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FINDING PRIME PAIRS WITH PARTICULAR GAPS

PAMELA A. CUTTER

ABSTRACT. By a prime gap of size g, we mean that there are primes p and
p + g such that the g — 1 numbers between p and p + g are all composite. It
is widely believed that infinitely many prime gaps of size g exist for all even
integers g. However, it had not previously been known whether a prime gap
of size 1000 existed. The objective of this article was to be the first to find a
prime gap of size 1000, by using a systematic method that would also apply to
finding prime gaps of any size. By this method, we find prime gaps for all even
integers from 746 to 1000, and some beyond. What we find are not necessarily
the first occurrences of these gaps, but, being examples, they give an upper
bound on the first such occurrences. The prime gaps of size 1000 listed in this
article were first announced on the Number Theory Listing to the World Wide
Web on Tuesday, April 8, 1997. Since then, others, including Sol Weintraub
and A.O.L. Atkin, have found prime gaps of size 1000 with smaller integers,
using more ad hoc methods. At the end of the article, related computations to
find prime triples of the form 6m + 1, 12m — 1, 12m + 1 and their application
to divisibility of binomial coefficients by a square will also be discussed.

0. INTRODUCTION

In 1928, D. H. Lehmer realized that if p — 1 = FR where F' > p'/? is factored,
then there is a quick, practical way to show if p is prime. In 1975, this result was
extended by Lehmer, Brillhart and Selfridge [1], so that one only needs to have

the factored part F' > p/3 to get a quick test. The test is based on the following
theorem.

Theorem 1. Let N — 1 = FR, where F is factored, F > N'/3 and (F +1)° # N.
Assume that, for each prime py dividing F', there exists an ay such that

(i) ap ' =1 (mod N), and

(i) ged(a,™* —1,N) =1.

Write R = 2Fs +1r where 1 < r < 2F. Then N is prime if and only if s = 0 or
72 — 85 is not the square of an integer.

To apply this to the prime gap problem, we need to have partial factorizations of
p—1and p+g—1. To do this, we proceed as follows: For a given even integer g, we
select @ and b to be the largest integers with 2%, 3% < e9/4. We select po to be the
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least positive integer (mod 223%) as follows, by the Chinese Remainder Theorem:

if g=2 (mod3), then po=1 (mod2%) and po+g=1 (mod 3?),
(1)
if g#2 (mod3), then po=1 (mod 3% and po+g=1 (mod 2%).

We need two cases, for, if g = 2 (mod 3) and we select py (mod 223%) such that
po = 1 (mod 3%) and po+ g = 1 (mod 22), then we would have that 3 divides
po + g. If we were to only select py (mod 223%) such that pg = 1 (mod 2%) and
po+ g =1 (mod 3%), then we would have that 3 divides py when g =1 (mod 3).
Selecting p = po (mod 223°) with p < min(2%27%,3%*"1) we get p—1 and p+g—1
divisible by 2 and 3° (the order depending on g (mod 3)). Notice that 2¢ and 3
are factors > (p + g)%/3 > p'/3. Thus we can use Theorem 1 above to determine
whether p and p + g are prime.

In addition to the prime gap problem, Sections 4 and 5 will show how Theorem
1 can be applied to find prime triples of the form 6m +1, 12m — 1, 12m + 1. Prime
triples of this form will be used to complete the proof of the following theorem:

Theorem 2. (27) is divisible by the square of a prime p > /n/5 for alln > 2082.

1. THE ALGORITHM

The algorithm used to find consecutive primes with a given gap g is as follows.

Step 1: Find pg, 2% and 3° as stated above.

Step 2: The numbers p that we will be testing are of the form p = pg + 1223, as
i runs from 1 to 108, We do not actually want to put all of these numbers through
the primality test, as some of them may be divisible by small primes. We will sieve
these numbers out as follows: For each prime ¢ up to 104, if 7 is in either of the
residue classes

~Po—9g

2a3b 2a3b
then either p or p + g, respectively, will be divisible by ¢. So we will discard this
value of 7. The remaining i’s we store in a table, which we call T} (g).

Step 3: For each value of 4 in Ty (g), we use Theorem 1 to test if p = po + 123"
is a prime. To do this, we start with ar = 2. If, along with the other hypotheses,
conditions (i) and (ii) of Theorem 1 are met, we have a prime. If they are not
satisfied, we let ay run through primes, up to the limit 255. If we reach this limit
with no success in finding an ag, or proving p composite, then we give up trying to
determine primality of this value p and move on to the next i in T1(g). There are
three ways we will learn that p is composite from our algorithm:

e a’ '#1 (mod p)
o 1 <ged(ar® V" —1,p) < pwhere bis 2or 3, depending on p
e In the theorem, we have s> 0 and 72 — 8s is the square of an integer

(mod ¢) or

(mod gq),

If we find an aj which satisfies conditions (i) and (ii) of Theorem 1, we then perform
the same test with p + g. If we have primality of both p and p + g, we store the
values p, p + g and the respective ag’s in a table, call it Th(g).

Step 4: For every prime pair p, p+ ¢ in T>(g), we need to determine whether the
numbers p + j, as j runs from 1 to g — 1, are composite. We do this in two steps.
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(a) We first check if the numbers p + j are divisible by primes up to 10*. For
each prime ¢ < 10%, whenever j = —p (mod q), we have p + j divisible by ¢. Thus
p + j is composite. We store the remaining j’s (those where p + j is not divisible
by a prime < 10%) in a table T3 ,(g).

(b) For each j in T5 ,(g), we run at least one pseudoprime test on n = p+j. If n
is not a pseudoprime to either base 2 or 3, then we know it is composite and we go
on to the next j in T3 ,(g). If n should happen to pass pseudoprime tests to both
the bases 2 and 3, we say n is probably prime and we disregard this prime pair p,
p—+g. We then move to the next prime pair p, p+ g in T2(g). If all of the numbers
p+ j where j = 1,..,g — 1, are not pseudoprimes to either base 2 or 3, then they

are all composite, and we have found a consecutive pair of primes with gap g, as
desired.

2. EXPECTED VALUES

Let my(x) be the number of primes n up to  such that n+ g is also prime. Then
we have the following conjecture, due to Hardy and Littlewood [3].

Conjecture 1. If g is even, then

where

If we first just assume that the primality of the two numbers n, n 4+ g near z,
randomly chosen, are independent events, then we would have

X

7rg(:c) - 1og2x'

But we know these events are not independent, so we correct this argument by
multiplying by the factor

a-4)
1
P (1—%)

2
since the probablity that two random integers are not divisible by p is (1 — %) ,
and the probablity that our particular numbers are not divisible by p is (1 — ﬁ%@ ,
where w(p) is the number of solutions to n(n + g) = 0 (mod p). Noting that
w(p) = 2 unless p divides g, whence w(p) = 1, we obtain the stated conjecture
(with some rearrangement).

Recall that, in Step 2 of our algorithm, we did not want to put all of our numbers
p through the primality test. So we sieved out the values of p which were divisible
by primes up to 10%*. We can thus make a further adjustment to our expected values
to account for this, and we arrive at the following:
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Heuristic 1. Knowing that the numbers n, n + g are not divisible by primes less
than 10%, we have, assuming g < 10*, that the probability that n and n + g near x
are both prime is ~ ﬁﬁrw where 3 =T, 101 (1__)2 ~ 269.76.

We justify the heuristic as follows:
We previously had that the probability that n and n + g are both prime was

1—l)
sy e
w(p)#2 (1_%)2 w(p)=2 (1
- (1_%), (1‘%). 1
Ry Ry

Since we know n and n + g are not divisible by primes up to 10%, we can make
the following adjustment: The probability that n and n 4 g are both prime is now

1 2
)
NH ( ) H(—lp_E 112.10g12:c-
—_ = p— 4 — =
08 (i 2) )

Computing this last product, we get our heuristic, provided the contribution of
the first two products here is negligible. Now, if p > 10, then p > g, so pt g. Thus
the first product equals 1; and it remains to show that [T, 104(1 = 2)/(1— 2)? is
close to 1. Now

1-2
Z log | — Z log<1———T)>

pprlme ( — ~1—> pprime
p>104 p p>10%
1
s ¢ Z <c ) 3
pprime ) n>10% (n B 1)
p>104

< /OO ! dr =c [ = r" ¢
C S EE—— = _ -
- 104 (;U — 1)2 xr — 1 104 104 -1
where, since p > 10* + 1, we get ¢ < 1 + 5-— ~ 1.00000001.
Thus, taking exponentials of the above,

1> ] LE)Q > e~¢/(10°=1) & 1 — 0001,
p>104 (1 — %)

so is close to 1, justifying the heuristic.

Next, we would like to determine how many of these prime pairs n, n+g we would
expect to be consecutive. If We have a random number m near z, the probability
that m is composite is 1 — —g— Assuming independence of compositeness of the
g — 1 numbers between n and n + g, the probablity that these numbers are all

g—1
composite is {1 — . Now, for our gaps g, the values of z are around e9/2,
P Iog = 9,
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g—1 g—1
<1_ 1 ) N<1—2> ~e 2,
log x g

We thus expect that roughly 1 out of every e? ~ 7.39 prime pairs p,p + g in Ta(g)
should be consecutive primes (i.e., have no primes between p and p + g). Upon
looking at some of the data below, this crude estimate seems to be reasonable.

So we would have

3. DaTA

For each gap g, Table 1 (on the next page) contains the exponents a and b of 2
and 3, respectively, and the first value of 4, which give consecutive primes p, p + g,
where p = pg +12%3° (recall we have i running from 1 to 10%), and pp is constructed
as described by equation (1.1). Also listed is the number of values of ¢ for which
consecutive primes p,p + g were obtained. There may be more values, since the
algorithm ignores a pair p,p + g if some number p + j, 1 < j < g— 1, passes
2 pseudoprime tests; however, it is highly unlikely that there is such a problem
with the data. Table 1 is arranged with the original gap of size 1000 listed first,
followed by several gaps of size larger than 1000 that were found. It then proceeds
numerically, starting with gap 746. Gaps g listed with an asterisk are gaps that
were already known to exist at the time these computations were performed ([4],
[7], [8]). These gaps were found again just to make the list complete.

4. OTHER CALCULATIONS

In addition to the prime gap problem, the primality testing ideas of Brillhart,
Lehmer and Selfridge can be applied to find prime triples of the form 6m + 1,

12m — 1, 12m + 1. Prime triples of this form will be used to complete the proof of
the following theorem:

Theorem 2. (27) is divisible by the square of a prime p > \/n/5 for all n > 2082.

Granville and Ramaré have verified this theorem for 2082 < n < 10'° by using
a direct consequence of Kummer’s theorem, and for n > 21617 by using bounds on
exponential sums [2]. By using the following proposition of Granville and Ramaré,

it becomes a practical computational problem to establish this theorem for 100 <
n < 21617,

Proposition 1. If m is a positive integer for which p = 6m + 1, ¢ = 12m — 1,
and v = 12m+1 are all prime, then at least one of p?,q%,r? divides (%), for each
integer n in the interval [96m? — 2m,108m? + 3m — 2|, with the one exception,
namely m = 1,n = 104.

The biggest difficulty in applying this proposition is in primality proving. In
general, when the integers involved are large, it is difficult to prove that p, ¢ and
r are all prime in a reasonable amount of time. However, since we have Theorem
1, we can construct the integers p, ¢ and r in a specific manner, to make primality
testing easier.

To apply Theorem 1 in finding prime triples p, ¢, © as in the proposition, we
need to have the factorizations of part of m and 6m — 1. To do this, we proceed
as follows: For a given odd integer b, choose a to be the smallest integer such that
2¢ > 5. By the Chinese Remainder Theorem, select mq to be the least positive
integer satisfying the congruences my = 0 (mod 2%) and 6mo — 1 = 0 (mod 5°).
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TABLE 1

gapg| a | b | #of | first |||gapg| a | b | # of | first |igap g| a | b | # of | first
values| value values| value values| value

of ¢ of ¢ of 1 of ¢ of i of i
1000 |360|227] 2 |360878||| 824 1297187 8 71371 ||| 912 13281207 4 381747
1002 |360|227| 3 |[548723||| 826 [297|187| 13 |208058||| 914 328|207 7 1929
1100 |396(250| 2 30276 ||| 828 (298188 5 |178067|| 916 |330|208| 1 56173
1500 |5411341| 4 |218942||| 830 |298]188| 12 |101315}|| 918 }330|208) 4 45015
2000 721|455 1 |588652]|| 832 |300(189| 8 53722 ||| 920 [331]|209| 7 |451458
*746 (268(169| 13 | 14308 ||| 834 |300|189| 4 [266194(|[ 922 [331{209| 8 31794
*748 1269(1701 9 57235 ||| 836 1301{190] 3 |140350}|| 924 333|210 10 | 85698
*750 |269|170| 6 |364122(|| 838 1301|190| 5 |116952]|| 926 333|210 6 |488010
*¥752 (271171 14 | 44909 ||| 840 [302(191| 6 |105445||| 928 334|211} 9 83306
*754 (271|171 8 65890 ||| 842 1302|191 9 74978 || 930 {334{211] 4 {380958
*¥756 |272|172 7 41673 ||| 844 |304|192] 5 |510836||] 932 |336{212] 3 |386782
*758 [272|172| 6 |183807||| 846 |304|192| 10 |194215(|| 934 [336(212| 6 34178
*760 (274|172 12 (236393l 848 [305(192| 2 [356988(|| 936 337|212 4 [243622
*762 1274|172 3 85 850 1305|192} 9 6907 938 13371212] 6 |178835
*764 1275|173 3 |253279|(| 852 [307|193| 8 562 940 [339|213| 6 243000
*766 (275|173 7 |215388||| 854 [307(193| 9 38684 ||| 942 |339(213| 5 71245
768 1276|174 7 ]289399||| 856 (308|194 7 |119756||| 944 340|214} 8 39019
*770 |276]174] 8 27243 ||| 858 308|194 6 25518 ||| 946 |340|214| 5 8276
*7721278[175) 7 |125253||| 860 [310({195( 4 32742 ||| 948 [341|215f 3 |507289
774 1278|175 7 40978 ||| 862 |310/195| 7 |266748||| 950 |341{215| 5 59634
*¥776 1279|176 8 74202 ||| *864 |311|196] 6 |284541|| 952 |343|216| 12 | 25613
*778 [279(176| 8 91165 ||| 866 [311|196| 2 |428141||| 954 |343|216| 5 19058
*780 [281(177( 8 86527 ||| 868 [313{197| 13 |173495(|| 956 |344(217| 2 |210615
782 1281|177 9 21943 |)| 870 |313|197] 4 |489215||| 958 |344|217| 1 |481114
*784 |282|178] 12 [228620||| 872 |314|198| 12 |147292||| 960 |346|218| 9 67752
786 (282178 8 52671 (|| 874 |314|198| 5 [199077||| 962 (346|218 6 (420982
*788 1284|179 5 |225376||| 876 |315{199| 5 57648 ||| 964 [347{219| 8 45026
*790 |284|179| 13 | 53100 ||| 878 |315|199| 6 |206082||| 966 |347(219| 9 19068
*792 (285|180 7 |147987||| *880 |317(200| 12 | 40815 ||| 968 |349(220| 5 |233833
794 1285|180 6 58703 ||| 882 |317|200] 5 7559 970 [349(|220f 5 75279
796 287|181 7 |121321|}| 884 |318(201| 6 |214418)|| 972 |350|221| 3 141435
*798 |287|191| 7 41947 ||| 886 [318(201| 5 [549797]||| 974 |350(221| 8 78969
800 (28811821 12 | 18465 ||| 888 |320({202| 3 [390981||| 976 |352|222| 3 |236366
*802 |288|182| 9 85131 890 |320|202| 6 |100213||| 978 |352|222| 6 |106959
*804 (289|182 11 | 24329 ||| 892 |321]202| 3 |197853||| 980 |353|223| 7 44678
*806 |289|182| 6 82037 ||| 894 |321({202| 7 43284 (|| 982 [353|223| 8 17732
808 1291|183| 8 |324033||| 896 |323{203| 4 [108269)|| 984 |354|223| 5 497244
810 291|183 7 34971 898 1323|203 6 |121508||| 984 |354|223| 5 |497244
812 [2921184| 6 [124459{|| 900 |324(204| 2 68389 ||| 986 |354(|223| 6 86991
*814 12921184 6 |106578|| 902 |324]204| 7 10429 ||| 988 |356(224| 9 36947
*816 [294|185| 7 3033341l 904 |326|205| 5 |495510}|] 990 |356(224| 4 |210425
818 (294|185 3 76118 ||| *906 |326(205| 3 |683868||| 992 [357(225| 5 75636
820 {295(186| 6 2834 908 [327|206] 2 |894181{j| 994 |357{225| 7 87748
822 1295|186| 5 1324077 910 |327|206| 5 45052 ||| 996 |359|226] 1 898299
998 |359|226| 3 364937

Then for any m =

mo (mod 295%),

we have 2¢ | m and 5° | (6m — 1). Notice
that p—1=6m, ¢—1 = 12m —2 = 2(6m — 1), and » — 1 = 12m, so we have
2¢ | (p—1),5%| (¢g—1), and 2% | (r — 1). Thus we have factorizations of part of
p—1,¢—1,and r — 1. Now, if m < 5%°~!, then the factored parts of p — 1, ¢ — 1,
and r — 1 are greater than p%/3, ¢*/3 and r!/3, respectively; so we can use Theorem
1 to determine primality.
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5. THE ALGORITHM

The following algorithm was used to find prime triples of the form 6m + 1,
12m — 1, 12m + 1, so that the intervals [96m? — 2m, 108m? + 3m — 2] overlap each
other and cover the entire interval [1019, 21617].

Step 1: Find 22, 5° and my as stated above.

Step 2: The numbers p, ¢ and r that we will be testing are of the form
p = 6(mo +1295°) + 1, ¢ = 12(mg +1i295°) — 1, r = 12(m,, +i2%5%) + 1, as i varies.
As with the prime pairs, we do not want to put all of these numbers through the
primality test, since some of them may be divisible by small primes. We will sieve
these numbers out as follows: For each prime [ up to 10, if 4 is in any of the residue

classes
—(6mo+1) —(12mp — 1) or —(12mg + 1)
6-2a5 ' 12.2apd 12 - 2ahb

(mod 1),

then either p, g, or 7, respectively, will be divisible by I. So we will discard this
value of i. The remaining 4’s we store in a table which we call T;.

Step 3: For each value of ¢ in T, we use Theorem 1 to test whether p =
6(mg + i295°) + 1 is a prime. This is done in the same manner as was done for
prime pairs (see Step 3 in Section 1). If we find that p is prime, we perform the
test with ¢q. If ¢ is also prime, we then test r. If we have primality of p, ¢ and r,
we proceed to Step 4.

Step 4: Once we have a prime triple 6m + 1, 12m — 1, 12m + 1, we want to find
a new value, say m, so that the integers 6m+ 1, 12/m — 1, and 12/m + 1 are all prime
and the intervals [96m? — 2m, 108m? + 3m — 2] and [96/m% — 27m, 1082 + 3 — 2|
overlap. We find 7 in the following manner: We want 96/m2? < 108m?, so we
need m < 4/108/96m = 4/9/8m ~ 1.06066m. So we will look for /m in the range
1.03m < 7 < 1.06m by first choosing values for a and b such that 2%, 5° ~ m?2/5,
Then we let i = | L% | and select mg as in Step 1. Take m = mg + i2°5, as i
varies. Return to Step 2 and repeat.

6. DATA

To find prime triples of the form 6m + 1, 12m — 1, 12m + 1 so that the inter-
vals [96m? — 2m, 108m? + 3m — 2] overlap each other and cover the entire range

[10%0,21617] we need m to vary from about 10206 to 10243. The first prime triple
found was constructed with

m = 8896.

To find this triple, the starting values for the exponents a and b of 2 and 5 were

6 and 1, respectively. This value of m is less than 10206. The largest prime triple
found was constructed with

m = 8658116190552272966883810752941244739168799098740
1254690645211635431634072427787417224738578003507
9334280517714221366437396824089500530872622682674
4987801486383661769150183229722484031893648332404
29429461517315165982230003767957290013631184896.
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This value of m is around 10243, To find this triple, the starting values of @ and b

were 323 and 139, respectively. The algorithm described above produced over 6000
triples to cover the range [10%°,21617].

(1
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