. Let ¢ = q(Ny, N3, N3, Ny) be one of these 70 quartets. The quar-
tet comprising the four facet-pairs G; Fiv,, j = 1,2, 3,4, is termed a symmetric copy
of ¢(Ny, Na, N3, N4) and is denoted by G;q.

Let ¢; stand for the quartet ¢(0,2,4,7). Clearly, a search over K (4,0;G;q1) will
yield only lattices that are symmetrically equivalent to those obtained in the same
search over K(4,8;q1). It is a trivial calculation to obtain all symmetric equivalents
of a particular lattice. Thus, carrying out a search over more than one quartet
belonging to the set of quartets G;¢; is unnecessary. A straightforward calculation
(elaborated in the Appendix) reveals that there are only 32 distinct quartets of this
form. Thus, S; is a set of order 32, and we need to search over only one of these
32 quartets. Our choice for g; could be replaced by any other member of S; with
the same result.

We repeat this operation starting with the three specific quartets given in the
theorem.

Theorem 3.4. Let qo = q(1,2,4,7), ¢1 = q(0,2,4,7), goa = ¢(0,2,4,6), and gop =
q(0,2,4,5) and the sets of quartets constituting symmetric copies of q; be denoted
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by S;. Then the sets S; are mutually disjoint. They are of orders 2,32,12, and 24,
respectively, and their union includes all seventy quartets.

Proof. The sets Sy, S1, S2q, Sopb, are listed in the Appendix. The theorem may
be verified by four sets of 384 simple calculations. One calculates ¢ = G;q; (i =
1,...,384), j =0,1,2a,2b, and verifies that each is a member of the expected set
S;. The reader will note that all elements of S;,7 = 0, 1, are of type i and elements
of Sy, and Sy are of type 2. It is straightforward to show that none of the 384

transformations alters the type of the quartet. The Appendix provides further
details. O

The results of our computer searches for four-dimensional optimal rules are pre-
sented in Table 5. This is in three parts. For each value of § € [1, 13] we have made
four distinct runs and (unless there are calculational errors) we have a complete list
of all optimal K (4, ) rules.

For § € [14,17] we reduced the population to K(4,d;q1), where, as before, ¢ =
q(0,2,4,7). This restriction to a single quartet reduces the overall run time by a
factor of 4.

Beyond § = 18, even this became too time consuming, and we reduced the
population once more to K (4,6; ;). The symbol ¢ is used here to denote a subset
of ¢; that includes all of Fy, Fy, and F%, but only the part of Fy = F(4,+,+,+,+)
for which x1 > x2 > 23 > x4. This reduces the size of the population by a factor
of up to 24. But almost certainly some optimal rules are missed.

We have described the three searches above in terms of the results. In the order
of implementation, we first carried out a search using population K(4,d;q;) for
é up to 24. Next, we used K(4,68;q;) for 6 up to 17. Finally, we carried out a
complete search, using four choices for ¢, for § up to 13.

4. NEW RESULTS

In subsections 4.2 and 4.3, we present some of our three- and four-dimensional

results, respectively. Subsection 4.1 is devoted to careful definitions of the notation
used in the tables.

4.1. Abscissa counts. In this first subsection we present the progress toward
determining Nyp:(s,d), the optimal abscissa count for any s-dimensional rule of
enhanced trigonometric degree 6. We have in general obtained well-defined bounds
on this quantity. These are denoted by Nx(s,d), where the subscript X indicates
a limitation to the class of rules considered.

The five principal abscissa count functions we have listed are as follows:

e Ny g: A theoretical lower bound for any rule of enhanced degree ¢, based on
the relevant Moment Fquations.

e N¢gr: The Minkowski lower bound for any lattice rule of enhanced degree
8, based on the existence of the critical lattice (known only for dimensions
s=1,2 and 3).

e Nko: The lowest count for any K (s,d)-optimal rule. (We also list variants
of N KO )

e N,15: The lowest abscissa count for any optimal rank-1 simple rule.

® Nprev: The lowest abscissa count for any rule published in references [Nos88a,
NS96]. These are all rank-1 simple.
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TABLE 1. Three-dimensional abscissa counts

8 | Nure | Now || Nko || Nris | Nprev | p(NkO)
=d+1
1 1 1 1 1 1) 0.167
2 2 2 2 2 21 0.667
3 7 5 7 7 71 0.643
4 12 12 12 12 12 | 0.889
5 25 22 27 27 27 | 0.772
6 38 38 38 38 38 | 0.947
7 63 61 70 70 70 | 0.817
8 88 91 92 92 92 | 0.928
9 129 129 144 145 145 | 0.844

10 170 | 176 178 178 178 | 0.936
11 231 | 235 260 260 260 | 0.853
12 292 | 304 304 312 312 | 0.947
13 377 | 387 421 421 421 | 0.870
14 462 | 483 486 486 486 | 0.941
15 575 | 594 635 635 635 | 0.886
16 688 | 721 724 724 724 | 0.943
17 833 | 865 921 921 921 | 0.889
18 978 | 1026 || 1026 || 1038 | 1038 | 0.947
19 | 1159 | 1207 || 1276 || 1276 | 1319 | 0.896
20 | 1340 | 1408 || 1412 |} 1412 | 1412 | 0.944
21| 1561 | 1630 || 1708 || 1723 | 1771 | 0.904
22 | 1782 | 1874 || 1878 || 1878 | 1942 | 0.945
23 | 2047 | 2141 || 2240 || 2255 | 2327 | 0.905
24 | 2312 | 2432 || 2432 || 2448 | 2532 | 0.947
25 | 2625 | 2749 || 2865 || 2865 | 2977 | 0.909
26 | 2938 | 3093 || 3098 || 3098 | 3218 | 0.946
27 | 3303 | 3463 || 3591 || 3591 | 3751 | 0.914
28 | 3668 | 3862 || 3868 || 3868 | 4032 | 0.946
29 | 4089 | 4291 || 4445 || 4445 | 4635 | 0.915
30 | 4510 | 4750 || 4750 || 4770 | 4958 | 0.947

Formulas for Ny, g are given for all (s, §) in reference [CS96] and repeated by us
for s < 4 in (1.3) above. N¢y, is simply (1.5) above. The principal contribution
of our work is the list of values of Nxo and some variants in Tables 1 and 2. We
obtained the fourth abscissa count N,s for s = 3 (6 < 30) and s = 4 (§ < 13)
using a simple search program not discussed here. The fifth abscissa count Npyey
is readily gleaned from the cited literature.

The three-dimensional abscissa counts listed in Table 1 are all precisely as defined
above. The four-dimensional abscissa counts listed in Table 2 are also precisely as
defined above for § < 13. For higher values of §, the entries under Ngo refer to
the results of restricted searches, as indicated in Table 5 and specified at the end of
the preceding section. The corresponding entries under N,;s may not be optimal.
Rules corresponding to every abscissa count given in the columns labeled Nxo and
N,1, are specified in Tables 3, 4, 5, and 6.

For odd 4 > 14 some rules have been published, but these use more points than
published rules of higher degree. We have omitted these.
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TABLE 2. Four-dimensional abscissa counts

L 9] Nup || Nio |

ers l Np‘r‘e’u | p(NKO)

1 1 1 1] 0042
2 2 2 2| 0333
3 9 9 9| 0375
4 16 16 16| 0.667
5 41 45 46 46 | 0.579
6 66 68 70 70| 0.794
7] 120 152 152 | 156 | 0.658
8| 192 212 212 | 212| 0.805
9| 321 375 398 | 414 | 0.729

10| 450 | 516 522 | 522 |  0.807

11| 681 857 857 | 1076 | 0.712

12| 912 1064 | 1092 | 1092 | 0.812

13| 1289 || 1601 || 1601 | 1709 | 0.743

14| 1666 | 1958 || [1958] | 3075 | 0.818

15 | 2241 || 2834 | [2834] 0.744

16 | 2816 | 3312 | [3376] | 3522 | 0.824

17| 3649 || 4628 || [4633] 0.752

18 | 4482 | 5354 || [5354] | 6242 | 0.817

19| 5641 | 7081 || [7081] 0.767

20 | 6800 | 8148 | [8148] | 8840 | 0.818

21| 8361 || 10552 || [10552] 0.768

22 | 9922 || 11886 || [11886] | 14102 |  0.821

23 | 11969 || 15154 || [15154] 0.769

24 | 14016 || 16812 || [17208] 0.822

06 L

FIGURE 1. p as a function of § for three-dimensional rules (x refers

t0 Nprey, 0 refers to Ngo, O refers to Nasg, the line at p = 18/19
refers to Nep,)

8 (=d+1)
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0.55
4 6 8 10 12 14 16 18 20 22 24
5 (= d+1)

FIGURE 2. p as a function of § for four-dimensional rules (x refers
t0 Nprew, 0 refers to Ngo, O refers to Nyg)

In Figures 1 and 2 we present much of the material in Tables 1 and 2 graphically.
For any abscissa count N, we can calculate the associated packing factor

55
(4.1) p(N) = N
This is a measure of the efficiency of any rule Q(A) of enhanced degree ¢ and
abscissa count N and is the packing factor of the dual lattice A~. The packing
factor is bounded by 6(s). In the final section we shall illustrate our discussion of
some of these results using these figures.

Many of the entries in the tables specify rank-1 simple rules. When Q(A) is
an s-dimensional rank-1 simple rule, the Hermite normal form (see (2.1) above) of
the generator matrix of A+ has a readily recognisable form as its principal minor
coincides with the identity matrix. The D — Z form (see (1.1)) of this rule is then
Q[1, D, z, s} with

D=N=H,s; z=(N-Hys, N-Hys,..., N=H_1),,1).

Naturally, this is in the same equivalence class as the rule specified by

D=N= Hs,s; z = (1 b Hl,s P H2,s PICIEY H(s—l),s)‘

4.2. Three-dimensional lattice rules. For every abscissa count we have listed,
we have specified at least one cubature rule. Table 3 contains specifications of thirty-
one K-optimal rules. This list is complete in the sense that every K-optimal rule
of enhanced degree thirty or less is included here or is symmetrically equivalent to
one listed here. This specification comprises the nontrivial elements of the Hermite
normal form of A+ (unique to the rule). See (2.1) above.
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TABLE 3. Three-dimensional K-optimal lattice rules

Hermite Normal Form of Dual Lattice
o N | Hin Hi2 Hiz Hyy Hy H3zz | p | Rank
2 2 1 0 1 1 1 2 11
3 7 1 0 2 1 3 7| 811
4 12 1 0 3 1 5 12 (12 |1
5 27 1 0 4 1 10 27 124 11
1 1 4 3 6 9 4|2
6 38 1 0 7 1 11 381 811
7 70 1 0 16 1 25 70124 |1
8 92 1 0 9 1 39 92 124 |1
9 144 1 1 11 4 16 36 812
10| 178 1 0 11 1 75 178 | 24 | 1
11| 260 1 0 40 1 94 260 | 24 | 1
1 0 48 2 56 130 1 24 | 2
12 | 304 2 0 14 2 22 761 813
13 421 1 0 16 1 182 421 124 |1
14 | 486 1 0 41 1 57 486 | 24 | 1
15| 635 1 0 146 1 274 635 | 8|1
16 | 724 1 0 49 1 79 724124 |1
17 921 1 0 81 1 222 921 |24 |1
18 | 1026 3 0 21 3 33 114 | 813
19 | 1276 1 0 222 1 538 1276 | 24 | 1
20 | 1412 1 0 59 1 665 1412 | 24 | 1
21 | 1708 1 1 121 2 338 854 | 812
22 | 1878 1 0 75 1 731 1878 | 24 | 1
23 | 2240 1 0 166 4 255 560 | 24 | 1 (not simple)
24 | 2432 4 0 28 4 44 152 813
25 | 2865 1 0 222 1 965 2865 | 24 | 1
26 | 3098 1 0 423 1 1299 3098 |24 |1
27 | 3591 1 0 278 1 1718 3591 | 8|1
28 | 3868 1 0 205 1 975 3868 | 24 | 1
29 | 4445 1 0 750 1 1635 4445 | 24 | 1
30 | 4750 5 0 35 5 55 190 | 8|3

The penultimate column contains u, the number of distinct rules (symmetric
copies) in the symmetry group that contains the listed rule. These may be obtained
from the listed rule by coordinate reversal and interchange. Naturally, we list only
one rule of the p possibilities. This is chosen to be the first in a lexicographic
ordering based on the diagonal elements, followed by the nondiagonal elements in
the order used in the table. In the language of [LS93], this provides a senior. Also,
if the rank is 1, this provides a rank-1 simple rule, unless there happens to be no
rank-1 simple rule in the set.

The eight rules of enhanced degree § = 6k with k£ > 1 are simply k-copy versions
of the eight rules of enhanced degree 6. These are of rank 3.

A supplementary list of three-dimensional optimal rank-1 simple lattice rules is
given in Table 4. This list is of the same character as the previous list. It includes

all optimal rank-1 simple rules for those degrees for which such a rule does not
appear in the previous list.
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TABLE 4. Three-dimensional optimal rank-1 simple lattice rules

Hermite Normal Form of Dual Lattice

6 N | Hy Hip Hiz Hia Hoa Hss | p
9| 145 1 0 9 1 61 145 | 24
12| 312 1 0 13 1 115 312 | 24
1 0 29 1 67 312 | 24

18 | 1038 1 0 35 1 365 1038 | 24
1 0 119 1 421 1038 | 24

21 | 1723 1 0 24 1 464 1723 | 24
1 0 79 1 755 1723 | 24

23 | 2255 1 0 100 1 172 2255 | 24
24 | 2448 1 0 185 1 1081 2448 | 24
1 0 199 1 479 2448 | 24

30 | 4770 1 0 131 1 689 4770 | 24
1 0 101 1 1339 4770 | 24

4.3. Four-dimensional lattice rules. We have reported our four-dimensional
results in almost the same way as the three-dimensional results. The differences
arise from having to curtail our effort because of the higher computational expense.
As in the three-dimensional case, we have specified in Table 5 the optimal rules we
have found. As mentioned in Section 3, any of these may be actual optimal rules of
the stated enhanced degree. We have found all the K-optimal rules for 6 € [1,13],
all the K (4, ; q;)-optimal rules for § € [14,17], and all the K (4, §; ¢/ )-optimal rules

TABLE 5. Four-dimensional K-optimal lattice rules

l ‘ ‘ Hermite Normal Form of Dual Lattice l T —’
3 N | Hiy  Hip Hiyg Hig Hps Hzz Hzq Hzz Hszg Hag p | Rank
Full Search over K(4,6)
1 1 1 0 0 0 1 0 0 1 0 1 1 1
2 2 1 0 0 1 1 0 1 1 1 2 1 1
3 9 1 0 1 1 1 1 2 3 0 3 812
1 0 0 2 1 0 3 1 4 9 64 1
4 16 1 1 1 1 2 0 2 2 2 4 2 3
1 0 1 2 1 2 1 4 0 4 12 2
1 0 0 3 1 1 2 2 6 8 24 2
1 0 0 3 1 0 5 1 7 16 48 1
5 45 1 0 0 4 1 1 6 3 9 15 24 | 2
6 68 1 0 0 13 1 1 6 2 16 34 48 2
7 152 1 0 0 16 1 0 28 1 37 152 96 1
8 212 1 0 0 9 1 0 33 1 87 212 192 1
9 375 1 1 1 6 5 0 10 5 10 15 24 | 3
10 516 1 0 0 15 1 0 83 2 118 258 192 2
11 857 1 0 0 188 1 0 207 1 351 857 48 | 1
12 1064 1 0 0 153 1 0 259 2 98 532 96 | 2
13 1601 1 0 0 40 1 0 310 1 408 1601 48 1
Full Search over K(4,6;q1)
14 1958 1 0 0 107 1 0 229 1 525 1958 192 1
15 2834 1 0 0 892 1 0 1123 1 1314 2834 96 1
1 0 0 294 1 1 117 2 507 1417 96 1
(not simple)
16 3312 1 0 0 495 1 0 737 2 450 1656 96 | 2
17 4628 1 0 0 1123 1 1 327 2 1032 2314 96 2
Full Search over K(4,§; qi")

18 5354 1 0 0 83 1 0 1253 1 1863 5354 192 1
19 7081 1 0 0 241 1 0 1433 1 1616 7081 48 1
20 8148 1 0 0 371 1 0 1401 1 3299 8148 192 1
21 10552 1 0 0 1670 1 0 2111 1 2746 10552 192 1
22 11886 1 0 0 457 1 0 3753 1 4079 11886 192 1
23 15154 1 0 0 2602 1 0 6037 1 6424 15154 96 1
24 16812 1 0 0 109 1 1 1717 3 1677 5604 | 192 | 2
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TABLE 6. Four-dimensional rank-1 simple lattice rules

Hermite Normal Form of Dual Lattice
0 N | Hiy Hy Hiz Hia Hyp Has Hay Hiz  Ha Hayq 1
9 398 1 0 0 8 1 0 61 1 149 398 | 192

16 | 3376 1 0 0 169 1 0 1091 1 1387 3376 | 192
17 | 4633 1 0 0 547 1 0 1936 1 1965 4633 | 48
24 | 17208 1 0 0 919 1 0 4701 1 55567 17208 | 192

for § € [18,24]. The supplementary Table 6 simply specifies some rank-1 simple
rules whose abscissa counts appear in Table 2 but are not specified elsewhere.

5. FURTHER COMMENTS

Any historical perspective on rules of specified trigonometrical degree would
mention the widespread use of the product trapezoidal rule, and the center and
vertex rule since the beginning of the twentieth century. However, the serious study
of such rules seems to have started in the final fifteen years of that century. The
earlier work of this period, mainly by Russian authors, has been strictly limited to
rank-1 simple rules. They have produced and established the optimal degree rules
up to § = 4. These authors have been concerned mainly with rule families in three,
four, and five dimensions. KEach family contains rules of arbitrarily high degree.
Other economical rules seem to have been provided only as spin-off, and no claim
has been made for optimality. However, in retrospect we have ascertained that in
three dimensions their rules are optimal rank-1 simple rules for all §<18 but that
in four dimensions, they are optimal only for odd § up to 5 and for even § up to 12.

To our knowledge, the only other set of rules proposed in this context are the
Smolyak rules [CNR99]. These were designed for high dimensions and high degrees.
In three and four dimensions and for values of § considered here, the K-optimal rules
presented here are well over ten times more cost effective than the corresponding
Smolyak rules.

Figures 1 and 2 illustrate most of the abscissa counts listed in Tables 1 and 2.
We note the dichotomy between even and odd degree, which seems to occur in both
the theoretical limit Ny g and results such as Nxo and N, (not shown in figures
but reported in the tables) and Npyey.

As discussed in Section 1, we have no theory to exclude the possibility that, for
larger &, the optimal rule of trigonometric degree § is not a lattice rule. If this
were the case, in Figures 1 and 2 there would be missing entries above the lines
joining the circles, but below the theoretical limit represented by squares. Also
unsatisfactory is the fact that we cannot establish that the K-optimal lattice rule
is actually an optimal lattice rule. This is more frustrating because the anecdotal
evidence is overwhelming. We have several incomplete proofs, characterized by our
inability to bridge in each case what seems to be a minor lacuna. However, we have
an example of a rule that is K (4, §)-optimal, but not K (4, d; g2)-optimal. The 375
point lattice listed in Table 5 for 6 = 9 is not in K(4,9;¢2). The K(4,9; g2)-optimal
rules have an abscissa count of 390. And we have encountered many examples in
which the restriction to K (4,6;q;") has resulted in missing some excellent rules.
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One of the unsatisfactory features of our approach is its high computational
cost. We have derived a somewhat unrealistic upper bound on the complexity.
This depends in the first place on v, the number of distinct generator matrices we
start with. As specified in Section 3,

_ s+0-—1 S_ s?—s
1/-( s_1 >—(9(5 )

for fixed s and increasing 0.

Only a proportion that appears to decrease with increasing J is treated further to
find N. After this, a minute proportion of these are retained to find their degree. A
simple basic form of our algorithm to determine the degree of a lattice rule requires
time proportional to 3° ', where 3 is the degree of the lattice. In fact, all but a
handful have degree strictly less than §. To obtain a complexity bound, we replace
both proportions by 1 and replace 8 by §. This approach leads to a complexity
bounded above by 6 1.

For the values of ¢ for which we carried out careful timing checks, the compu-
tational cost does increase very rapidly with increasing 0, although not nearly so
rapidly as the complexity bound derived above might suggest. To give the reader
an idea, we list some timings below for a particular processor.!

For s = 3 all § < 30 are treated within 33 minutes.

For s =4 all 6 < 8 are treated within 34 minutes.

For s = 4 and § = 10 the search required 6.5 hours.

For s = 4 and § = 14 the search restricted to K (4, 14; q1) required 120 hours.
For s = 4 and § = 17 the search restricted to K (4,17;¢;") required 145 hours.
For s = 4 and & = 18 the search restricted to K (4,18; ;) required 228 hours.

In fact, higher values of § were treated in a different way by partitioning the search
into several tasks that were distributed to several different machines. Using actual
timings, we estimated hypothetical timings corresponding to the chip mentioned
above. These indicated that the time needed for a complete search for 6 = 20
would be about 2700 days, but restricting the search to K (4,20;q;") reduced this
time to about 40 days.

Another feature of our program is its exorbitant redundancy. In an extreme
case, a four-dimensional lattice may have 30 points on (4, ), these comprising
two point pairs on each of seven facet pairs, and one point pair on the remaining
facet pair. When ¢; includes four of these facet pairs, our search over K(4,0,q1)
may include the identical lattice sixteen times. Moreover, we might treat each of
the 192 lattices in the same equivalence class either eight or sixteen times. All this
work might provide a single entry in Table 5. This helps us to understand why the
much smaller population space K (4,6, ;) often but not always includes at least
one of the set of K-optimal lattices associated with the larger (by a factor of up
to 24) set. We note that the complexity or the complexity bound would not be
affected by this redundancy. It shows itself in the circumstance that an optimal
rule was usually found in the first hour of a 100-hour run.

1Pentium IT (Deschutes), 398.13 bogomips processor
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For some parts of the search, this redundancy is not important. As an analogy
one might compare the task of searching for one of k£ needles in one haystack with
that of searching for one of 100k needles in 100 mixed-up haystacks. So long as
k > 1, the time taken to find one needle is to first order the same in either case. If

k =0, it takes 100 times as long to complete the search in the second case as in
the first case.

APPENDIX: SPECIFICATION OF SETS DEFINED IN THEOREM 3.4

The group G of coordinate transformations includes transpositions o;; that in-
terchange coordinates x; and x; and reflections p; that replace x; by —z;. The
group can be generated by the four elements o2, 013, 014 and ps, which we have
temporarily termed G; (i = 1,2,3,4). Hence, we can establish the theorem by
exploiting the result that G;g € S; (i = 1,2,3,4) whenever q € Sj.

The effect of each of these four transformations on each of the eight facet-pairs
is given in the following table.

Specification Parity 012 013 014 3
Fol+, + + + E Fp| Fob Fo Fo Fu
Fr|— + 4+, + O k| F, Fy F; I
Fl+, - + + 0] R\ FR F kB F
Fs |- - +, + B F3 | F3 Fs Fs  Fy
Fal+, + - + O Fu| Fs P Fy K
F5 ) +, ) + E F5 F5 F5 F3 F1
Fs |+, - - + E Fe | F5 I3 Fs I3
|- - - + 0 F, |\ F, I Iy I3

To illustrate the calculation, we confirm the entry for o13F3. By definition, Fj
includes only points of the form (—a, —b,c,d) where a,b, ¢, and d are individually
nonnegative. The corresponding point of o13F3 is obtained by interchange of coor-
dinates 1 and 3, and so is (¢, —b, —a,d). Reference to the definition confirms that
this point is indeed an element of Fgz. Thirty-two equally trivial calculations will
confirm the results presented in this table.

Using these operations, we can transform quartets of facet-pairs into other quar-
tets. We overload the notation above and consider the order of facet-pairs in a
quartet as irrelevant; for example, q(7,1,4,2) = ¢(1,2,4,7).

One way to obtain one of the sets listed below is by constructing a list as follows.

Initially this list contains only one element, in this case perhaps g2, = ¢(0, 2,4, 6).
At the end of a later stage, it may contain N distinct elements, say, ¢1,92, ... ,qnN-
The next stage comprises calculating G;qx for ¢ = 1,2,3,4 and k = 1,2,... N,
adding these to the list and removing duplicates. If the new list has more than N
elements, we proceed to a further stage of the same nature. If the new list has N
elements, the same number as in the previous list, we may stop. The current list
now comprises a complete list of the elements of Sa,.

Again, we illustrate one of these calculations by an example. We evaluate
0134(0,2,4,6). We require from the table the facet-pairs o13F; for j = 0,2,4,6.
Reference to the column headed o3 of the table shows these to be Fy, Fo, F}, F3, re-
spectively. These facet-pairs comprise ¢(0, 2, 1, 3), which is the same as ¢(0, 1,2, 3).
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Each update of the list involves four such calculations for each of the current N
members of the list.

e Elements of Sy

q(0,3,5,6), q(1,2,4,7)

e Elements of S;

Q(0?27477) » Q<0717477) » q(0?1’2’7) > q(0’1’274) s
q(0,3,4,6) , ¢(0,4,5,6), ¢(0,1,3,5), ¢(0,2,3,6),
q(0,3,4,5) , ¢(0,1,3,6), 4¢(0,5,6,7), ¢(0,3,5,7),
q(0,3,6,7), ¢(0,1,5,6), ¢(0,2,5,6), ¢(0,2,3,5),
q(3,4,5,6) , q(1,4,5,7), q(2,4,6,7), q(1,2,3,4),
q(1,2,4,6) , q(1,2,4,5), ¢(1,2,3,7), ¢q(2,4,5,7),
Q(1’47677) ) q(1a2’5’7) 5 q<1727677) s Q<2’3’47 7) ,
q(1,3,4,7), q(2,3,5,6), ¢(1,3,5,6), ¢(3,5,6,7)
e Elements of So,
q(0,2,4,6) , ¢(0,1,4,5), ¢(0,1,2,3), ¢(0,3,4,7),
q(0,1,6,7), ¢(0,2,5,7), q(2,3,4,5), ¢(1,3,4,6),
q(1,2,5,6) , ¢(2,3,6,7), ¢(1,3,5,7), q(4,5,6,7)
e Elements of Sop
q(0,2,4,5) , ¢(0,1,4,6), ¢(0,1,2,5), ¢(0,2,3,4),
q(0,1,3,4), ¢(0,1,2,6), ¢(0,4,6,7), q(0,4,5,7),
q(0,1,3,7), ¢(0,2,3,7), ¢(0,2,6,7), ¢(0,1,5,7),
Q(2’4’5’6) ) Q(1’4v576) » Q(1’27376) » Q(172a3’5) ,
q(2,3,4,6) , q(1,3,4,5), q(2,5,6,7), ¢(1,5,6,7),
q(2,3,5,7), q(1,3,6,7), ¢q(3,4,6,7), q(3,4,5,7)
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