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LOCALIZATION OF THE FIRST ZERO
OF THE DEDEKIND ZETA FUNCTION

SAMI OMAR

ABSTRACT. Using Weil's explicit formula, we propose a method to compute
low zeros of the Dedekind zeta function. As an application of this method,
we compute the first zero of the Dedekind zeta function associated to totally

complex fields of degree less than or equal to 30 having the smallest known
discriminant.

1. INTRODUCTION

Let K be a number field of degree n, of signature (ri,r3) and of discriminant
dg. The Dedekind zeta function of K is denoted by (x(s). Currently there are
no efficient methods to compute high zeros of Dedekind zeta functions of general
non-abelian fields. For low zeros there is a method of Friedman [F] implemented by
Tollis [T], but computations are restricted to number fields of small degree (n < 6).
In this paper we show how to compute low zeros of the Dedekind zeta function by
using Weil’s explicit formula and its derivative. Actually, we compute the first zero
by reversing the known Serre-Odlyzko construction to bounding discriminants when
the field’s discriminant is known. This method requires one to compute norms of
prime ideals. For that purpose we use efficient algorithms to decompose the minimal
polynomial modulo rational primes. As an application of this method, we estimate
the first zero of the Dedekind zeta function of totally complex fields of degree less
than 30 having the smallest known discriminant [CDO].

The functions F(x) used in our computations are Serre’s, which in fact give
discriminant bounds less good than Odlyzko’s but have the interesting property
that their Fourier transforms F(z) decrease very rapidly and monotonically as x
tends to +o00. Therefore the sum running over the non-trivial zeros in Weil’s explicit
formula is concentrated on the very low zeros of (x(s). We look then to find out
how to separate these zeros and estimate the first one with a given precision.

2. WEIL’S IDENTITY

Let F be a real function of a real variable which we can suppose even and veri-
fying the following conditions (A) and (B) [L]:
(A) F is continuous and continuously differentiable everywhere except at a finite
number of points a;, where F(z) and F'(x) have only a discontinuity of first kind,
such that F(a;) = 3(F(a; 4+ 0) 4+ F(a; — 0)).
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(B) There is a number b > 0 such that F(z) and F'(z) are O(e~(ztdllely g
| z |— oo.
Then the Mellin transform of F',

+o0
D(s) = / F(a:)e(s_%)g”da:,

—o0
is holomorphic in every strip —a < o < 1+4a, where 0 < a < b, a < 1, and we have
the result established by Weil [Pt1], [Pt2]:

Theorem 1 (Weil). Let F satisfy the conditions (A) and (B) above. Then the sum
ST ®(p) running over the non-trivial zeros p = 3+ iy of (x(s) with | v |< T tends
to a limit as T tends to infinity, and this limit is given by the formula

W X = e +e-23 ST FmaN )
p p,m

+ F(0)[In(] di |) = nIn(@2m)] = r1J(F) — nI(F),
where

J(F) = /Om QI;EEE%)dx and I(F) = /0+oo (2—1;% - ?) da.

Consequences. If we consider positive functions depending on a positive param-
eter y with F(0) = 1 and for which the Fourier transform is also positive, we get
the inequality

) (| dg |) > —®(0) — (1) + n(In(27) + I(F)) + r1J(F).

In the case where F is Serre’s or Odlyzko’s function, we determine the optimal
value of y which gives the best lower bound for In(| dx |), obtaining the inequalities
of Odlyzko and Serre.

3. COMPUTATION OF THE FIRST ZERO OF THE ZETA FUNCTION

Let us consider the identity (1) for the functions Fy(z) = e=¥"* where y > 0.
The Mellin transform ®,(s) of F, is

Dy(s) = \/564"(5_ )2,

and the Fourier transform ¢, of Fy is

If we assume the Generalized Riemann Hypothesis (GRH) for (x, we have ®,(p) =
©y(t), where p = % + it. For every k > 1, we denote by tj the positive imaginary
part of the kth zero of the Dedekind zeta function. Therefore we have the identity

Z(I) p) [ _% — \/jelﬁy 22 —y (mIn(N(p)))?

t=Sm(p)
+ [In(l dx I)—nhl(zﬂ)]—ﬁ«]( ) = nl(y),

where
2 2

+oo e~ vz +o0 e~z e %
J(y)z/o 2eh(Z )d:r and I(y) = /0 (m——m—> dz.
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In section 4, we will show how to compute the integrals J(y), I(y), and the sum

oly) = (N ®)) —yminE))?
S Np)F

with a given precision. This allows us to compute
Sy)= Yy e
t=3%m(p)
for every y > 0, as well as its derivative

2 12
W= Y et

t=Sm(p)

One can easily see that ¢; > 0 if and only if S(y) < 1 for some y > 0. Therefore

S(y) can be writen S(y) = 23,5 e~th/4_ which tends to 0 as y tends to 0.
Let us start by supposing that there exists 8 > 0 such that S(8) < 1 (i.e. t; > 0).

To compute the first zero of (x(s) on the critical line, we proceed in the following
manner:

1. Lower bound for the first zero. We use the following trivial bound:

Lemma 1. For every y > 0 we have

> s (a2 0).

In practice we search for the value of y giving the best lower bound #1,,in of ¢1.
2. Upper bound for the first zero. Let us define

H(y) = 45'(y) _22(——1>e4%.

To get an upper bound for ¢1, we use the lemma:

Lemma 2. There exists yo > 0 such that for every y > yo we have H(y) < 0. It
follows from the definition of H(y) that t1 < yo .

Proof. This is a consequence of the asymptotic behaviour of S(y) and S’(y):
lim S(y) =0", lim S(y) = +oo,
y—+oo
hm S'(y) =0T, lim S'(y) =0%.
y—0+ y—+00

Therefore lim,_,o+ H(y) = 0" and limy, . H(y) = —oco, proving lemma 2.
We take for t1mqs the value of y that is a solution of H(y) = 0.

3. Improvement of the upper bound and separation of the zeros. Let
us consider, for every a > 0,

/e %
Ma(z) = 22 (ﬁ — ) e %=,

We have the following lemmas:
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Lemma 3. i) For every z > 0, M, (2) can be written in terms of S and S’ in the
form

1 z z

/ — —
42214 (4a) S(4oz'

ii) For every value of « there exists a constant Co > 0 such that t; < Cq
(Cy is the solution of M,(Cq) = 0).

Ma(z) =

The lemma below gives a lower bound for the second zero of (i as a function of
Cy.

Lemma 4. We have the inequality

ty > \/max (—4yln (5(22 —e_fya) ,O) .

This inequality arises by ignoring all but the first two terms in S(y).

In practice, we begin by computing the best constant C,, given by lemma 3; then
we search for the optimal value of y which gives a lower bound of ¢y greater than
Cy.

4. Improvement of the range for the first zero.. An upper bound for ;
can be obtained by the determination of the root of the function

t2 tgmin
H(y)—2< Lmin —1) e h =0
Yy

where ¥y > t1maz-

This upper bound of t5 can be used to improve the value of 1., given by lemma
1, but in practice, if we are only interested in slight precision for ¢; (only one or
two decimal digits), the improvement of t1,,:, seems to be unnecessary because

the desired precision can be obtained by simple improvement of the value of t1maq-
This can be done in the following manner.

We define the sequences (b,) and (c,) by the recurrent formula

bO = timaz = Cou

_ _ S -%
co = tomin = SUp 4 /max | —4y In —e % },0
y>0

and, for every integer n,

c2 _
bp+1 = inf \/4yln<s(y) e‘m(ﬂyl 1)S(go)>

Yo >y>0

b2
Cnt1 = SUP \/max (—4y In <%y) —e” o > ,0)
y>0

We should remark that the formula for b,y arises by comparing S(y) and S(yo)
term by term and using the fact that, for 0 <y < yp and k > 2,

t7 t2

2
n
+4 0 e ~dyo >e 4y |

One can prove the lemma below:
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Lemma 5. i) For every integer n > 1, we have t1 < b,
1) For every integer n > 1, we have ¢, < ta.

Now, if we have t; = 0, that means in practice that S(y) > 1 for small values of
y. In this case we don’t apply lemma 1, we just find an upper bound near 0 for t;
by combining S(y) and S’(y) as in lemma 2 and lemma 3.

The method we have just explained, allowing us to approximate the first zero,
can be generalized for the computation of the other zeros (¢, t3,...).

4. COMPUTATION OF S(y)

In this section we give a method to compute the different terms of S(y), i.e.,
J(y), 1(y) and v(y).

a2
4.1. Computation of J(y). Let us write Gy(z) = Q"Ch—y(a); then we have:
2
Lemma 6.
N
: . Gy(0) _ [T
hli,%l-t— NEI:[i-loo h [——2—— + qE=1 Gylqh)| = ; Gy(z)dz.

Proof. We apply Poisson’s equality to the function defined by = — G, (hx), where
h > 0.

In practice we consider two arbitrary sequences (N;) and (h;) such that h;N; —
+o00 and h; — 0; we will take for example N;h? = const. When this is the case,
the following lemma [DaR| shows that the series decreases as g—consVN,

Lemma 7 (Martensen). Let
oo G,(0) &
En(Gy) = Gy(z)dz — h {—y;—) + Z Gy(qh)} .
0 —
Then there exists sq > 0 such that:
1 +oo+1s0
BG) IS zm— [ 16 |dx
e —1 —o0+1S0

4.2. Computation of I(y). Let us consider the function G, defined by

1—e v
= )
I(y) can be decomposed as I(y) = Is — I1(y), where
+oc0 “+oo 1 e %
I = G,(x)dr and I:/ —y — ——)dx.
W= 6w = Gam )

The value of I can be computed by the Gauss formula [GR], which gives Iy =
~v +21n(2). For I1(y) we write

1 teo oo emve”

Ki(y) Ks Ks(y)
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We have Ky = ln(coth%). To compute K3(y), we apply again lemma 6, which
remains true for the function
(@) e~ y(@+1)?
Gy(z) = ————~.
v 2sh(&f)

For the computation of K (y), we use the Clenshaw and Curtis method [DaR| based
on the Fourier-Tschebyscheff expansion of G, on the interval [-1,1].

4.3. Computation of v(y). In practice, we compute

—y(mIn(N(p)))?
@) =Y ) Y S

—~  N®F
p<po p|(p) mIn(N(p))<cons

where cons = \/%Q. The number field being defined by a polynomial P(z),
for every prime number p prime to the index of the field, the decomposition of the
ideal (p) into a product of prime ideals of the field is given by the decomposition
of P(z) modulo p [Col]. In the case where p divides the index, we use a stronger
algorithm (see algorithm 6.2.5 in [Co}).

The condition mIn(N(p)) < cons means that we don’t take into account the
terms of the series less than 107¢. Generally, we take ¢ = 30, and pq is the greatest
prime number less than 107 (see section 5).

The error term

T'po (y) = U(y) — Upo (y)

is estimated using the following lemmas:

Lemma 8. Let n be [K : Q). Then

Tp0(¥) < 70(n) + oo (),

where

ro(n) =n?10"¢ Z Z ln%’),

p
P<po mln p)> cons

and
e y(mln(p))2
reo(n) =n? 37 Y In(p)—————

p>po m>1

Lemma 9 (Estimation of rq(n)). For every integer po > 2 we have

ro(n) < 81n(2)n10~ ™ %" py.
Proof. We have
e In
ro(n) < n?10 Z 3 (Zj) )
PSPOp 2 (p2 - 1)
where g(p) = E(-222:) (here E(z) denotes the floor of ).

n In(p)
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Thus 79(n) < 4n210~ e~
by

22" 0(po), where 6 is the Tschebyscheff function defined

6(po) = D _ In(p).

P<Po
According to Tschebyscheff’s lemma [EM] we have 6(pg) < 21In(2) po, and the
desired result is obtained.
Proposition 1. Let f be a decreasing, continuously differentiable and integrable
positive function in [a,+oo[ (a > 0) satisfying f(z) = o(L) and z f(z)e™° In(z) —
o(f:oo f(t)dt) as | z |— oo, where ¢ is a positive constant. Then

+oo
S In(p) £(p) ~ / f(tydt

p2x
Proof. Let us consider the function 6(z) = 3 ., In(p). There exists a constant

¢ > 0 such that 6(z) = z + R(z), where R(x) = O(ze™ V@) [La]. We can write
the series »- - In(p)f(p) as an integral:

+oo
> In(p)f(p) = / f()do(t);

p=w
now by integration by parts, we get

S n(p) f(p) = —f (@) R(x) + /

p>z z

“+o00o

+oo
fode~ [ fOR0
It is not difficult to see that f(z)R(z) = o(f:oo f(t)dt) and

+o0 +oo
/ | F(OR(E) | dt = O(e=eVI® / () | dt).

After another integration by parts of this last integral, we find that

+00 oo
/ 10 [t =af@)+ [ o

and we deduce the result of the proposition.
Corollary 1 (Estimation of 7o (n)). We have
Too(n) < s1(n) + s2(n) + s3(n),
where
sa(n) = nZerv@inea)’ $° 111(10)
vspe PP — 1)

on? e—¥(31n(po))?
~ n

Po—00 \/]76 ’
S9 (TL) _ 2 Z ) e~ Y In(p)?

P>Ppo

f\/l?_oe y1n(po)*
po—oo 2y In(po)
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and

In(p) _yen 2
ss(n) = n? Z M o—y(21n(p))
pP>po p
n2 e—4y1n(po)2
poco 8y In(po)
Example. In the case of the totally imaginary field of degree 20 having the smallest

known discriminant, the value of y which maximizes S(y) is 0.069. If we take
po = 4107 and ¢ = 30, the error in the computation of v(y) is bounded by 1074

5. APPLICATION TO THE COMPUTATION
OF THE FIRST ZERO OF THE DEDEKIND ZETA FUNCTION
OF CERTAIN FIELDS OF SMALL DISCRIMINANT

In the following tables we indicate the value of the first zero % + ity of (x, the
limit pg of primes taken into consideration in the sum running over the prime ideals
of the field, the value y giving the best lower bound for the first zero (cf. lemma 1),
and a bound for the error term 7,,(y) in the sum v(y) (cf section 4.3).

5.1. Totally real field of small discriminant of degree 7. This field having
the smallest discriminant (dx = 20134393) is defined by the polynomial [Phl:

P(z) = z" 4 2% — 62° — 52* + 823 + 522 — 22 — 1;
and its root discriminant is 14.909% above the GRH bounds. See Table 1.

TABLE 1

t; Po y T'po (¥)
1.81803 | 8-107 | 0.082 | 1077

5.2. Totally imaginary fields of small discriminant of degree less than 30.
We consider here the imaginary complex number fields given in [CDO] of degree less
than or equal to 30 having a root discriminant near from Odlyzko’s lower bound.

Table 2 shows that the precision of the computations decreases with the degree;
for example in degree 24, it was necessary to compute the decomposition for all
the primes less than 15 - 107 to obtain an error on t; less than 1072, In degrees
28 and 30, the first zero is computed only to 10! but the indicated value is less
than the exact value of the first zero. If we don’t assume (GRH), we compute
S(y) =3 ®,(p) for every value y and we obtain the following result:

Lemma 10. The following assertions are equivalent:

i) S(y) is bounded as y — 0.

i1) S(y) > 0 asy — 0.

151) There are no zeros of the Dedekind zeta function in the triangle A(%,O),
B(1,0), C(1,3)-

Remark. Because S(y) is bounded as y — 0 for all the considered fields, we can
deduce the non-existence of a Siegel’s zero for these fields.
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TABLE 2

ty Po y T'po (¥)
8.03 107 0.4 10743

4.39 107 0.3 | 1073t

3.30 107 0.2 | 1071

co » = [\ =

2.75 107 0.11 | 1078

10| 2.40 107 0.097 | 1076

12| 2.17 107 0.090 | 107°

14| 2.10 107 0.085 | 107°

16| 1.87 | 2-107 | 0.075 | 10~

181 1.76 | 2-107 | 0.073| 107*

20| 1.66 | 4-107 | 0.069 | 107*

221 1.63 | 9-107 | 0.062 | 1073

24| 1.54 | 15-107 | 0.058 | 1073

26| 1.23 | 6-107 | 0.057 | 1073

28 | 1.48* | 5-107 | 0.056 | 1072

30 | 1.36* | 5-107 | 0.056 | 1072

In conclusion I would like to thank Professor F. Diaz y Diaz for his help in the
preparation of this paper, and also to thank M. Balazard for his fruitful suggestions.
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