MERGING THE BRAMBLE-PASCIAK-STEINBACH AND THE CROUZEIX-THOMÉE CRITERION FOR H^1 -STABILITY OF THE L^2 -PROJECTION ONTO FINITE ELEMENT SPACES

CARSTEN CARSTENSEN

ABSTRACT. Suppose $\mathcal{S}\subset H^1(\Omega)$ is a finite-dimensional linear space based on a triangulation \mathcal{T} of a domain Ω , and let $\Pi:L^2(\Omega)\to L^2(\Omega)$ denote the L^2 -projection onto \mathcal{S} . Provided the mass matrix of each element $T\in\mathcal{T}$ and the surrounding mesh-sizes obey the inequalities due to Bramble, Pasciak, and Steinbach or that neighboring element-sizes obey the global growth-condition due to Crouzeix and Thomée, Π is H^1 -stable: For all $u\in H^1(\Omega)$ we have $\|\Pi u\|_{H^1(\Omega)}\leq C\,\|u\|_{H^1(\Omega)}$ with a constant C that is independent of, e.g., the dimension of \mathcal{S} .

This paper provides a more flexible version of the Bramble-Pasciak-Steinbach criterion for H^1 -stability on an abstract level. In its general version, (i) the criterion is applicable to all kind of finite element spaces and yields, in particular, H^1 -stability for nonconforming schemes on arbitrary (shape-regular) meshes; (ii) it is weaker than (i.e., implied by) either the Bramble-Pasciak-Steinbach or the Crouzeix-Thomée criterion for regular triangulations into triangles; (iii) it guarantees H^1 -stability of Π a priori for a class of adaptively-refined triangulations into right isosceles triangles.

1. The L^2 -projection in a finite element space

Suppose the bounded Lipschitz domain Ω in \mathbb{R}^d is partitioned into a triangulation \mathcal{T} , i.e., $\overline{\Omega} = \bigcup \mathcal{T}$ for a finite set \mathcal{T} of elements \mathcal{T} which are closed and whose interiors are Lipschitz domains. The intersection of two distinct elements has zero d-dimensional Lebesgue measure. To describe nonconforming finite elements, let H be a closed subset of $H^1(\mathcal{T})$,

(1)
$$H_0^1(\Omega) \subseteq H \subset H^1(\mathcal{T}) := \{ u \in L^2(\Omega) : \forall T \in \mathcal{T}, \ u|_T \in H^1(T) \},$$

closed with respect to the semi-norm $\|\nabla_{\mathcal{T}} \cdot \|$, where $\|\cdot\|$ denotes the $L^2(\Omega)$ -norm and $\nabla_{\mathcal{T}}$ is the \mathcal{T} -piecewise action of the gradient ∇ (different from the distributional gradient for discontinuous arguments). For instance, in the conforming setting, the choice of $H = H_0^1(\Omega)$ or $H = H^1(\Omega)$ is a typical example.

Suppose that $S \subset H$ is an *n*-dimensional subspace with a (not necessarily nodal) basis $(\varphi_1, \varphi_2, \ldots, \varphi_n)$, and let Π denote the $L^2(\Omega)$ -projection defined, for all $u \in H$,

Received by the editor January 11, 2000 and, in revised form, May 30, 2000. 2000 Mathematics Subject Classification. Primary 65N30, 65R20, 73C50.

Key words and phrases. Finite element method, L^2 -projection, H^1 -stability, adaptive algorithm, nonconforming finite element method.

by

(2)
$$\Pi u \in \mathcal{S}$$
 and $\int_{\Omega} (u - \Pi u) \varphi_j dx = 0$ for all $j = 1, \dots, n$.

In this context, the L^2 -projection Π is called H^1 -stable if there exists a constant $c_1 > 0$ with

(3)
$$\|\nabla_{\mathcal{T}} \Pi u\| \le c_1 \|\nabla_{\mathcal{T}} u\| \quad \text{for all } u \in H.$$

Two sets of parameters, the n positive parameters (d_1, d_2, \ldots, d_n) and the \mathcal{T} -piecewise constant weight $h_{\mathcal{T}}$, defined on $T \in \mathcal{T}$ by $h_T > 0$, will provide the link between the triangulation \mathcal{T} and the discrete space \mathcal{S} . Their choice is arbitrary up to the severe restriction of inequality (7) below.

To verify H^1 -stability of the L^2 -projection (3) we suppose that there exist a (possibly nonlinear) mapping $P: H \to \mathcal{S}$ and a constant $c_2 > 0$ that satisfy, for all $u \in H$,

(4)
$$\|\nabla_{\mathcal{T}} P(u)\| + \|h_{\mathcal{T}}^{-1}(u - P(u))\| \le c_2 \|\nabla_{\mathcal{T}} u\|.$$

Remark 1. In Sections 4, 5, and 6, h_T will be the element-size and d_{ℓ} a measure for the size of supp φ_{ℓ} .

Remark 2. Approximation operators which satisfy (4) for $h_T = \text{diam}(T)$ can be found in [Ca, CF, Cl].

2. Mass matrices and two inequalities

To define the mass matrix for a given $T \in \mathcal{T}$, let $\ell(T,1)$, $\ell(T,2)$, ..., $\ell(T,m(T))$ denote exactly those indices of basis functions whose restrictions $\psi_{T,j} := \varphi_{\ell(T,j)}|_T \in H^1(T)$, $1 \leq j \leq m(t)$, on T are nonzero. Then the shape functions $(\psi_{T,j} : j = 1, \ldots, m(T))$ on T satisfy an inverse inequality (by equivalence of norms),

(5)
$$\|\sum_{j=1}^{m(T)} \xi_j \nabla \psi_{T,j}\|_{L^2(T)} \le c_3 h_T^{-1} \|\sum_{j=1}^{m(T)} \xi_j \psi_{T,j}\|_{L^2(T)}$$

for all
$$(\xi_1, \ldots, \xi_{m(T)}) \in \mathbb{R}^{m(T)}$$
.

The (local) $m(T) \times m(T)$ -dimensional mass matrix M(T) and the diagonal matrix $\Lambda(T)$,

$$\Lambda(T)_{jk} = \frac{h_T}{d_{\ell(T,j)}} \delta_{jk}$$
 and $M(T)_{jk} = \int_T \psi_{T,j} \psi_{T,k} dx$ for all $j,k = 1,\ldots,m(T)$,

 $(\delta_{jk} \in \{0,1\}$ denotes Kronecker's symbol) are supposed to satisfy, for constants $c_4, c_5 > 0$,

$$c_4^2 x \cdot \Lambda(T)^2 M(T) \Lambda(T)^2 x < x \cdot M(T) x < c_5 x \cdot \Lambda(T)^2 M(T) x$$
 for all $x \in \mathbb{R}^{m(T)}$.

Remark 3. Inverse estimates [BS, Ci] provide (5) for a size-independent constant c_3 if $h_T = \text{diam}(T)$.

Remark 4. The first inequality of (7) merely reflects a proper scaling of $d_{\ell(T,j)}$ and h_T .

Remark 5. The second inequality of (7) implies that $\Lambda(T)^2M(T)$ has positive definite symmetric part. This is the crucial condition and relates the mass-matrix M(T) to neighboring mesh-sizes.

Remark 6. We stress that (7) can always be satisfied even with $c_4 = c_5 = 1$ if we let $h_T = d_{\ell(T,j)}$ be equal to a global discretization parameter. For quasi-uniform meshes this implies (7).

Remark 7. In the original version [BPS, S], d_j is fixed as the arithmetic mean of all h_T with $T \subset \text{supp } \varphi_j$, where h_T^d is the d-dimensional volume of an element $T \in \mathcal{T}$. Then, the Bramble-Pasciak-Steinbach criterion [BPS, (4.2)] implies the crucial second inequality in (7) (and is, in particular situations, equivalent).

3. A MODIFIED BRAMBLE-PASCIAK-STEINBACH CRITERION FOR H^1 -STABILITY Under the present assumptions (1)-(2) and (4)-(7) we have H^1 -stability of Π .

Theorem 1. We have (3) with $c_1 = c_2 \max\{1, c_3 c_5/c_4\}$.

The proof is a review of arguments in [BPS] in an abstract setting, and is included here for completeness. Theorem 1 implies the Bramble-Pasciak-Steinbach criterion [BPS] for a special choice of h_T and d_i (of Remark 7).

Proof. Given $u \in H$, define $q_h := P(u) - \Pi u = \sum_{\ell=1}^n q_\ell \varphi_\ell \in \mathcal{S}$ and $p_h := \sum_{\ell=1}^n q_\ell d_\ell^{-2} \varphi_\ell \in \mathcal{S}$ so that

(8)
$$q_h|_T = \sum_{\ell=1}^n q_\ell \, \varphi_\ell|_T = \sum_{j=1}^{m(T)} \xi_{T,j} \, \psi_{T,j} \quad \text{on } T \in \mathcal{T}$$

for certain coefficient vectors $x_T = (\xi_{T,1}, \dots, \xi_{T,m(T)}) = (q_{\ell(T,1)}, \dots, q_{\ell(T,m(T))})$. The triangle inequality for $\Pi u = P(u) - q_h$ and (4)-(5) show that

(9)
$$\|\nabla_{\mathcal{T}} \Pi u\| \le \|\nabla_{\mathcal{T}} P(u)\| + \|\nabla_{\mathcal{T}} q_h\| \le c_2 \|\nabla_{\mathcal{T}} u\| + c_3 \|h_{\mathcal{T}}^{-1} q_h\|.$$

According to direct calculations with coefficients from (8), the second inequality in (7) yields

$$(10) c_5^{-1} \|h_T^{-1} q_h\|^2 = c_5^{-1} \sum_{T \in \mathcal{T}} h_T^{-2} x_T \cdot M(T) x_T \le \sum_{T \in \mathcal{T}} h_T^{-2} x_T \cdot \Lambda(T)^2 M(T) x_T$$

$$= \sum_{T \in \mathcal{T}} \sum_{j=1}^{m(T)} \frac{q_{\ell(T,j)}}{d_{\ell(T,j)}^2} \int_T \varphi_{\ell(T,j)} q_h dx = \int_{\Omega} p_h q_h dx$$

$$= \int_{\Omega} p_h(P(u) - u) dx \le c_2 \|h_T p_h\| \|\nabla_T u\|$$

because of (2), Cauchy's inequality, and (4). Similar arguments and (7) lead to

$$\begin{aligned} c_4^2 \, \|h_T \, p_h\|^2 &= c_4^2 \, \sum_{T \in \mathcal{T}} h_T^{-2} \, x_T \cdot \Lambda(T)^2 M(T) \Lambda(T)^2 x_T \\ &\leq \sum_{T \in \mathcal{T}} h_T^{-2} x_T \cdot M(T) x_T = \|h_T^{-1} \, q_h\|^2. \end{aligned}$$

Utilizing this in (10), we obtain a bound of $||h_T^{-1}q_h||$, which we need in (9) to see (4).

4. Examples for Courant triangles

Suppose \mathcal{T} is a regular triangulation (in the sense of Ciarlet [BS, Ci]) of the bounded Lipschitz domain Ω in the plane into triangles. Homogeneous Dirichlet conditions may apply on a (relatively closed and possibly empty) boundary part Γ_D (matched exactly by edges). Each node $z \in \mathcal{N}$ with nodal basis function φ_z involves a positive real number d_z such that $h_T/d_z + d_z/h_T \leq c_6$ for all triangles $T \in \mathcal{T}$ of diameter h_T with vertex z. Let $\mathcal{S} := \operatorname{span} \{\varphi_z : z \in \mathcal{K}\}$, where $\mathcal{K} := \mathcal{N} \setminus \Gamma_D$ denotes the set of free nodes, and for the preceding notation identify $(\varphi_z : z \in \mathcal{K})$ and the parameters $(d_z : z \in \mathcal{K})$ with $(\varphi_1, \varphi_2, \ldots, \varphi_n)$ and (d_1, d_2, \ldots, d_n) , respectively.

Theorem 2. Suppose that $d_z/d_\zeta \leq \kappa < \sqrt{2} + \sqrt{3} \approx 3.1462$ for all vertices z and ζ of some triangle $T \in \mathcal{T}$. Then we have (3).

Proof. The mass-matrix of a fixed $T \in \mathcal{T}$ is a multiple of the 3×3 matrix M with $M_{jk} = 1 + \delta_{jk}$ and $\Lambda(T)$ has diagonal entries $\lambda_1, \lambda_2, \lambda_3 > 0$ with $\lambda_j/\lambda_k \leq \kappa$. The eigenvalues of $\Lambda(T)^{-1}A\Lambda(T)^{-1}$ for $A := (\Lambda(T)^2M + M\Lambda(T)^2)/2$ can be calculated [BPS, S], and their smallest value is $(5 - \mu)$ for $\mu^2 := \sum_{j,k=1}^3 \lambda_j^2/\lambda_k^2$. A straightforward analysis reveals that $\mu^2 \leq 3 + 2(1 + \kappa^2 + 1/\kappa^2) < 25$, which shows that A is positive definite. Therefore, $(x \cdot Ax)^{1/2}$ defines a norm which is equivalent to |x| in \mathbb{R}^3 . This and $h_T/d_z \leq c_6$ yield (7).

Remark 8. The proof shows that $\sum_{j,k=1}^{3} \lambda_j^2/\lambda_k^2 \leq \nu < 22$ for some constant ν suffices for (3). Given d_j as in Remark 7, this is the a posteriori criterion of [BPS, S] for two dimensions.

The technical assumption on the artificial, extended triangulation in the following theorem merely reduces the consideration to interior triangles for brevity.

Theorem 3. Suppose $\mathcal{T} \subset \hat{\mathcal{T}}$ for some regular triangulation $\hat{\mathcal{T}}$ of a Lipschitz domain $\hat{\Omega} \supset \Omega$ such that $\hat{\mathcal{T}}$ consists of right isosceles triangles only, there are no hanging nodes, and each free node on the boundary is an interior node of $\hat{\Omega}$. Then we have (3).

Proof. Theorem 2 yields the assertion if we take

$$d_z = \min\{|z - \zeta| : \zeta \in \mathcal{N}, \, \delta(z, \zeta) = 1\},\$$

where $\delta(z,\zeta) = 1$ characterizes neighboring vertices z and ζ , i.e., $z,\zeta \in T \cap \mathcal{N}$ for at least one $T \in \mathcal{T}$. Since (up to scaling, transition, and rotation) there are only

Figure 1: Part of a mesh as a smallest neighborhood of the reference triangle.

Figure 2: Reference mesh for comparisons in Example 1.

a finite number of possible configurations, it can be checked by a finite number of figures that $d_z/d_\zeta \leq \sqrt{8}$. Figure 1 illustrates a deduction: Suppose T has the vertices (0,0), (1,0), and (0,1). Then, the patch supp φ_z of z=(0,0) must include the polygonal domain with vertices (0,1), (-.5,.5), (-.5,0), (0,-.5), (.5,-.5), (1,0). This shows that $1/\sqrt{8} \leq d_{(1,0)} \leq 1$. Similarly, the patch supp $\varphi_{(1,0)}$ must include the polygon (0,0), (.5,-.5), (1,-.5), (1.5,0), (1.5,3), (1,1), (0,1), whence $1/\sqrt{8} \leq d_{(1,0)}$, $d_{(0,1)} \leq 1$. Consequently, $d_z/d_\zeta \leq \sqrt{8}$ for any choice of two vertices z and ζ of T.

Example 1. Let \mathcal{T} be the mesh of Figure 2 that consists of 8 triangles in a regular pattern that match the square $\Omega := (0, H)^2$ for positive $H = 1 + \lambda$, where non-diagonals' lengths are either $\lambda < 1$ or 1. For the nodes 1, 2, and 3 of Figure 2 the choice of (d_1, d_2, d_3) from [BPS], mentioned in Remark 7, is

$$((\lambda + 2\lambda^{1/2})/3, (\lambda^2 + \lambda^{1/2} + 1)/3, \lambda)/\sqrt{2}.$$

The conditions of the Bramble-Pasciak-Steinbach criterion (cf. Remark 8) and those of Theorem 2 are violated for $\lambda < .1349$, which corresponds to an aspect ratio larger than 7.4122 However, Theorem 1 with the parameters from Remark 6 guarantees (3) for any positive λ (with a λ -dependent constant $c_1 = c_1(\lambda)$).

Example 2. Take a scaled copy of Ω and the mesh from Example 1 and extend it by reflection about the x_1 -axis, the x_2 -axis, and about the anti-diagonal through the origin to $h(-1,1)^2$; and then extend it 2h-periodically to the entire plane. The calculations of Example 1 remain valid and we conclude that, for a fixed $\lambda < .1349$, the Bramble-Pasciak-Steinbach criterion is not applicable, but Remark 6 (or the Crouzeix-Thomée criterion) guarantees (3) with an h-independent constant $c_1 = c_1(\lambda)$.

The nonconforming Crouzeix-Raviart finite element (cf., e.g., [BS, Ci]) concludes our first series of applications.

Theorem 4. Suppose T is an arbitrary shape-regular triangulation into triangles and S denotes the T-piecewise affine functions which are continuous at midpoints of edges. Then we have (3).

Proof. The mass-matrices are diagonal, so (7) is a consequence of shape-regularity. The operator P can be chosen exactly as in the conforming case.

5. Weakening of the Crouzeix-Thomée criterion for H^1 -stability

Part of the Crouzeix-Thomée criterion [CT] is the existence of c_7 and $1 \le \kappa := \sqrt{\alpha} < \sqrt{2} + \sqrt{3}$ such that

(11)
$$|T_1|/|T_2| < c_7 \alpha^{l(T_1, T_2)}$$
 for all $T_1, T_2 \in \mathcal{T}$.

Here, $|T_j|$ is the area of $T_j \in \mathcal{T}$ and the neighbor-index $l(T_1, T_2)$ might be defined via a metric δ on the nodes \mathcal{N} : For two distinct nodes z and ζ , $\delta(z, \zeta)$ is the smallest integer j such that there exists a polygon (z_1, z_2, \ldots, z_j) of nodes $z_1, \ldots, z_j \in \mathcal{N}$ which connects $z = z_1$ with $\zeta = z_j$ along edges, i.e., $\{z_i, z_{i+1}\} \subset \partial T_i$ for some $T_i \in \mathcal{T}$ and all $i = 1, \ldots, j-1$; $\delta(z, z) := 0$. For any $T, K \in \mathcal{T}$ and $z \in \mathcal{N}$, let $\delta(z, T) := \min_{\zeta \in T \cap \mathcal{N}} \delta(z, \zeta)$ and $\delta(K, T) = \min_{z \in K \cap \mathcal{N}} \delta(z, T)$. Then, $l(T_1, T_2) = \delta(T_1, T_2) + 1$ if $T_1 \neq T_2$, while $l(T_1, T_2) = 0$ if and only if $T_1 = T_2$.

At first glance, the local Bramble-Pasciak-Steinbach and the global Crouzeix-Thomée criteria appear incomparable: a large constant c_7 prohibits a direct application of (11) in the spirit of Theorems 2 and 3 (as $d_z/d_\zeta \leq c_8 (|T_1|/|T_2|)^{1/2} \leq c_7^{1/2} c_8 \kappa \not< \sqrt{2} + \sqrt{3}$ for $\delta(z,\zeta) = 1$). However, all necessities are provided by

(12)
$$d_z := \min_{T \in \mathcal{T}} h_T \kappa^{\delta(z,T)}$$
 for all $z \in \mathcal{N}$ and $h_T := |T|^{1/2}$ for all $T \in \mathcal{T}$.

Theorem 5. Suppose (11)-(12) hold for a planar regular triangulation \mathcal{T} . Then, the conditions of Theorem 2 are satisfied and we have (3).

Proof. Given $z \in K \in \mathcal{T}$, we have $d_z \leq h_K$ (K is allowed in the minimization (12), and $\delta(z, K) = 0$) and $l(T, K) - \delta(z, T) \leq 1$. With a minimizing $T \in \mathcal{T}$ in (12), (11) shows that

(13)
$$h_K/d_z = \frac{h_K}{h_T \kappa^{\delta(z,T)}} = \frac{|K|^{1/2}}{|T|^{1/2}} \kappa^{-\delta(z,T)} \le \sqrt{c_7} \kappa^{l(T,K)-\delta(z,T)} \le \sqrt{c_7} \kappa.$$

To bound d_z/d_ζ for $z, \zeta \in \mathcal{N}$ with $\delta(z, \zeta) = 1$, let $K \in \mathcal{T}$ satisfy $d_\zeta = h_K \kappa^{\delta(z, K)}$. The definition (12) and $\delta(z, K) - \delta(\zeta, K) \leq 1$ show that

(14)
$$d_z/d_{\zeta} = \frac{d_z}{h_{\kappa} \kappa^{\delta(\zeta,K)}} \le \frac{h_K \kappa^{\delta(z,K)}}{h_{\kappa} \kappa^{\delta(\zeta,K)}} = \kappa^{\delta(z,K) - \delta(\zeta,K)} \le \kappa. \quad \Box$$

Example 3. There exists an adaptively-refined mesh [CV, Figure 1] of right isosceles triangles where the modified Bramble-Pasciak-Steinbach criterion guarantees H^1 -stability (cf. [S] or Theorem 3) while the Crouzeix-Thomée criterion is not applicable.

References

- [BPS] J. H. BRAMBLE, J. E. PASCIAK, O. STEINBACH: On the stability of the L_2 -projection in $H^1(\Omega)$. Math. Comp. (this journal, previous article).
- [BS] S. C. BRENNER, L. R. SCOTT: The Mathematical Theory of Finite Element Methods. Texts Appl. Math. 15, Springer, New-York (1994). MR 95f:65001
- [Ca] C. CARSTENSEN: Quasi-interpolation and a posteriori error analysis in finite element method. M2AN Math. Model. Numer. Anal. 33 (1999) 1187-1202. MR 2001a:65135
- [CF] C. CARSTENSEN, S. A. FUNKEN: Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West Journal of Numerical Analysis 8 (2000) 153-175.
- [CV] C. CARSTENSEN, R. VERFÜRTH: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 5 (1999) 1571-1587. MR 2000g:65115

- [Ci] P. G. CIARLET: The finite element method for elliptic problems. North-Holland, Amsterdam (1978). MR 58:25001
- [Cl] P. CLÉMENT: Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. 9, R-2 (1975) 77-84. MR 53:4569
- [CT] M. CROUZEIX AND V. THOMÉE: The stability in L^p and $W^{1,p}$ of the L^2 -projection onto finite element function paces. *Math. Comput.* **48** (1987) 521—532. MR **88f**:41016
- [S] O. STEINBACH: On the stability of the L_2 projection in fractional Sobolev spaces. Numerische Mathematik (2000) published online October 16, 2000.

Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel Ludewig-Meynstr. 4, D-24098 Kiel, Germany

 $E ext{-}mail\ address: cc@numerik.uni-kiel.de}$