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QUINCUNX FUNDAMENTAL REFINABLE FUNCTIONS
AND QUINCUNX BIORTHOGONAL WAVELETS

BIN HAN AND RONG-QING JIA

ABSTRACT. We analyze the approximation and smoothness properties of quin-
cunx fundamental refinable functions. In particular, we provide a general way
for the construction of quincunx interpolatory refinement masks associated
with the quincunx lattice in R2. Their corresponding quincunx fundamental
refinable functions attain the optimal approximation order and smoothness
order. In addition, these examples are minimally supported with symmetry.
For two special families of such quincunx interpolatory masks, we prove that
their symbols are nonnegative. Finally, a general way of constructing quincunx
biorthogonal wavelets is presented. Several examples of quincunx interpolatory
masks and quincunx biorthogonal wavelets are explicitly computed.

1. INTRODUCTION

In this paper, we are interested in bivariate fundamental refinable functions
with quincunx dilation matrices. A function ¢ is said to be fundamental if ¢ is
continuous, ¢(0) = 1 and ¢(B) =0 for all 8 € Z°\{0}. An s x s integer matrix M
is called a dilation matriz if im,_,.oc M ™™ =0, i.e., all the eigenvalues of a dilation
matrix M are greater than one in modulus. In this paper, we are particularly
interested in the following two dilation matrices:

(1.1) Q:G ‘11> and T:G _11>

A refinable function ¢ satisfies the following refinement equation

(1.2) ¢=>_ a(B)p(M-—p)

BeZs

with a dilation matrix M, where a is a finitely supported sequence on Z° called
the (refinement) mask. When > _5c,. a(B8) = |det M], it is known that there exists
a unique compactly supported distributional solution, denoted by ¢ and called
zhe normalized solution, to the refinement equation (1.2) subject to the condition
$a' (0) = 1.
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If a compactly supported function ¢ is fundamental and satisfies the refinement
equation (1.2) with a finitely supported refinement mask a and a dilation matrix
M, then it is necessary that

(1.3) a(0)=1 and a(8)=0 Vg€ MZ\{0}.

A finitely supported sequence a on Z° is called an interpolatory (refinement) mask
if it satisfies the above condition (1.3) with a dilation matrix M and ) 5.4, a(8) =
| det M.

In order to solve the refinement equation (1.2), we start with an initial function
¢o given by

¢0($1,"' 71;5) = Hx(xj)7 ($1>"' axs) S Rsa
j=1

where x is the hat function defined by x(z) := max{1l — |z|,0}, = € R. Then we
employ the iteration scheme Q7 ¢, n =0,1,2,--- , where Q, is the bounded linear
operator on L,(R?®) (1 < p < c0) given by

Quf =Y aB)f(M-=B),  f€LyR).

pezs

This iteration scheme is called a subdivision scheme associated with the mask a
and the dilation matrix M (see [1]). If the mask is an interpolatory mask, this
subdivision scheme is called an interpolatory subdivision scheme. We say that the
subdivision scheme associated with a mask a and a dilation matrix M converges in
the L, norm if the sequence of functions Q7 ¢y converges to a function f € L,(R®)
in the L, norm, i.e., lim, o [|Q2¢o — f|p = 0. If this is the case, then Qo f = f
and f = ¢M.

Let £(Z°) denote the linear space of all sequences on Z° and 4(Z*) denote the
subspace of all finitely supported sequences on Z*. The difference operator V; on
0o(Z#) is defined as V;A = A — (- — e;), A € £o(Z®), where e¢; is the i-th coordinate
unit vector in R%. By ¢ we denote the Dirac sequence given by 6(0) = 1 and
6(8) = 0 for all 8 € Z5\{0}. For any mask a € {o(Z°) and a general dilation matrix
M, it was demonstrated in [14] that the subdivision scheme associated with the
mask @ and the dilation matrix M converges in the L, norm if and only if

Hm [[ViS7a 0ll/™ <m?  Vi=1,-- s,
where m := | det M| and the subdivision operator S, ar is defined by
(1.4) SamAa) =) ala—MBAB),  a€cZ)el(Z).

Bez®

Let a be an interpolatory refinement mask with a dilation matrix M. Then the
normalized solution ¢ of the refinement equation (1.2) with the mask a and the
dilation matrix M is fundamental if and only if the subdivision scheme associated
with the mask a and the dilation matrix M converges in the Lo, norm.

Let @ and T be the matrices defined in (1.1). Then

QZ* =T7? = {(B1,32) € Z* : By + 2 is an even number }.



QUINCUNX FUNDAMENTAL FUNCTIONS AND BIORTHOGONAL WAVELETS 167

The lattice QZ? is called the quincunz lattice. Thus, we say that a sequence a on
72 is a quincunz interpolatory mask if Zﬁezz a(fB) = 2 and

(1.5) a(0)=1 and a(f)=0 VpBcQZ*\{0}.

Let a be a quincunx interpolatory mask. If the normalized solution ¢% (or
#T) to the refinement equation (1.2) is fundamental, then it is called a quincunz
fundamental refinable function.

Interpolatory subdivision schemes play an important role in computer graphics
and wavelet analysis. See [9] for their applications to computer aided geometric
design, and see [4] for their applications to wavelet decompositions.

In the current literature for the univariate case, Deslauriers and Dubuc in [7] pro-
posed a general method to construct symmetric interpolatory subdivision schemes.
For the multivariate case, Dyn, Gregory and Levin [10] constructed the so-called
butterfly scheme which is a C' bivariate interpolatory subdivision scheme, while
Deslauriers, Dubois and Dubuc [8] obtained several continuous bivariate refinable
and fundamental functions. Mongeau and Deslauriers [24] obtained several C*
bivariate refinable and fundamental functions. Using convolutions of box splines
with refinable distributions, Riemenschneider and Shen [25] constructed a family
of bivariate interpolatory subdivision schemes with symmetry. Han and Jia [15]
constructed a family of bivariate optimal interpolatory subdivision schemes with
many desired properties.

However, all the above constructions in the multivariate case have used the
dilation matrix 215 only. Owing to some special properties of the matrices @ and T,
such as |det Q| = |det T| = 2, T? = 215 and Q* = —41,, it is desirable to consider
quincunx fundamental refinable functions and quincunx biorthogonal wavelets, i.e.,
biorthogonal wavelets with the dilation matrix @ or I'. See Cohen and Daubechies
[4] for discussions on quincunx biorthogonal wavelets. Also, quincunx fundamental
refinable functions automatically provide a family of primal refinable functions from
which quincunx biorthogonal wavelets can be constructed. Quincunx biorthogonal
wavelets are useful in image processing [21] because of their special properties. For
biorthogonal wavelets, the reader is referred to (2, 3, 4, 5, 6, 12, 13, 16, 21, 22, 26, 27]
and references therein.

The main purpose of this paper is to investigate and construct quincunx inter-
polatory masks and quincunx biorthogonal wavelets with some desired properties.

The structure of this paper is as follows. In Section 2, we shall investigate
the optimal approximation order and smoothness order of quincunx fundamental
refinable functions with respect to their support. In Section 3, we shall propose
a family of quincunx interpolatory masks such that they are minimally supported
and have symmetry. Their associated quincunx fundamental refinable functions
have optimal approximation order and smoothness order. In particular, for two
special families of such quincunx interpolatory masks, we prove that their symbols
are nonnegative. In Section 4, several examples of quincunx interpolatory masks
are explicitly computed. Both the Lo and the Lo, smoothness described by the
critical exponents of their quincunx fundamental refinable functions are calculated.
Finally, in Section 5, we discuss how to construct quincunx biorthogonal wavelets
by using the coset by coset (CBC) algorithm proposed in [13] and [2]. Examples
are provided to illustrate the general theory.



168 BIN HAN AND RONG-QING JIA

2. APPROXIMATION ORDER AND SMOOTHNESS ORDER

In this section we shall investigate the approximation and smoothness properties
of quincunx fundamental refinable functions.
For a compactly supported function ¢ in L,(R®) (1 < p < 00), we define

5(0) = { T o6 - (@) s ae b))

a€Zs

For h > 0, S® is defined by S* := {g(-/h) : g € S(¢)}. For a positive integer
k, we say that S(¢) provides approzimation order k if, for each sufficiently smooth
function f in L,(R®), there exists a positive constant C such that

inf ||f —gll, <Ch®F  Vh>0.
g I =gl <
The concept of stability plays an important role in wavelet analysis. Let ¢ be a

compactly supported function in L,(R®) (1 < p < 00). We say that the shifts of ¢
are stable if there are two positive constants C; and Cy such that

Y Ma)d(-—a)

a€Zs

(2.1) Gl < <GofAlly VA€ bo(Z).

p

Let a be a sequence on Z°. For a positive integer k, we say that a satisfies the
sum rules of order k with a dilation matrix M if

(2.2) Y ale+Bple+B) = > alBp(B) VeeZ, pelly,

BEMLS BEMZL?

where II;_; denotes the set of all polynomials of (total) degree at most k£ — 1. Note
that (2.2) depends only on the lattice MZ®. If a mask a on Z? satisfies (2.2) with
the quincunx lattice QZ2, then we say that a satisfies the sum rules of order k with
respect to the quincunx lattice.

Now suppose ¢ is the normalized solution of the refinement equation (1.2) with
a mask a and a dilation matrix M. It was proved by Jia in [17] that if the shifts
of ¢ are stable, then S(¢) provides approximation order k if and only if the mask
a satisfies the sum rules of order k. Note that a fundamental function has stable
shifts. Thus, in particular, if ¢ is a fundamental refinable function with a mask a
and a dilation matrix M, then S(¢) provides approximation order k if and only if
a satisfies the sum rules of order k with the dilation matrix M.

Deslauriers and Dubuc in [7] proposed a family of interpolatory masks b, (r € N)
with the dilation matrix M = (2). Their construction was restated in [15] as follows.

Theorem 2.1. Let the dilation matrizx M = (2) and a € £y(Z) be an interpolatory
refinement mask on Z satisfying the sum rules of order k. If a is supported on an
interval [1 — 2r,2r — 1] for some r € N, then k < 2r. Moreover, there exists a
unique interpolatory refinement mask, denoted by b., such that it is supported on
(1 — 2r,2r — 1] and satisfies the sum rules of order 2r. In fact, an explicit formula
for b, is

o T, (2k — 1) .
be(25 — 1) = (-1) +122T_1(2j = f) }(r_ = LTrsisr

Now we have the following result for quincunx interpolatory masks.
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Theorem 2.2. Let a be a quincunz interpolatory mask supported on

{(B1,82) € 2 : |Br| + |62 < 27},

where r is a positive integer. If a satisfies the sum rules of order k, then k < 2r.

Proof. Let b be the sequence on Z defined by
b(i):= > a(i—j,j), i€
JEZ
Since @ is a quincunx interpolatory mask, it is easily seen that b is an interpolatory

mask with the dilation matrix M = (2). Since a satisfies the sum rules of order k,
it follows that

> ob(2i+1)(2i+ 1)
i€z
=Y "> a2i+1-54,5)2i+1-j+5)™ =08m) V0<m<k.
i€Z jEL
Therefore, b satisfies the sum rules of order at least k. Since b is an interpolatory

mask supported on [1 —2r, 2r — 1], by Theorem 2.1 we have k < 2r. This completes
the proof. O

In the rest of this section, we shall study the smoothness property of quincunx
fundamental refinable functions.

For 0 < n < 1, the Lipschitz space Lip(n, LP(RS)) consists of those functions f
in L,(R®) for which

If =G =Bl <Cl"  VEeR?,

where the constant C depends only on f. Let Z5 := {(B1, -+ ,8,) € Z° : B; >
0 Vi=1,---,s}. The L, smoothness of a function f € L,(R®) is described by its
L, critical exponent vy(f) defined by

(2.3)  vp(f) = sup{n /I % € Lip(n, Ly(R®)) VpeZ,|pl = n} .

In [18], Jia completely characterized the Ly critical exponent of a refinable function
with an isotropic dilation matrix in terms of its mask provided that the shifts of the
refinable function are stable. The following result is a straightforward generalization
of Theorem 3.5 in Han [13].

Theorem 2.3. Let ¢ be the normalized solution of the refinement equation (1.2)
with a finitely supported mask a € £y(Z*) and an s X s dilation matriz M such that
> gezs a(B) = m = |det M|. Suppose that M7 is a multiple of the identity matriz
for some positive integer j. For any monnegative integer k, let

(2.4) U,]c\/lp(a) = max{ lim HV?SZMM[},/" ci=1,---,s},
: ol :
where the subdivision operator Sq ar is defined in (1.4). Then

min{k, v,(¢)} > s/p — slog,, U,@ffp(a).
In addition, if the shifts of ¢ are stable, then

min{k, vp(¢)} = s/p — slog,, ok (a).
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In [14], it was demonstrated that U,%(a) can be computed by calculating the
spectral radius of a certain finite matrix. Let b be the sequence given by

bla) = Z a(a+ B)a(B), aeZ’.
BEZ®
The transition operator Ty ps associated with the sequence b and the dilation matrix
M is defined by
TyuMe) = D b(Ma—BAB),  a€Z, Xelh(Z°).
Bezs

From Theorem 4.1 in [14], we have

ona(a) = \/p(To,mlw),
where p(Ty,a|w) is the spectral radius of the operator T3 s restricted to the finite
dimensional space W, and W is the minimal invariant subspace of T} 5 generated
by A%§,j=1,---,s, where
AjNa) = —Xa —e;) +2XM(a) — Ma +¢;), a € Z%, N l(Z°).
The symbol of a sequence a on Z° is defined by
(2.5) a(z) = Y_a(@)7?,  ze(C\{0})".
BEZs
We say that the symbol of a mask a is nonnegative if a(e™*) > 0 for all £ € R®.
Let a be a finitely supported mask on Z° with a nonnegative symbol. Then from
Theorem 4.1 in [14], we have
0%,00(0’) = p(Ta,MlW)>

where the finite dimensional space W is the minimal invariant subspace of T, s gen-
erated by A’;J, j=1,---,s. For discussion on subdivision operators and transition
operators, the reader is referred to [11, 17, 20].

Based on Theorem 2.3, we have the following result:

Theorem 2.4. Let ¢ be a fundamental refinable function with a finitely supported
mask a and the dilation matriz T defined in (1.1). Suppose a is supported on

{(B1,B2) €22 : |B1] + 82| < 2r,|B2| < T},

where r is a positive integer. If a satisfies the sum rules of order 2r, then

vp(¢a) Svp(dr,)  V1<p<oo,
where ¢y, is the fundamental refinable function with the mask b, given in Theo-

rem 2.1.

Proof. Define a sequence b on Z as follows:
b(j) = _ali,j)/2, jEZ
i€z
We claim that b(j) = §(j) for all j € Z. Since a is a quincunx interpolatory mask
and a satisfies the sum rules of order 27, we have

Zb(j)jm:ZZa(z’,j)jm/Zzé(m) YO<m<2r

JEZ JEZ i€l
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Since a is supported on {(81,82) € Z* : |B1| + |B2| < 2r,|B=2| < r}, b is supported
on [1 —r,r — 1]. Therefore,

> ob(G)im=68(m)  VO<m<2r

j=1l-—r

Since the coefficient matrix of the above linear system of equations is a Vander-
monde matrix, it is easily seen that the unique solution is b(j) = §(j) for all j € Z.
Let ¢ be the sequence on Z given by

ZST(SZJ 1€ Z.

JEL
Then by the definition of the subdivision operator S, r, we have

=Y Sara(i,5)/2= > > a(i— B —B2,j — B+ B2)a(B1, B2)/2

JEL JEZ B1EL B2€L

=3 > alBiB) Y ali—Fi— B2 )/2= D D a(Br,52)8(i — B — Ba)
BLEZ B2€Z JEZ BLEZ B2€ZL

= Z G(Z —‘/82752)1
B2€EZ

where we have used the fact that > ..z a(i — 81 — f2,7)/2 = b(i — 1 — fa) =
d(i — B1 — B2). From the proof of Theorem 2.2, we see that the sequence ¢ must be
equal to the sequence b, since a satisfies the sum rules of order 2r. Observe that

= > S2r(B)pn(2-—B).
Bez2

Let ag = Sﬁ)TJ. Since a is finitely supported, the sequence ay is supported on
[~N, NJ? for some positive integer N. Note that c(i) = 3 ¢z as(i,5)/2. By induc-
tion, it is easily seen that

S (2)0() = S20(1) =27 SE 5p,6(i,5),  i€ZmneEN,
JEZ
and ST, 57,0 is supported on [—2"N, 2" N]2. Therefore, for any positive integer k,

2"N

VESE 0(@)=2"" Y VESE 51,6(i,5).

j=—27N
Applying the Holder inequality to the above equality, we have

VESE (0P < 272" TN + 1) P/qZW’f 21,000, 5)P
JEZ

<27"Cy Z IV’f522,2125(i, NIF,
JEZ

where 1/p+1/¢ =1 and C; = (2N + 1)P/9. Therefore,
IVESE, 01l < C1/P2 /P [ VE ST, o, Bl
from which it follows that
o2 (az) 2 lim |[VEST, 57,81l = 27 lim [[VESE )8l = 24753 (b,).
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On the other hand, since ¢7 is a fundamental function, the shifts of ¢ are stable.
For a sufficiently large integer k, by Theorem 2.3,

vp(¢T) = 2/p — log, 0712 (as) < 2/p — log (27021 (b,))

=1/p—logz o) (br) = vp(s,)-
We are done. O

3. CONSTRUCTION OF QUINCUNX INTERPOLATORY MASKS

Our construction of quincunx interpolatory masks relies on the solvability of
certain linear systems of equations. By Zi we denote the set of all elements y =
(p1, p2) € Z? with both p; and ps nonnegative. Let || denote |u1| + |pe|. For a
positive integer r € N and a nonnegative integer k, define

T8 = {(p1, p2) € Z5 : o+ po < 2r + 2k,
o < 20 —IN{(0,25— 1) : j=1,-- ,r—1}.

The cardinality of a set E is denoted by #FE. To facilitate our discussion, we
recall Lemma 4.2 in [15].

Lemma 3.1. Let r be a positive integer and let IO be the set defined in (3.1). Let
p be a linear combination of the monomials z{*xh?, (u1,u2) € T2. Let L; and
H; (j =1,---,r) be the lines x1 — l; = 0 and x1 — h; = 0, respectively, where

(3.1)

Iy, ,lpyh1, -+, by are mutually distinct nonzero real numbers. Suppose E is a
subset of the union of these lines such that #(E N L;) = #(ENH;) =25 — 1 for
each 7 = 1,--- ,r. If p vanishes on E, then p vanishes everywhere. Consequently,

the square matriz (1Y t5) (¢, t2)e B, (u1,us)ero. 8 NONSINguUlar.
The following result is an extension of the above lemma.

Lemma 3.2. Let r be a positive integer and k a nonnegative integer. Let p be
a linear combination of the monomials x4 x4?, (u1, p2) € T* where T is the set
given in (3.1). Let Lj and H; (j = 1,---,r + k) be the lines x1 — I; = 0 and
z1 — hj = 0, respectively, where Iy, -+ ,lpyk,h1, -+, heyr are mutually distinct
nonzero real numbers. Suppose E is a subset of the union of these lines such that
#(ENLj) = #(ENH;) = 2j—1 foreachj =1,--- ,r and #(ENL;) = #(ENH;) =
2r—1 foreachj =r+1,--- ,r+k. Ifp vanishes on E, then p vanishes everywhere.
Consequently, the square matriz (t1"t5%) ¢, t,)e B, (11 ua)ert 18 nonsingular.

Proof. The proof proceeds by induction on k. The case k = 0 follows from Lemma
3.1. Suppose k > 1 and the conclusion in Lemma 3.2 is true for k¥ — 1. We
demonstrate that it is also true for k.

Since p is a linear combination of the monomials z5*xh?, (11, ue) € T¥, from
the definition of I'* we see that the degree of the univariate polynomial p(l 4k, Z2)
is at most 2r — 2. But p(ly4k,x2) has 2r — 1 zeros on E N Ly4g. Therefore,
p(lyyk, x2) = 0 for all zo € R. Tt follows that p(z1,22) = (x1 — lrgr)u(z1, x2),
where u is a polynomial in z; and zp. It is easy to see that the degree of the
univariate polynomial u(h,yk,z2) is at most 2r — 2. But w(hyi,z2) has 2r — 1
zeros on B N H,y, since hyyx # lr4. Therefore, u(z1,x2) = (21 — hrir)q(z1, T2).
Thus, p(z1,z2) = (1 — lr1x) (21 — hrek)g(x1, 22). Since Ly xhryr # 0, we observe
that ¢ is a linear combination of the monomials zt* 242, (11, p2) € T'*~1. Moreover,
q vanishes on the set

E'={EnL;:j=1,---,r+k-1}U{ENH; : j=1,---,r+k—1}.
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By induction hypothesis, ¢ vanishes everywhere. Therefore, the polynomial p van-
ishes everywhere.

Note that #E = #I'* = 2r? + (47 — 2)k. In order to prove that the matrix
(5% (42,42)€ B, (1, uz)er® 1S nonsingular, it suffices to show that the linear system
of homogeneous equations

D Cuwtl'5?=0, () € B,
(p1,p2)€TE
only has the trivial solution for c,, ,,, (1, p2) € T'¥. For this purpose, let
p(xla '7"2) = Z cul,ﬂzxi‘l”ng'
(p1,p2)€TE
Then p(z1, ) is a linear combination of the monomials z}* 42, (u1, pa) € T'¥ and

it vanishes on F. By what has been proved, p = 0. This completes the proof. [

We are in a position to construct a family of quincunx interpolatory masks.

Theorem 3.3. Given a pair of nonnegative integers m and n with m+n being an
odd integer, there exists a unique gquincunz interpolatory mask gm. n such that gm n
is supported on

{(B1,B2) € Z* : |B1] <m,|Ba| < n},

and gmn Sotisfies the sum rules of order m + n + 1 with respect to the quincunz
lattice which is defined to be {(B1,52) € Z% : B1 + B2 is an even integer }.

Proof. Without loss of generality, we assume n < m. Define

(32) Gppn= {(ﬁlaﬂQ) €Z? : |Bi] <m,|Ba| < n,Bi+ P2 is an odd integer }.

Let I'pp = I‘n+1 . Note that #'m.n = #Gmn =2mn+m+n+ 1. We wish
to prove that the square matrix ((ﬂl + B2 (By — B2)* )(ﬁl B2)EGm m(1.412) €T is

nonsingular. For this purpose, let B, , := {(f1 + b2, 51 — B2) : (ﬁl,ﬁg) € Gmn}

We observe that E,, ,, intersects the line z1 +(m+n+2—-25) = 0 at exactly 25 —1
distinct points for j = 1,--- ,n+ 1 and it intersects the line z; + (2§ —2n—3) =0
at exactly 2n + 1 distinct points for j = n+2,--- ,%i. Thus, Lemma 3.2 is
applicable and we conclude that the square matrix

((61 + BQ)‘“ (61 - ﬁQ)Mz)(ﬁl ,ﬂz)EGm,n»(,Ufl?,U&)EFm,n
is nonsingular. Consequently, the linear system of equations
(83) Y cpm(Bit B) (B — o) = (i, pa) Y (wapi2) € D
(ﬂl 7:32)€Gm,n

has a unique solution for {cg, g, : (01,02) € Gmn}-
Let cg, g5, (81, 02) € G, be the unique solution to the linear system (3.3). We
claim that

(3'4) Z CB1,B2 (/31 + ﬁ2)l11 (ﬁl ﬁ2) (:ula :U‘?)

(B1,82)EGm,n

is valid for all (u1,pe) € Z2 satisfying pui + p2 <m-+n+ 1.
iy +
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Observe that the set Gy, p is symmetric about the origin. Therefore,

Z C—pB1,— B2 (ﬂl + ﬂ2)ul (/81 - ,BQ)MZ = 5(,“17 ,LLZ) Y (,Ll,l, ,ug) € Fm,n.
(B1,82)EGm,n

By the uniqueness of the above system, we have c_g,,_g, = cg, g, for all (81, 52) €
Gm,n. Thus, this symmetry of cg, g, implies

Z o (BL—B2)Y 1 =0 VjeN.
(B1,82)EGm,n

Hence, (3.4) holds true for any (ui,u2) € Z3 satisfying p1 + p2 < m+n + 1
and p2 < 2n + 1. To prove that (3.4) holds true for any (ui,pu2) € Z% with
p1 + pe < m+n+ 1, it suffices to prove that for any (u1,u2) € Z2 such that
p1+pe <m-+n+1and puy >2n+1,

(3.5) S cam(Bi+B) (B ) =0,
(B1,02)EGm,n
Note that (81, 02) € Ep, n implies |81 — 2| < n. Hence, the set E,, , is contained
in the set {(B1,82) € Z? : Bo = 1 —2j,j = —n, -+ ,n}. Let ua be an integer such
that us > 2n + 1. By using long division of polynomials, we have
n
(3.6) zh? = qu, (z1, z2) H (wg —(z1 — 2j)) + P(z1,x2), z1,To € R,
j=-n
where gy, is a polynomial in two variables and P(x1,x2) is a linear combination of
the monomials z7*x5?, where (v1,12) € Zi, v +vy < po and v < 2n+ 1. The
proof of (3.6) proceeds by induction on ug. It is evident that (3.6) is valid for
po = 2n + 1. If (3.6) is true for ug, then write P(z1,z2) = c(z1)23" + Q(z1, z2)
such that the degree of Q(z1,x2) in x5 is less than 2n. Thus,
n
2h? = 29, (21, 22) H (z2 — (21— 2j)) + c(z1)2a™ + 22Q (21, 72).
j=-n
Since (3.6) holds for py = 2n+1, it follows from the above equality that (3.6) holds
for pg + 1. This completes the induction procedure. By setting z; =0 and z2 =0
in (3.6), we obtain P(0,0) = 0.
Note that for 81| < m and |B2] < n, (81 — B2) — (81 + B2) — 25 = 0 for some j
with —n < § < n. It follows from (3.6) that

Z gy, (01 + Ba)H* (Br — P2)H

(B1,82)EGm,n
= 3 o5 (B + B2)" P(By + B2, B1 — B).
(B1,B2)EGm,n

Note that z* P(z1,22) is a linear combination of the monomials 7" 252, (v1,v2) €
Zi such that v; + vy <m+mn+1 and v, < 2n + 1. Therefore, by what has been
proved and P(0,0) = 0, we have

Z gy By (81 + B2)!* P(B1 + B2, 81 — B2) =0

(B1,B2)€EGm,n
from which (3.5) follows.
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Let us construct the desired mask g, » as follows:

1, if 1 =P2=0;
mn(B1,02) = < ¢a, 8,, i (B1,02) € G
0, otherwise.

It is evident that g, is a quincunx interpolatory mask and it follows from (3.4)
that the quincunx interpolatory mask g¢,, , satisfies the sum rules of order m+n+1,
as desired.

If there is another quincunx interpolatory mask o satisfying all the conditions in
Theorem 3.3, then

Z a(B1, B2)p(B1,B2) = p(0,0)  Vp € pyn.

(ﬁl ,ﬁ2)eGm,n

For (p1, p2) € L', we have py + po < m +n + 1; hence, it follows that

Z a(B1, B2)(Br + B2)!* (Br — B2)H? = 6(p1, p2) V (p1, p2) € e

(B1,B2)€EGm,n

Since the solution to the linear system of equations (3.3) is unique, we must have

a(B1,82) =ca,,8, = Gmm(B1,02) VYV (B1,02) € Gy

Hence, the quincunx interpolatory mask a must be the mask g p. O

The above proof tells us that for a pair of nonnegative integers m and n such
that m + n is an odd integer, the quincunx interpolatory mask g, is minimally
supported among all the quincunx interpolatory masks which satisfy the sum rules
of order m + n + 1. Also the uniqueness of the mask gy, , implies that g, , is
symmetric about both the axis ; = 0 and the axis zo = 0. Let ¢>g"m’n be the
normalized solution to the refinement equation (1.2) with the mask ¢, and the
dilation matrix T defined in (1.1). By Theorem 2.4, yp((ﬁgﬂmm) < Vp(Pbmyniny2) fOT
all 1 < p < oo, where ¢y, ..., is the univariate Deslauriers-Dubuc fundamental
refinable function with the mask b, n41)/2 given by Theorem 2.1. In Section 4,
all of our examples have the property that v g"m’n) = V2(Pbiminiay2)-

It is obvious that g2,—1,0(4,0) = qo,2r~1(0,75) = b,(j) for all j € Z and it is easy
to verify that v,(¢L, | ) = vp(da,._,) = Vp(¢s,) for all 1 <p < oo and r € N.

In the following we shall prove that the symbols of both gor1 and gar_1,2 are
nonnegative for all » € N. From (1.3), it is easy to verify that a is a quincunx
interpolatory mask if and only if

Ae ™ e7) 4 G OHm) ity — 2 Ve G eR.

Theorem 3.4. For each positive integer r, the symbol of the quincunz interpolatory
mask gar1 defined in Theorem 3.3 satisfies

Gor1(e7 5, e72)

(37) (2r)! s -
= m/_l (1=t M(1—tcos&)dt,  &,&€R,
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or equivalently, the symbol of qar1 s

Qor,1 (21, 22)
(38) ~ ~ (2r)! _ o
= B(on) + (1) o (7 )7 ), € C\(D),

where b, is the univariate interpolatory mask given in Theorem 2.1. Moreover, the
symbol of qar1 is nonnegative, i.e., Gar1(e~%) > 0 for all £ € R2.

Proof. Let a denote the mask with a(e %1, e~%2) being the right-hand side of (3.7).
To complete the proof, it suffices to prove that a = gar,1. Note that

5(e—i(€1+7r) e—i(€2+7r)) _ (2r)! /_ cost (1 tz)r—l(l +tcoséy) dt
’ Cor=lpl(p — 1) )4 ?
(2r)! /1 2yr—1
= 1—¢)"""(1 — tcos&y) dt.
22r=1rl(r — 1)! cosgl( (
By induction and integration by parts, we obtain
1 1 2k+42
2k _ 2 El(k + 1)!

_2\E [ — t2)k-1 = — .

(3.9) /_1(1 t4)* dt ST _1(1 )" dt Ghro) keN

Thus, we have
a(e—i& , e—z’f;‘z) + a(e—i(t‘l +7r), e—i(§2+7r))

(2r)! /1 (1—t3)""1(1 —tcos&y) dt

(2r)! l/la—¢%“4dt=2.

- 22r=1rl(r — 1) J_4

Hence, a is a quincunx interpolatory mask. Let Q(n1,72) := a(e”%, e~%2) with
m = coséy and 72 = cos&y. Then it is easy to verify that

3M1+I~L2 Q(nl, 772)
ony* onb?

It follows that
OH1 +u2a’(e—i§1 , e—iﬁz)

08y 04*

or equivalently, a satisfies the sum rules of order 2r+1 with respect to the quincunx
lattice. Since a is symmetric about the origin and is a quincunx interpolatory mask,
by the definition of sum rules, a must satisfy the sum rules of order 2r + 2. Note
that a is supported on [—2r,2r] x [—1,1]. Hence, by Theorem 3.3, a must be the
unique mask gor1. By (3.7), it is evident that the symbol of gor1 is nonnegative.
By a similar argument and Theorem 2.1, we have (see Meyer [22] and Micchelli [23])

=0 V(ﬂl,ﬂ2)ezi,ﬂl +pg <.
m=—1m2=-1

=0 V (1, p2) € Z%, py + po < 2r,

§1=m,fo=m

. ) )1 cos &1
(3.10) bp(e™) = 273%;—_1? /_1 (13"t

Moreover,

cos &
/ (13" (—~tcos&y)dt = —%(1 —cos? £;)" cos &y,
-1

Therefore, gar 1(21,22) has the desired representation as given in (3.8). O
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Theorem 3.5. For each positive integer r > 1, the symbol of the quincunx inter-
polatory mask gar—1,2 defined in Theorem 3.3 satisfies that for any &1,&2 € R,

cos &1
~ -1 ,—i2 :___(_2_7:_}_)'___/ — 22
QQr—l,Q(e € ) 22T—1T!(T _ 1)' . (1 3 )
x [(2r—2)(1 - tcoséy)? + (1 — t?)sin? &] dt,

or equivalently, the symbol of qar_1 2 1

(3.11)

Gor—1,2(21, 22)
= (=1)"(2r)!
(3'12) = br(21) + W
X [6(21+21") = 8(z2 + 251) + (21 + 27 ) (25 + 237,
where b, is the mask given in Theorem 2.1. Moreover, the symbol of qar_1,2 15
nonnegative, i.e., gar—12(e"%) > 0 for all £ € R2.

( 1 _zl—l)Z'r—Z

Proof. Let a denote the mask with @(e~%1,e~%2) being the right-hand side of
(3.11). To complete the proof, it suffices to prove a = ga,—1,2. Note that

’(‘i(e—i(& +7T), e—i(52+7f))

_ —cos&y
= 52—(_-21%;1% / 1 (1=t [(2r — 2)(1 + tcosé&s)? + (1 — %) sin® & dt

1
= 2—;%%%/ . (1—=*)""2 [(2r — 2)(1 — tcos &) + (1 — %) sin® & dt.

Thus, from the above equality and (3.9), we obtain
Qe ei2) 4 g(e ot gmillatm)
_ (@r=1) ' 2\r—2 2 2Y 12
- T /_1(1—t )2 [(2r — 2)(1 — teoséa)? + (1 — 2) sin® &) di
(2r—1)!

1
e A _ 42\r—2 2
- 22r=271(r — 2)| /_1(1 ) (1 4+ t7) dt

(2r — 1)!'sin® &, /1 o\ 5
—_— 1—t9)"*(1—(2r—1)t = 2.
+ 22r=lpl(yr — 1)! _1( - G- de
Therefore, it follows that a is a quincunx interpolatory mask. Let Q(n1,72) :=
a(e™1 e7%2) with 7, = cos&; and 72 = cos&y. Then it is easy to verify that

3M1+H2Q(n1, n2)
O’ Ony*
Hence, it follows that
3M1+/~L2a’(e—i€1 , e—i£2)
&l oeh*

or equivalently, a satisfies the sum rules of order 27 +1 with respect to the quincunx
lattice. Since a is symmetric about the origin and is a quincunx interpolatory mask,
by the definition of sum rules, a must satisfy the sum rules of order 2r + 2. Note
that the sequence a is supported on [1—2r, 2r — 1] X [—2, 2]. Therefore, by Theorem
3.3, a must be the unique mask gar—1,2. By (3.11), it is evident that the symbol of
¢2r—1,2 is nonnegative. By (3.10) and integration by parts, ga,—1,2 has the desired
representation as given in (3.12). O

=0V (p,pe) €25, m+p2 <
m=—1m=-1

=0 V(ﬂl)/“Z)eZiaﬂl+uzs2r’

&i=m,lo=m
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Let M denote either the matrix @ or T defined in (1.1). Let a be a quincunx
interpolatory mask such that a(e™%:,e~%2) > 0 for all (¢1,&;) € R2. Note that

(3.13) or'©) =] @e ™D 79)/2),  ce®
j=1
For a positive integer n, define

£2(©) =TT @ D7) )X r e (MT) ), €€ R,

Since the symbol of a is nonnegative, we have (Eg/f (&) > 0 and f,(&) > 0 for all
¢ € R2. Moreover, limp,—_ oo fn(£) = M (£) for all £ € R2. Since a is a quincunx
interpolatory mask, we have a(e~%1,e~%2) 4 a(eH&+m) ~i(é2+m) = 2 With the
help of this relation, by induction on n we can easily verify that [p, fn(£) dé = 4n°
for all n € N. Therefore, by Fatou’s lemma, we have

M _ M : _ 2
8@ de = [ ) d < tim o, [ 1o(6) de =

So oM € L1(R%) and ¢M is a continuous function. If @ is one of the masks
q2r—1,0,92r,1592r+1,2, then 5(e—i§1,6_i’52) =0 if and only if 51 = (2k‘ + 1)7T,]€ e 7.
This can be proved by using (3.7) and (3.11). By (3.13), it is not difficult to demon-
strate that 357, M (¢ + 213) # 0 for all £ € [—m, )2 That is, the shifts of ¢
are stable (see [19]). Since the shifts of ¢ are stable and ¢ is continuous, by
Theorem 3.4 in [14], the subdivision scheme associated with mask a and the dilation
matrix M converges in the Lo, norm. Therefore, ¢£LVI is a fundamental function.

4, EXAMPLES OF QUINCUNX INTERPOLATORY MASKS

In this section, we shall explicitly compute several examples of gy,,. For both
p =2 and p = oo, we calculate the L, critical exponents of both ¢>§m’n and ¢§mm,
where the dilation matrices T and @ are given in (1.1). In particular, we are
~ interested in the following two families of quincunx interpolatory masks: for any
r €N,

h'r(la]) = q'r,'r—l(i7j)7 (%J) € ZQ,

(4.1) gr(i7j) = (Q'r,r—l(iaj) + Q'r‘,r—l(j7i))/27 (273) € Zz'

It is evident that both h, and g, satisfy the sum rules of optimal order 2r. All
the masks h, are symmetric about both the axis z; = 0 and the axis 3 = 0.
All the masks g, are symmetric about the axis 1 = 0, the axis zo = 0, and the
lines 1 + 9 = 0 and z; — 2o = 0. If the symbol of A]}T is nonnegative, then the
symbol of g, is nonnegative since 27, (e~ (61€2)) = h, (e~i(6162)) 4 h (e~ i(62460))
for all (¢1,&2) € R?. These quincunx interpolatory masks h, and g, have a close
relation with the optimal interpolatory masks with the dilation matrix M = 2l
proposed in [15].
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Example 4.1. The quincunx interpolatory mask hy is supported on [—2, 2] x[—1, 1]
and is given by

~1/16 0 1/8 0 -—1/16

0o 12 1 1/2 0

~1/16 0 1/8 0 -—1/16
Then h, satisfies the sum rules of order 4 and by Theorem 3.4 the symbol of hs is
nonnegative. Moreover, 1/2((;3?;2) =~ 2.44077, uoo(gbfz) = 2, 1/2((;5?2) ~ 1.09619, and
Voo (53, A 0.47637.

Example 4.2. The quincunx interpolatory mask hg is supported on [—3, 3] x[—2, 2]
and is given by

w 0 —ms 0 —3% 0
o -& o0 & o0 -3 0
w 0 1 1 T 0 o
o -2 o & 0o -3 o0
L2 0 -z 0 -z 0 3f |

Then hs satisfies the sum rules of order 6, and the symbol of hs is nonnegative, by
Theorem 3.5. Moreover, yg((ﬁ{g) ~ 3.17513, Voo(¢£3) ~ 2.83008, 1/2(¢>§3) ~ 1.94692,

and Voo(¢>§3) ~ 1.28289. Therefore, ¢} is a C* fundamental refinable function and
¢§3 is a C! fundamental refinable function.

Example 4.3. The quincunx interpolatory mask h, is supported on [—4,4]x[—3, 3]
and is given by

-_ﬁ 0 % 0 ﬁ 0 % 0 20548-
0 £ 0 -5 0 -3 0o Z o0
20% 1;8 _g% (1)28 1203—214 (1)28 _55112 188 ﬁ
0 0 8L 1 = 0 & 0
0 = 0 -2 0 -2 0 2 0

- _ﬁ 1(2)8 % (1]28 ﬁ 128 % 1(2)8 _ﬁ |

Then h4 satisfies the sum rules of order 8 and the symbol of hy is nonnega-
tive. Moreover, vy(¢f ) ~ 3.79313, voo(¢f,) ~ 3.40412, 1/2((13?4) ~ 2.67072, and
1/00((;5?4) = 2.02882. Therefore, ¢>£4 is a C? fundamental refinable function and (;334
is a C? fundamental refinable function.

The symbol of each mask in Tables 1 and 2 is nonnegative. The Ly and Lo
critical exponents of several quincunx fundamental refinable functions are presented
in Tables 1 and 2. For the graphs and contours of several quincunx fundamental
refinable functions, see Figures 1-6.
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FIGURE 1. Graph and contour of the quincunx fundamental refin-
able function ¢f in Example 4.1.
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F1GURE 2. Graph and contour of the quincunx fundamental refin-
able function ¢§2 in Example 4.1.
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Fi1GURE 3. Graph and contour of the quincunx fundamental refin-
able function ¢>,7;3 in Example 4.2.
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FIGURE 4. Graph and contour of the quincunx fundamental refin-
able function qz&,?a in Example 4.2.
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FIGURE 6. Graph and contour of the quincunx fundamental refin-
able function ¢% .
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5. QUINCUNX BIORTHOGONAL WAVELETS

In this section, we shall discuss how to construct quincunx biorthogonal wavelets.
Throughout this section, the 2 x 2 matrix M denotes either the dilation matrix @
or the dilation matrix T" defined in (1.1).

A quincunx biorthogonal wavelet comes from a pair of a primal (refinable) func-
tion ¢ and a dual (refinable) function ¢¢ such that

¢=> alB)p(M-—p) and ¢*="> a¥(8)p*(M--p),

Bez? BEZ2

where a and a? are finitely supported masks on Z? and the functions ¢ and ¢%
satisfy the biorthogonal condition

(5.1) | FTm e =sp) voez

From these two refinable functions, a wavelet function ¢ and a dual wavelet function
1® are derived by

=3 (—1)=Plad(e; — B)p(M - —p)

BeZ?

and

vt =) (~D)=Plalea — B)p*(M - =),
pez?
where ey = (0,1)T. Let f be a function. For j € Z and 8 € Z?, define fj g :=
212 f(M7 - —3). Then it follows from (5.1) that

(Voo ¥1.0) = /R 0,6@) W (z) dz = 8(i = )8(a— B)  Vi,j €L, BEL’.

Therefore, for any f € Lo(R?), we have

F=Y20 (Fvla)bis=> > (fe)vis

JEZ BeZ? JEZ Be2?

An advantage of quincunx biorthogonal wavelets rests on the fact that the associ-
ated wavelet function ¢ and the dual wavelet function ¢ can be easily obtained.
If the dilation matrix is 215, then there are three associated wavelet functions and
three dual wavelet functions; hence, there is no easy way of deriving wavelets from
the primal and dual refinable functions.

A necessary condition for the functions ¢ and ¢¢ to satisfy the biorthogonal
condition (5.1) is that their masks a and a? satisfy the discrete biorthogonal relation

(5.2) > a(B+ Ma)at(8) = |det M|6(a) Vo€ Z”.
BeZ?

Let a be a finitely supported sequence on Z? such that > peze o(B) = |det M|. If
there exists a finitely supported sequence a® on Z2 such that (5.2) holds true, then
the mask a is called a primal mask and a? is called a dual mask of a. Note that
Q7?2 = T7Z? where the matrices @ and T are given in (1.1). If a and a? satisfy (5.2)
with the dilation matrix @, then (5.2) also holds true with the dilation matrix T,
and vice versa. Therefore, in this section, we shall deal with the dilation matrix @
only.
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Let a and a? be a pair of primal and dual masks. Let ¢} and ¢ be the
normalized solutions to the refinement equations with the dilation matrix M and
the masks a and a?, respectively. Then the functions ¢} and ¢4 lie in Ly(R?)
and satisfy the biorthogonal condition (5.1) if and only if the subdivision schemes
associated with the dilation matrix M and the masks a and a? converge in the Ly
norm. See [14] for a characterization of L, (1 < p < 0o) convergence of subdivision
schemes with a general dilation matrix. The concept of vanishing moments of a
quincunx biorthogonal wavelet plays an important role in applications. See [2, 4, 6,
17] and references therein for discussions on vanishing moments and their relation to
sum rules. Given a primal mask, it is desirable to construct a dual mask with high
order of sum rules and relatively small support. Given an interpolatory mask as a
primal mask with the dilation matrix M = 2[5, a coset by coset (CBC) algorithm
was proposed in [13] to give dual masks with arbitrary order of sum rules. The
CBC algorithm was later generalized to general primal masks in [2].

Given p = (1, uo) € Z2, its factorial is p! := pylps!. For v = (v1,10) € Z%, by
v < pwemean vp < pp and v < pg. By v < p we mean v < p and v # pu.

We shall employ the CBC algorithm to construct quincunx biorthogonal wavelets.
The reader is referred to [2, 13] for more details about the CBC algorithm.

Theorem 5.1. Let Q be the dilation matriz defined in (1.1) and let a be a primal
mask satisfying > geze a(QB) = Y pega alea + QB) = 1 where ea = (0,1)7. Let a?
be a dual mask of a. Define

he(u) =271 > a¥(B)Q7IB),  meZi.
BeZ?

If a® satisfies the sum rules of order k for some positive integer k, then h®(0) =1
and

B =3~ 5 Y ()R

5.3) 2 oSt (p—v)!
x > a(B) Q7B lul < k.
BeZ?
Conversely, if h®(0) =1 and h®(u) (Ju| < k) are given by (5.3), and if
(5.4) > at(e2+QB)Q e+ ) =) V|| <k

BeZ?
then a? satisfies the sum rules of order k.

Proof. Let Q := {0,e3}. Since a? is a dual mask of a, it follows from (5.2) that

26(p) =Y Y a(B - Qa)a’(B)a*

a€Z? BeZ?

=33 3 ale+@B-Qajal(c + QB)¥,  peli.
e€Q a€Z? BEZ2
Note that (z —y)* = Zogygu(—l)lu_yl(5)53"1/“_”, where (4) =
quently,

: =
———“—V!(#_U)!. Conse

at = Y (1) <’:> Qe+ B — ) (Q e+ B)”.

0<v<p
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Hence, we obtain

26(u) = > (-1 ”()ZZ e+ Qa)(Q e+ )

(55) 0<v<p eEQ a€Z?

XZ (e+QB)(Q e+ B)”.

BEZ?
Suppose a? satisfies the sum rules of order k. Then by (2.2) we have
> ak@B)B =) atlea+@QP)Q e+ B) =h*(v) Vv <k
pez? Bez?

This together with (5.5) yields

260 = ¥ (-0 (4)rew)
(56) 0<v<p
X Z Z a(e + Qa)(Q e+ a)* 7Y, |u| <k,

eEQ aeZ?

from which (5.3) follows at once.
Now suppose h*(0) = 1 and h*(p) (Ju| < k) are given by the recursive relation
(5.3). Subtracting (5.6) from (5.5), we obtain

T (ke "'()ZZ 65 00)(Q e + a)i—

o<v<u eE€EQ aeZ?
X { Z a’(e +QP)(Q e+ B)” — h“(u)} =0.
Bez?
If (5.4) holds, then it follows from the above equality that
5 e (M) X a@aie | 3 e - nte)| =0 Vil <k
0<v<p a€Z? BeZ?

Note that ) .72 a(Qa) = 1, by induction on p we deduce that
> al@AF —h* (W) =0 V| <k
BezZ?

Therefore, a? satisfies the sum rules of order k. The proof is complete. O

Suppose Y 5cz0 a(QB) = D pezz ale2 + QB) = 1. Let b be a dual mask of a.
Construct a new sequence a? as follows:

(5.7) a(Qa) == b(Qa) — Z ales + QF — Qa)cs, ae’Z?,

BEZ?

and
(5.8) a?(eg + Qa) := blea + Qo) + Z a(Qpf — Qa)eg, a €72,
pez?

where cg (3 € Z?) are parameters such that cg = 0 except for finitely many 3.
Then it is easy to verify that a? is also a dual mask of a. This procedure is the
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so-called lifting scheme (see [26]). In order for a? to satisfy the sum rules of order
k, we choose the parameters cg (8 € Z?) in such a way that (5.4) is satisfied. Let

(59) o)=Y @7 e B, lul <k

Bez?
Then by (5.4) and (5.8) we have

() = Y a%(es+Qa)(Q Mer + )

a€Z?
=) blea+Qa)Q teata) + > > a(QB - Qa)es(Q ler + ).
a€Z? a€Z2 BEZ?
Moreover,
S S a(QF = Qajes(@tes + o)
a€Z? BeZ?
=3 3 al@B— Qa)es(Q rea + B — (B — o))
a€Z2? BEL?
-y (—D'ﬂ‘"'y,(u“—iy), S WQF = Qa)(B - o)t es(@ tes + )
0<v<p ) " BeZ? acz?
!
= Y O Y al@a)et ™ 3 Qe + )"
0<v<p " aez? BEZ2
- _1)le—vl p! O~V
OSUZSH( 1) T V)!g(v) gz; a(Qa)ar ™.

Therefore, g(u) (|u| < k) are determined by the recursive relation

g(m) =R () — > blez + QB)(Q ez + B)*

(5.10) pett y
= 2 ) Y a@a)s
0<v<p ) ) Bez?

Let g(u) (Ju| < k) be given in (5.10). Choose parameters cg (8 € Z?) such that
(5.9) holds. Let a¢ be given by (5.7) and (5.8). Then from the above discussion it
is easy to see that a satisfies (5.4). By Theorem 5.1, a¢ satisfies the sum rules of
order k. Therefore, to obtain a dual mask a? of a satisfying the sum rules of order
k, we only need to choose the parameters cg (8 € Z?) in such a way that (5.9) is
satisfied.

Let a be a primal mask which is symmetric about the origin. Given a dual mask
b of a, then without loss of generality we may assume that b is also symmetric about
the origin.

Let cg =dy (v =e2+ QB,7 € Gi,x—1), where the set G ,—1 is defined in (3.2).
The following result gives a particular choice of the parameters dy (v € Ggr—1)
such that the dual mask a? satisfies the sum rules of order 2k.

Theorem 5.2 (A CBC algorithm for primal masks symmetric about the origin).
Let Q be the dilation matriz in (1.1). Let eo = (0,1)T. Let a be a finitely sup-
ported primal mask on Z? such that Y pezz A(QB) = D pegealez + QB) =1 and
a(—B) = a(B) for all B € Z?. Let b be a dual mask of a with the dilation matriz Q
such that b is symmetric about the origin.
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1. Let k be a fized positive integer. Compute the values h®(u) for u € Zi and
|| < 2k by the recursive formula (5.3);

2. Compute the values g(p) for p € Z% and |u| < 2k by the recursive formula
(5.10);

3. Then there is a unique solution {d, : v € G r—_1} to the linear system of
equations

> @M =gw) VYpeT,

YEGk, k-1

where the set I'Y is defined in (3.1) and the set Gy p—1 is defined in (3.2);
4. Construct a mask a® coset by coset as follows:

a(Qa) = b(Qa) — Z a(y — Qa)d,, o€ 72,

YEGk, k-1

and

at(ey + Qa) := b(ey + Qo) + Z a(y — ez — Qa)d,, acZ?
YEGk k-1

Then the mask a® is a dual mask of the given mask a with the dilation matriz Q (or
the dilation matriz T), a® satisfies the sum rules of order 2k and a? is symmetric
about the origin.

Proof. From the definition of a® in Step 4, it is easy to verify that a? is a dual mask
of a with the dilation matrix Q. To prove that a? satisfies the sum rules of order
2k, from the preceding discussion, it suffices to verify

(5.11) Yoo Q@7 MF=g(u)  YueZl |yl <2k
YEGK, k-1

Note that the existence and uniqueness of a solution to the linear system of equa-
tions in Step 3 are guaranteed by Lemma 3.1. Since a(8) = a(—/) and b(8) = b(—0)
for all 8 € Z2, it is easy to verify that h®(u) = 0 and g(u) = 0 for all p € Z2 such
that |u| is an odd integer.

Note that the set Ggr—1 is symmetric about the origin and g(u) = 0 for all
@ € Z% such that || is an odd integer. The uniqueness of the solution to the linear
system of equations in Step 3 implies that d_, = d, for all v € G x—1. Therefore,

Y@= Y d(-DHQ
YEGK, k-1 YEGK, k-1

=¥ Y a@ ) el

YEGK, k-1
It follows that
Z d(Q ) =0=g(p) VYu=(0,2j-1),j=1,,k
YEGk, k-1

Hence, (5.11) follows at once from the above equality and the equality in Step 3.
By the uniqueness of the solution in Step 3, a? is symmetric about the origin. [
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FIGURE 7. The scaling function ¢%, the wavelet function 4, the
dual scaling function ¢8}2)Z’ and the dual wavelet function 2.
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Remark. If a is a quincunx interpolatory mask, then we always take b = 24 by
default in Theorem 5.2. If a primal mask a is symmetric about the origin, by ()3
we denote the dual mask constructed by the CBC algorithm in Theorem 5.2 such
that (a)9 satisfies the sum rules of order 2k. When a primal mask a is symmetric
about the axes z1 = 0 and zo = 0 we may assume that the initial mask b in
Theorem 5.2 is also symmetric about the axes ;7 = 0 and zo = 0. By the uniqueness
and the symmetry of the set Gy, ;1 in Step 3, the resulting dual mask a? must be
also symmetric about the axes z; = 0 and zo = 0. Furthermore, when a primal
mask a is symmetric about the axes x; = 0, o = 0 and the lines 23 = z and
T = —Io, we may assume that the initial mask b in Theorem 5.2 possesses the
same symmetry. We modify the dual mask a? in Theorem 5.2 as follows:

(a);(Br, B2) = [a® (B, B2) + a*(Ba, B1)] /2, (B1,B2) € Z°.

Then the resulting mask (a); is a dual mask of a such that (a); satisfies the sum
rules of order 2k and (a); is symmetric about the axes z; = 0,z = 0, and the lines
x1 = zp and 1 = —z2. In passing, we mention that the set G y—1 in Theorem 5.2
can be replaced by Gx_1 k-

Let us apply Theorem 5.2 to the quincunx interpolatory masks h, and g,. From
Theorem 5.2, we see that each (h,)? is supported on [2 — k — 7,7 + k — 2] x
[~k — r,r + k] and satisfies the sum rules of order 2k. Similarly, each (g,)} is
supported on [~k — 7,7 + k]? and satisfies the sum rules of order 2k. By com-
putation we find that the symbols of all the dual masks in Tables 3 and 4 are
nonnegative.

FIGURE 8. The contours of the scaling function ¢§2> the wavelet
function v, the dual scaling function ¢8}2)i’ and the dual wavelet
function ¢.
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