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MERGING THE BRAMBLE-PASCIAK-STEINBACH
AND THE CROUZEIX-THOMEE CRITERION
FOR H!'-STABILITY OF THE L2-PROJECTION

ONTO FINITE ELEMENT SPACES

CARSTEN CARSTENSEN

ABSTRACT. Suppose S C H(Q) is a finite-dimensional linear space based on
a triangulation 7 of a domain €, and let IT : L2(Q) — L2?(Q) denote the
L2-projection onto S. Provided the mass matrix of each element T' € 7 and
the surrounding mesh-sizes obey the inequalities due to Bramble, Pasciak, and
Steinbach or that neighboring element-sizes obey the global growth-condition
due to Crouzeix and Thomée, II is H'-stable: For all u € H'(Q) we have
Ml g1y < Cllullg1(qy with a constant C' that is independent of, e.g., the
dimension of S.

This paper provides a more flexible version of the Bramble-Pasciak-
Steinbach criterion for H!-stability on an abstract level. In its general ver-
sion, (i) the criterion is applicable to all kind of finite element spaces and
yields, in particular, H!-stability for nonconforming schemes on arbitrary
(shape-regular) meshes; (ii) it is weaker than (i.e., implied by) either the
Bramble-Pasciak-Steinbach or the Crouzeix-Thomée criterion for regular tri-
angulations into triangles; (iii) it guarantees H'-stability of II a priori for a
class of adaptively-refined triangulations into right isosceles triangles.

1. THE L?-PROJECTION IN A FINITE ELEMENT SPACE

Suppose the bounded Lipschitz domain § in R? is partitioned into a triangulation
T, ie, Q = |J7 for a finite set 7 of elements T" which are closed and whose
interiors are Lipschitz domains. The intersection of two distinct elements has zero
d-dimensional Lebesgue measure. To describe nonconforming finite elements, let H
be a closed subset of H(7),

(1) HYQ)CHCHYT) :={uecL*Q): VT € T, u|lr € H'(T)},

closed with respect to the semi-norm ||V 7 - ||, where || - | denotes the L?(2)-norm
and V7 is the T-piecewise action of the gradient V (different from the distributional
gradient for discontinuous arguments). For instance, in the conforming setting, the
choice of H = H}(2) or H = H'(RQ) is a typical example.

Suppose that S C H is an n-dimensional subspace with a (not necessarily nodal)
basis (¢1, @2, - - - , ¢n), and let IT denote the L?(§2)-projection defined, for allu € H,
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by

(2) MueS and /(u—Hu)gojdw=O forallj=1,...,n
Q

In this context, the L2-projection II is called H'-stable if there exists a constant
c1 > 0 with

3) IVru| < c1||Vru| forallue H.

Two sets of parameters, the n positive parameters (dy,ds, ..., dy) and the 7-
piecewise constant weight hz, defined on T' € 7 by hr > 0, will provide the link
between the triangulation 7 and the discrete space S. Their choice is arbitrary up
to the severe restriction of inequality (7) below.

To verify H'-stability of the L2-projection (3) we suppose that there exist a
(possibly nonlinear) mapping P : H — S and a constant ¢, > 0 that satisfy, for all
u € H,

(4) IV7 Pl + A7 (u = P(w))]| < el V7 ul.

Remark 1. In Sections 4, 5, and 6, hy will be the element-size and dy a measure
for the size of supp ¢y.

Remark 2. Approximation operators which satisfy (4) for hr = diam (T') can be
found in [Ca, CF, Cl].

2. MASS MATRICES AND TWO INEQUALITIES

To define the mass matrix for a given T' € T, let (T, 1), £(T,2), ..., {(T,m(T))
denote exactly those indices of basis functions whose restrictions ¢T J = P, J) lr €
HY(T), 1 < j < mf(t), on T are nonzero. Then the shape functions (¢, : j =

1,...,m(T)) on T satisfy an inverse inequality (by equivalence of norms),
m(T) m(T)

B) 11D &Verlea <eshz' | Y & vrgllzaen
j=1 j=1

for all (&1,... ,&ner)) € R,

The (local) m(T) x m(T')-dimensional mass matrix M (7T") and the diagonal matrix
A(T),
(6)
h
A(T)jk = T 5jk and M(T)Jk = / T/’T,ij,k dx for all j,ki = 1, ‘e ,m(T),
de(r,j) T

(65 € {0,1} denotes Kronecker’s symbol) are supposed to satisfy, for constants
C4,C5 > 0)
(7)

Az AMTMTAT e <z -M(T)z < csz- AT)?M(T)z  for all z € R™T),

Remark 3. Inverse estimates [BS, Ci] provide (5) for a size-independent constant
cg if hp = diam (7).

Remark 4. The first inequality of (7) merely reflects a proper scaling of dy(r ;) and
hp.
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Remark 5. The second inequality of (7) implies that A(T)?M (T) has positive def-
inite symmetric part. This is the crucial condition and relates the mass-matrix
M (T) to neighboring mesh-sizes.

Remark 6. We stress that (7) can always be satisfied even with ¢4 = ¢5 = 1 if we
let hr = dyr ;) be equal to a global discretization parameter. For quasi-uniform
meshes this implies (7).

Remark 7. In the original version [BPS, S], d; is fixed as the arithmetic mean of
all hy with T C supp ¢;, where hd is the d-dimensional volume of an element
T € T. Then, the Bramble-Pasciak-Steinbach criterion [BPS, (4.2)] implies the
crucial second inequality in (7) (and is, in particular situations, equivalent).

3. A MODIFIED BRAMBLE-PASCIAK-STEINBACH CRITERION FOR H'-STABILITY
Under the present assumptions (1)-(2) and (4)-(7) we have H'-stability of II.
Theorem 1. We have (3) with ¢; = ca max{1,c3cs/cq}.

The proof is a review of arguments in [BPS] in an abstract setting, and is included
here for completeness. Theorem 1 implies the Bramble-Pasciak-Steinbach criterion
[BPS] for a special choice of hr and d; (of Remark 7).

Proof. Given u € H, define g, := P(u) —Ilu = > ,_,qepe € S and p; =
S 1 qedy 200 €S so that -
n m(T)

(8) qrlr = Zqz welT = Z érjvr; onTeT

=1 j=1
for certain coefficient vectors zr = (§7,1,... ,érm(1)) = (QeT,1)) - - - > Qo(T,m(T)))-
The triangle inequality for IIu = P(u) — g5, and (4)-(5) show that
(9) IV Tu|| < ||V P(w)|| + V7 anll < 2 V7 ull + s llhz" gnl-
According to direct calculations with coefficients from (8), the second inequality in
(7) yields

st anl® = c5' > hpar - M(T)or < Y hy’ar - AT’ M (T)ar
TeT TeT

m(T)

do(T,5
(10) => > %/ Pe(T,5) thfﬂ:/phqhdw
TeT j=1 AT.j) YT 2

— [ pa(Pw) = wds < 2 [hr |97 ]
Q
because of (2), Cauchy’s inequality, and (4). Similar arguments and (7) lead to
Glhronll® =i Y hy’zr - AT)*M(T)A(T) er
TeT

<3 hiler- M(T)er = |hz aul®.
TeT

Utilizing this in (10), we obtain a bound of ||h7" gn||, which we need in (9) to see
(4). O
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4. EXAMPLES FOR COURANT TRIANGLES

Suppose 7 is a regular triangulation (in the sense of Ciarlet [BS, Ci]) of the
bounded Lipschitz domain £ in the plane into triangles. Homogeneous Dirichlet
conditions may apply on a (relatively closed and possibly empty) boundary part I'p
(matched exactly by edges). Each node z € A with nodal basis function ¢, involves
a positive real number d, such that hr/d, + d,/hr < cg for all triangles T' € T of
diameter h with vertex z. Let S := span{¢p, : z € K}, where K := M \TI'p denotes
the set of free nodes, and for the preceding notation identify (¢, : z € K) and the
parameters (d, : z € K) with (o1, 92, ..., ¢n) and (di,ds, ..., dy), respectively.

Theorem 2. Suppose that d./d: < k < V24 /3 ~ 3.1462 for all vertices z and ¢
of some triangle T € T. Then we have (3).

Proof. The mass-matrix of a fixed T' € 7 is a multiple of the 3 x 3 matrix M
with Mj, = 1+ 6, and A(T) has diagonal entries A1, A2, Az > 0 with \;/Ax <
k. The eigenvalues of A(T)"*AA(T)! for A := (A(T)?M + MA(T)?)/2 can be
calculated [BPS, S], and their smallest value is (5 — u) for u? = Z?,k:l A3/A%. A
straightforward analysis reveals that u? < 3 +2(1 + &% + 1/k?) < 25, which shows
that A is positive definite. Therefore, (- Az)'/? defines a norm which is equivalent
to |z| in R3. This and hr/d, < cg yield (7). O

j
suffices for (3). Given d; as in Remark 7, this is the a posteriori criterion of

[BPS, S] for two dimensions.

Remark 8. The proof shows that Z?,k:l M/X2 < v < 22 for some constant v

The technical assumption on the artificial, extended triangulation in the follow-
ing theorem merely reduces the consideration to interior triangles for brevity.

Theorem 3. Suppose T C T for some regular triangulation T of a Lipschitz do-
main D Q such that T consists of right isosceles triangles only, there are no

hanging nodes, and each free node on the boundary is an interior node of Q. Then
we have (3).

Proof. Theorem 2 yields the assertion if we take
d. = min{|z — ¢| : C € N, 8(2,0) = 1},

where 6(z,() = 1 characterizes neighboring vertices z and ¢, i.e., z,{ € T NN for
at least one T' € 7. Since (up to scaling, transition, and rotation) there are only

(0,0) (1, Figure 1: Part of a mesh as a
smallest neighborhood of the ref-
erence triangle.
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) Figure 2: Reference mesh for
/)/ comparisons in Example 1.
&>

a finite number of possible configurations, it can be checked by a finite number
of figures that d,/d: < /8. Figure 1 illustrates a deduction: Suppose T has the
vertices (0,0), (1,0), and (0,1). Then, the patch supp ¢, of z = (0,0) must include
the polygonal domain with vertices (0,1), (-.5,.5), (—.5,0), (0,—.5), (.5,—.5),
(1,0). This shows that 1/v/8 < de1,0) < 1. Similarly, the patch supp ¢(;,0) must
include the polygon (0,0), (.5,—.5), (1,—.5), (1.5,0), (1.5,3), (1,1), (0,1), whence
1/ V8 < d1,0),d(o,1) < 1. Consequently, d./d; < /8 for any choice of two vertices
zand ¢ of T'. O

Example 1. Let 7 be the mesh of Figure 2 that consists of 8 triangles in a regular
pattern that match the square Q := (0, H)? for positive H = 1 + A, where non-
diagonals’ lengths are either A < 1 or 1. For the nodes 1, 2, and 3 of Figure 2 the
choice of (dy,dz,ds) from [BPS], mentioned in Remark 7, is

(N +2212)/3, (A2 + A2 £ 1)/3,)) /V2.

The conditions of the Bramble-Pasciak-Steinbach criterion (cf. Remark 8) and
those of Theorem 2 are violated for A < .1349, which corresponds to an aspect
ratio larger than 7.4122 However, Theorem 1 with the parameters from Remark 6
guarantees (3) for any positive A (with a A\-dependent constant ¢; = c1(\)).

Example 2. Take a scaled copy of £2 and the mesh from Example 1 and extend
it by reflection about the z;-axis, the xo-axis, and about the anti-diagonal through
the origin to h(—1,1)%; and then extend it 2h-periodically to the entire plane.
The calculations of Example 1 remain valid and we conclude that, for a fixed
A < .1349, the Bramble-Pasciak-Steinbach criterion is not applicable, but Remark 6
(or the Crouzeix-Thomée criterion) guarantees (3) with an h-independent constant
C1 = Cl()\).

The nonconforming Crouzeix-Raviart finite element (cf., e.g., [BS, Ci]) concludes
our first series of applications.

Theorem 4. Suppose T is an arbitrary shape-regular triangulation into triangles
and S denotes the T -piecewise affine functions which are continuous at midpoints
of edges. Then we have (3).

Proof. The mass-matrices are diagonal, so (7) is a consequence of shape-regularity.
The operator P can be chosen exactly as in the conforming case. O
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5. WEAKENING OF THE CROUZEIX-THOMEE CRITERION FOR H!-STABILITY

Part of the Crouzeix-Thomée criterion [CT] is the existence of ¢; and 1 < k :=

Va < v/2+ /3 such that
(11) IT1|/|T2| < et ™0™ for all Ty, Th € T

Here, |T}| is the area of T; € 7 and the neighbor-index I(T7,T>) might be defined
via a metric § on the nodes N: For two distinct nodes z and ¢, §(z, ¢) is the smallest
integer j such that there exists a polygon (z1, 22, ... ,2;) of nodes z1,... ,2; € N
which connects z = z; with ( = z; along edges, ie., {2,241} C 0T; for some
T, €¢7Tandalli=1,...,j—1; 8(2,2) :==0. Forany T,K € 7 and z € N, let
0(2,T) := mincernn 0(2,¢) and 6(K,T) = min,exnn 6(2,T). Then, I(T1,T3) =
(5(T1,T2) +1ifTy 7é T5, while l(Tl,TQ) =0 if and only if T} = T5.

At first glance, the local Bramble-Pasciak-Steinbach and the global Crouzeix-
Thomée criteria appear incomparable: a large constant c; prohibits a direct ap-
plication of (11) in the spirit of Theorems 2 and 3 (as d,/d; < cg (|T1|/|T2|)/? <

c%/ %cgk £ V24 /3 for 8(z,¢) = 1). However, all necessities are provided by
(12)  d. = minhr KET forallze N and hy:=|T|Y? forall T €T.

Theorem 5. Suppose (11)-(12) hold for a planar regular triangulation T. Then,
the conditions of Theorem 2 are satisfied and we have (3).

Proof. Given z € K € T, we have d, < hx (K is allowed in the minimization (12),
and §(z, K) = 0) and (T, K) — 6(2,T) < 1. With a minimizing T' € 7 in (12), (11)
shows that

h K 1/2
(13) hi)d, = — = = K]

hp k9GT)  |T[1/2 k

To bound d, /d¢ for 2, € N with §(2,¢) = 1, let K € T satisfy d; = hg k5.
The definition (12) and §(z, K) — §(¢, K) < 1 show that

6T <\ Je TR0 < Jor.

(14) d./de = d= i 12010 = FEETGCE) < o O
T e KOCE) = e g8(CK) ="

Example 3. There exists an adaptively-refined mesh [CV, Figure 1] of right isosce-
les triangles where the modified Bramble-Pasciak-Steinbach criterion guarantees
H'-stability (cf. [S] or Theorem 3) while the Crouzeix-Thomée criterion is not
applicable.
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